OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of...

29
Enrrgy Vol. 4, pp. 593-621 Pergamon Press Ltd.. 1979. Printed in Great Britain OPTIMAL INSULATION OF SOLAR HEATING SYSTEM PIPES AND TANKS GERARD F. Johns and NOAM LIOR Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, U.S.A. (Received 1 Jury, 1978) Abstract-A compact and time~ffective insulation design procedure for soiar heating system piping and water-filled thermal storage tanks was developed. Recognizing the particular sensi- tivity of solar systems to cost, the economic aspect of the problem was treated by a comprehensive present-value life-cycle cost analysis. In the development of the method, a numerical sensitivity analysis was performed to determine the relative effects of all relevant independent variables (within their pertinent ranges) on piping and tank heat transfer coefficient values. For the accept- able error limits of + 14% for pipes and & 19% for tanks, it was found that one may assume that only the nominai pipe diameter (or tank diameter), the thermal conductivity of the insula- tion, and the insuIation’s thickness have an effect on the overaif heat transfer coefficient. Based on this result, design graphs and tables are presented which can be used to determine the optimal insulation thickness and type, total annual heat losses, present-value annual costs of insulation and lost heat, and overall insulation R-values. The use of the method is illustrated by calculating all the above quantities for all piping and storage tanks for the University of Pennsylvania SolaRow House. The present method provided insulation thicknesses slightly greater than those obtained by the ETI technique. A major conclusion of the study is that the cost of insulation in solar systems is not insignifi- cant (e.g., 5 15% in SotaRow), and that heat losses through insulation could amount to an important percentage of the useful solar energy collected (e.g., 24% in SolaRow). This re-empha- sizes the need for a careful design of insulation in solar systems. 1. INTRODUCTION When compared to the delivered energy costs for a system using convectional heat sources, the collection and use of solar heat is a costly process. Hence, the solar heat loss through solar heating system surfaces (such as pipes, thermal storage tanks, etc.) should be minimized subject to associated material and labor cost constraints. Since economics probably constitutes the major present obstacle to the widespread utilization of solar heating, it is important to include careful optimization of thermal insulation in the design procedure. This optimization is obtained by selecting principally the insula- tion material and thickness which give the lowest total life cycle cost of insulation material, labor, maintenance, and energy lost through the insulation. A qualitative illus- tration of the optimization method is shown in Fig. 1. COS Cl INSULATING MATERIAL *f I I I I I II, 123456 COSl CT: INSULATING MATERIAL*2 a t 2 3 4 5 6 INSULATION THICKNESS NO. Fig. 1. Optimization of insulation thickness and material. Note: Insulation thickness increases with the “insulation thickness number”. 593

Transcript of OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of...

Page 1: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

Enrrgy Vol. 4, pp. 593-621 Pergamon Press Ltd.. 1979. Printed in Great Britain

OPTIMAL INSULATION OF SOLAR HEATING SYSTEM PIPES AND TANKS

GERARD F. Johns and NOAM LIOR

Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.

(Received 1 Jury, 1978)

Abstract-A compact and time~ffective insulation design procedure for soiar heating system piping and water-filled thermal storage tanks was developed. Recognizing the particular sensi- tivity of solar systems to cost, the economic aspect of the problem was treated by a comprehensive present-value life-cycle cost analysis. In the development of the method, a numerical sensitivity analysis was performed to determine the relative effects of all relevant independent variables (within their pertinent ranges) on piping and tank heat transfer coefficient values. For the accept- able error limits of + 14% for pipes and & 19% for tanks, it was found that one may assume that only the nominai pipe diameter (or tank diameter), the thermal conductivity of the insula- tion, and the insuIation’s thickness have an effect on the overaif heat transfer coefficient. Based on this result, design graphs and tables are presented which can be used to determine the optimal insulation thickness and type, total annual heat losses, present-value annual costs of insulation and lost heat, and overall insulation R-values. The use of the method is illustrated by calculating all the above quantities for all piping and storage tanks for the University of Pennsylvania SolaRow House. The present method provided insulation thicknesses slightly greater than those obtained by the ETI technique.

A major conclusion of the study is that the cost of insulation in solar systems is not insignifi- cant (e.g., 5 15% in SotaRow), and that heat losses through insulation could amount to an important percentage of the useful solar energy collected (e.g., 24% in SolaRow). This re-empha- sizes the need for a careful design of insulation in solar systems.

1. INTRODUCTION

When compared to the delivered energy costs for a system using convectional heat sources, the collection and use of solar heat is a costly process. Hence, the solar heat loss through solar heating system surfaces (such as pipes, thermal storage tanks, etc.) should be minimized subject to associated material and labor cost constraints. Since economics probably constitutes the major present obstacle to the widespread utilization of solar heating, it is important to include careful optimization of thermal insulation in the design procedure. This optimization is obtained by selecting principally the insula- tion material and thickness which give the lowest total life cycle cost of insulation material, labor, maintenance, and energy lost through the insulation. A qualitative illus- tration of the optimization method is shown in Fig. 1.

COS

Cl

INSULATING MATERIAL *f

I I I I I II, 123456

COSl

CT:

INSULATING MATERIAL *2

a t 2 3 4 5 6

INSULATION THICKNESS NO.

Fig. 1. Optimization of insulation thickness and material. Note: Insulation thickness increases with the “insulation thickness number”.

593

Page 2: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

594 GERARD F. JONES and NOAM LIOR

For a given insulating material, the amount of lost heat (and thus the cost of lost heat) decreases as the thickness of the insulation increases?. On the other hand, the cost of the insulating material and labor increases with thickness. As the sum of these costs passes through a minimum, the optimal insulation thickness is determined. The cost vs. thickness relationship in Fig. 1 is shown in a number of discrete points instead of the customary continuous curve because commercial insulation is most often purchas- able in discrete thicknesses only. In this example, insulating material No. 1 has an optimal thickness No. 5 which results in a total cost CTI, while material No. 2 has an optimal thickness No. 4 with cost CTZ. It is also noteworthy that when choosing between the two materials, No. 1 is optimal because CT1 < CTZ.

Least cost optimization as described above does not consider other insulation charac- teristics such as dimensional stability, flammability, water permeability, etc. These re- quirements must be satisfied before an insulation is considered a candidate for cost optimization.

Several techniques for the determination of optimal insulation thickness are presently available (Refs l-3). These consist primarily of industrial computer programs and nomo- grams oriented to applications where conventional fuels are used. The recently developed ET1 Method3 optimizes the selection of insulation based on a number of economic criteria, most notably life-cycle costing. It is gaining in popularity as more insulation is used in response to increasing energy costs and emphasis on industrial energy conser- vation. Typical simplifying assumptions made in these techniques are:

a. The thermal resistance due to both the fluid-to-tube heat transfer coefficient and the heat conduction through the tube wall is ignored (resistance = 0).

b. The thermal resistance due to the heat transfer coefficient between the insulation’s outer surface (or jacketing) and ambient air is assumed to be a constant, and thermal radiation from that surface is either constant or neglected.

c. Differences between nominal and actual diameters and wall thicknesses as applied to different types of tubes (e.g. steel, copper, plastic) do not enter into the heat loss calculation.

The third assumption not only affects the thermal resistance to heat flow from the tube, but when using design graphs, could lead to incorrect predictions of the heat transfer surface area and thus of the final thickness of insulation.

This study has two main goals: (1) analyze the sensitivity of the heat loss coefficient (UA value) to changes in its defining variables, and (2) use the most dominant of these in a combined heat transfer/economic model to construct convenient insulation design graphs and tables. With these, an optimal insulation material and thickness and the annual heat loss for each pipe and tank size for a given solar system can be determined. The analysis considers indoor water-filled storage tanks, as well as both indoor and outdoor piping for four working fluids. Influence from the following independent vari- ables is included:

(1) Ambient temperature and wind velocity. (2) Piping or storage tank hot fluid temperature. (3) Piping material and nominal size. (4) Working fluid type: Water, SO-SO% (by weight) ethylene glycol-water solution,

silicone liquid (Dow Corning@ Q2-1132), hydrocarbon heat transfer liquid (Shell Ther- mia@ Oil 15).

(5) Insulation thickness. (6) Insulation thermal conductivity. (7) Piping design pressure gradient (which determines liquid flow velocity). (8) Insulation surface emissivity.

fThat is true for above-critical diameters. For below critical ones, the addition of insulation increases the heat loss. All piping considered here is practical for solar systems and has above-critical diameters (see Section 4).

Page 3: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

Optimal insulation of solar heating system pipes and tanks 595

(9) Annual system usage factor. (10) Annual payback on capital. (11) Cost of solar heat. (12) Cost of insulation material, jacketing and labor.

2. OPTIMIZATION MODEL DEVELOPMENT

2.1 Heat Transfer Model The expression for the rate of steady radial heat flow, per unit length of the cylinder

described in Fig. 2, is

QI = (UA)(T/ - T,) = (UA)AT (1)

with

and

AT = Tf - TO (2)

UA = PZ{[l/d,hi] + [ln(l + 2t,/d,)/2k,]

+ [ln(l + 2tJdl + 2t,)/2kJ + l/ydl(ho + h,)}-’

= rate of heat loss per unit of pipe length per unit of AT (3)

The development of eqn (3) and the description of its different terms is detailed in Appendix A.

For indoor storage tanks where the internal tank walls are completely wetted by water and no thermal stratification is assumed, the total rate of heat transfer per tank, Q’, is given by

Q' = IQ1 + Qt + Qb (4)

where I is the tank height, and Q1 is determined from (1). Qt and Qb are the heat transfer rates from the top and bottom of the tank, respectively. Assuming steady heat flow and d3/dlf not much greater than unity:

Qt Or Qb = KdI AT/4C(l/ht,b) + (tp/kp) + (tJkJ + (1ht.b + hr)l (5) The development and description of the various terms and heat transfer coefficients used for the determination of Qr and Qt or Qb are also detailed in Appendix A.

tdi = 2ri from Fig. 2.

Fig. 2. The geometry and analog thermal circuit of the insulated pipe heat transfer mode: ti = r3 - r2, t, I r2 - rl.

Page 4: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

596 GERARD F. JONES and NOAM LIOR

2.2 The Economic Model A life-cycle cost analysis is employed in this study. It involves a comparison of the

average annual portion of the total lifetime costs for various alternative insulation schemes. It is assumed here that the minimal life-cycle cost scheme defines the proper level of insulation. Alternative schemes for replacing the energy lost through system surfaces could have been employed. However, such schemes, including the addition of solar collectors or other heat sources, are assumed u-priori to be more costly than the addition of insulation.

Average annual costs associated with the minimal life-cycle cost scheme arise from three sources:

(1) Average annual present-value of the initial lumped investment which provided insulation labor and material.

(2) Present-value average annual maintenance costs. (3) Present-value average annual energy costs.

The equation expressing this total present-value average cost Cr($/ft-yr) per unit length of piping insulation is

Cr = [E,,,jn](Ci + Cj + Cl) + [E2(l,/n]C, + 8760 X 10m6 FCs UA(T/ - TJ (6)

where the three terms on its r.h.s. correspond to the above items (l)-(3), respectively. In particular,

Ci = Base cost of the insulation material, including the cost of fitting and valve insulation prorated over the straight pipe length, $/ft.

Cj = Base cost of insulation jacketing, $/ft. CI = Base cost of insulation labor, $/ft.

The E-terms are economic coefficients for converting cash flows to present-values. They are described in Appendix B.

C, = Base cost of maintenance during the first year, S/ft. F = Annual usage factor (0 I F I 1) of the insulated component. This is the

annual fraction of time during which the solar collection system (or storage tank) loses heat. Consideration must be given to the working fluid remain- ing in piping and exposed to ambient temperatures after the solar collec- tion system has stopped.

Tf, TO = Average annual Farenheit temperature of working fluid and ambient re- spectively. These variables are assumed constant over the lifetime of the insulation.

C, = Present-value annual average cost of solar heat, $/(106 Btu/yr). C, may be a given value, or could be calculated by using the equation

C, = (CM&) + M&3 + M,&&&~I + CW - vGE4Inl (7)

where :

Mi = Initial capital cost of solar heating system including all labor and materials. M,, = First year operating costs of solar heating system. M, = First year maintenance cost of solar heating system. LB = Total annual space heating and domestic hot water load (lo6 Btu/yr).

q = Fraction of annual space heating and domestic hot water load contributed by solar energy.

8 = 1 or 0, 1 corresponding to auxiliary heating of storage tank water directly, 0 corresponding to no direct auxiliary heating of water.

C, = First year cost of auxiliary energy delivered to storage ($/lo6 Btu).

Equation (6) can be rearranged to yield

Page 5: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

Optimal insulation of solar heating system pipes and tanks 597

C TM = ww~, - TJ = CR + UA* (8)

where

CR GZ CE1(l)(Ci + cj + cl) + E2(1)CmlInCsF(Tf - TaX (9)

and

UA* s 8760 x 1O-6 UA (lo6 Btu/foot-yr-“F). (10)

For thermal storage tanks, eqn (6) takes the form:

G = CEl(l,Inl(Ci + Cj + CJ + CE2(1JnIG + 8760 x 1O-6 C,lUA’F(T/ - T,) (11)

and eqns (8)-(10) become:

C& E C;/C,lF(Tf - T,) = C; + UA*‘, (12)

where

and

G z CE,(,,(Ci + Cj + CJ + E2~~~CmlI~C#‘(~’ - Ta) (13)

UA*’ z 8760 x 10s6 UA’ [lo6 Btu/(foot tank length)-yr-“F] (14)

UA, the heat loss coefficient per unit length of insulated surface, depends on many variables and its determination complicates the insulation design procedure. Therefore, a numerical sensitivity analysis was performed to possibly reduce the number of indepen- dent variables which need to be considered in the insulation design.

3.1 General

3. SENSITIVITY ANALYSIS

In the numerical sensitivity analysis, variations in UA were determined by indepen- dently perturbing each of its describing variables from a given base value.? If the devi- ation of UA by such a perturbation falls within acceptable error tolerance, UA can then be considered independent of that variable for the range investigated and can be calculated with that variable fixed at its base value. Upon investigation of eqns (3), (A6), (A14), (A15) and (A16), the functional form of UA can generally be written as:

UA = UA(dl, ti,fL,kp, tp, Ta, Tf, 4,~,kt, I’) (15)

where T. and T, are included to account for temperature dependent air and working fluid thermophysical properties and for nonlinear effects of thermal radiation and natural convection.

3.2 Piping Commercially available, schedule 40 carbon steel pipe and type L wall copper water

tube are considered for piping materials in this analysis because of their common usage in residential and commercial areas. Since commercial piping is considered, d,, tP and kJ cannot be specified independently. Instead, two alternate independent variables M, and D (piping material and nominal diameter) are defined so that the value M, deter- mines k, and the specification of both M, and D determines tp and dl. The number of independent variables is thus reduced from 11 to 10. In addition, it is convenient to define:

k* = kJ0.010 Btu/hr-ft-“F (16) tA base value is defined here as either a value which lies midway between the maximal and minimal

value in the continuous independent variable’s range, or an arbitrarily determined value within a discrete variable’s range.

$See Fig. 2.

Page 6: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

Tab

le 1

. F

luid

pro

pert

ies

at 1

5O”F

and

200°

F.

E

tl

Flu

id

No.

2:

F

luid

N

o. I:

Flu

id

No.

3:

A

queo

us

solu

tion

01

F

luid

N

o.

4:

Pro

pert

y S

ilic

one

oil,

u

Wat

er

Syn

thet

ic

hyd

roca

rbon

, et

hyl

ene-

glyc

ol,

50%

by

w

eigh

t D

ow

Cor

nin

g 42

-113

2 S

hel

l T

her

mia

oi

l 15

Y

Tem

pera

ture

, “F

15

0”

200”

15

0”

200”

15

0”

200”

$

k,,

Btu

ihr

It ‘F

150”

0.38

4

zcw

0.39

4 0.

245

0.24

1 I

WW

C)

(0.6

64)

0.08

1 (0

.68

1)

0.08

0 (0

.423

) 0.

075

(0.4

16)

0.07

5

v, R

Z/s

4.

770

x 10

-s

(0.1

40)

(0.1

38)

k 3.

410

x 10

-s

1.13

2 x

lo-’

7.86

0 x

10-S

(0

.129

) (0

.129

)

W/s

) 1.

168

x IO

-’ 8.

221

x lo

-”

(4.4

31

x IO

.‘)

(3.1

68

x IO

-‘)

(1.0

51

x 10

-S)

(7.3

02

x 1O

-7)

1.11

0 x

1om

a 8.

382

x IO

-$

R

2.74

1.

88

(1.0

85

x lo

-‘)

9.18

(7

.637

v

IO-*

) (I

.031

x

lo-‘)

6.

55

(7.7

87

x lo

+)

g

p,

lb m

JW

61.2

0 60

.10

111.

09

79.2

4 65

.30

133.

57

64.1

0 10

5.48

Wm

f)

(980

.3)

56.8

8 55

.38

E

(962

.7)

(104

6.0)

52

.17

(102

6.8)

51

.08

c,.

Btu

,‘lb

m “

F

I.O

aO

l.O@

O

(911

.1)

0.84

5 (8

87.1

1)

0.87

0 (8

35.7

) (8

18.2

)

WW

C)

0.37

8 0.

387

I:

(4.1

84)

(4.1

84)

13.5

35)

0.48

5 (3

.640

) 0.

510

(1.5

81)

(1.6

19)

(2.0

29)

(2.1

34)

8

Page 7: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

Optimal insulation of solar heating system pipes and tanks

Table 2. Definition of base cases for piping insulation sensitivity analysis.

599

Location Base of case

piping No. M, JL T,. WC)

Value ol base case variables V mph

T.. “9°C) 0 c k’ (m/s)

Outdoor I I I 200 (93) 40 (4) 0.075 0.5 2.0 lO(4.5)

2 2 I 200 (93) 40 (4) 0.075 0.5 2.0 IO (4.5)

3 3 I 200 (93) 40 (4) 0.075 0.5 2.0 IO (4.5)

Indoor 4 I 1 200 (93) 60116) 0.075 0.9 2.0 0

5 2 I 200 (93) @3(16) 0.075 0.9 2.0 0

6 3 I 200 (93) 60(16) 0.075 0.9 2.0 0

Therefore, k* = 1.0, 2.0, 3.0 and 4.0 corresponds approximately to polyurethane foam, fiberglass or a closed cell foam rubber, foamed glass and calcium silicate insulation, respectively. The range of parameters used in the sensitivity analysis was:

Discrete Design Variables

Nominal commercial pipe diameter D:

3, a, L 1, 1% 13, 2, 24, 3, 34, 4, 4-h 5 in.

Insulation thickness ti :

2, i, 2, 1, 13, 2, 2$ 3, 3$, 4, 4$ 5, 59, 6 in.

Type of fluidf,: 1, 2, 3, 4, corresponding to the working fluids listed in Table 1. Commercial pipe material M,: 1, 2, 3, corresponding to copper (l), steel (2) and

a hypothetical pipe material (3) which has the dimensions and thermal conductivity represented by the mean value of the commercial copper and steel materials.

Continuous Value Variables

10017’~13OO“F

20 I T, I 80°F

0.05 I f$ < 0.10

0.10 I E < 1.0

0.010 I ki < 0.040 Btu/hr ft”F

51V<15mphr

EASE CASE 3

Fig. 3. Sensitivity analysis results for outdoor piping insulation. Upper curves: steel pipe; Lower curves: copper tube.

Page 8: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

BAsEcAsE 1.25

BA!SE CASE 5

I.8

0.6

VARIABLE perturbed

VARIABLE botc

Fig. 4. %xdivity anatysis results for indoor piping insulation. Upper curves: steel pipe; Loser curves: copper tube.

The method of the s~~s~~~v~~~ analysis was to describe six “base cases” defined in Table 2 and to evaluate the maximal deviations of perturbed UA values from the UA values for base-case conditions. The ~er~rbat~on is conducted by varying one continuous vari- able at a time through its range of values for alt 4 fluids, for all D and ti combinations, and for MP equal to 1 and 2, while leaving the rest of the base case continuous variables fixed at the values indicated in Table 2. The above combinations resulted in computing more than 25000 values of UA.

The results of the sensitivity analysis are summarized in Figs. 3 and 4. In the interest of clarity, the values UA,,JUA base were plotted only for that combination of fL, D and ti which yielded the maximal deviation in UA. Hence, these cnrves show the maxi- mal possible jn~uen~~ of the investigated variables on UA.

3.3 fndctor fIor WizE?r ~~~r~~~ ~~~~~ Here

UA = UA’(&> ti, &?’ $9 q, T,,s M. (171

The ranges of the variables T,, T,, E, and ki are the same as for pipes. Cyfindrical steel tanks of outside diameter dz, length 1, and wall thickness t, = r;;” are considered (applicability of results to other wall thicknesses is permitted since the effect of t, on the UA value is small), where

1s 5 d,I 9ft

and

The “base case” here is described in Tabte 3. The results of the analysis are shown in Fig. 5.

3.4 Conclusions from the Sensitivity Analysis As expected in all cases, the major infiuence on UA is through the ins~lation’s thermal

conductivity and thickness. The influence of all other variables is at least an order of magnitude smaller than that of k*. Specifically, for outdoor piping cases, only wind velocity variations in its range influences the UA value to any noticeable extent, this effect being only -&3x. For the outdoor piping cases, the hot finid temperature 7”’ and the jnsu~ation’s ~miss~vity e show an effect of $-3% each on UA. For the indoor

Page 9: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

Optimal insulation of solar heating system pipes and tanks

Table 3. The base case for storage tank insulation sensitivity analysis.

601

BW Value of base case variables Location case T,, “WC) T.. “FW f k*

Indoor storage Tanks

1 150 (66) M)(l6) 0.50 2

hot water storage tanks, the influence of Tf and E are +5% and +8% respectively. The radiative losses become more pronounced for indoor insulation because they are comparable to the natural convection losses, whereas outdoor external surface heat transfer coefficients are dominated by wind-driven forced convection.

The type of heated liquid has a very small influence (+ 2%). It is maximal for the silicone oil which yields smaller UA values than the other fluids.

Errors in UA values (for a fixed insulation thickness) of up to 20% can result if they are calculated for one nominal pipe size and applied to the same nominal size for a different pipe material due to diff’erences between actual diameters for the two cases. Such errors may occur when using the ET1 manua13, however, for the present method the errors are reduced by evaluating all UA values based on pipe material 3.

Assuming a maximum allowable UA error of f 14% (+ 19% for storage tank insula- tion), the results of the sensitivity analysis for the base cases and ranges listed can be summarized by

UA = UA(D, tiy k*, indoor or outdoor) (18)

and

UA’ = UA’(dz, tiy k*) (19)

Referring to eqn (8) the effects on CTM due to the above errors in UA* can be quantified by writing

C&CR = 1 + u(UA*/C,),

where u is an error coefficient with values of

0.86 I r.4 2 1.14 for piping

0.81 I u I 1.19 for storage tanks.

(20)

I BASE CASE 7 I

UA 1.00

mar

UA base 0.98

i

0.90 - 0.4 0.0 0.5 1.0 1.5 2.0

VARIABLE perturbed

VARIABLE base

Fig. 5. Sensitivity analysis results for indoor hot water storage tank insulation.

EGY Vol. 4. No. 4-I

Page 10: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

602 GERARD F. JONES and NOAM LIOR

Using eqn (20), two limiting effects of u on CTM are considered:

CR < UA* (21)

CR + UA* (22)

For case (21), the second term on the right hand side of (20) becomes the dominant term on that side and CTM is then equal to u(UA*). For the case of (22), the first term on the right hand side of (20) is dominant and CTM is determined independently of u or UA*. Thus, the maximum error in CT due to an error in the UA* value is realized by case (21) and is the same as that error associated with the UA* value.

Table 4. Outdoor piping insulation number legend (for use with Fig. 6).

Curve number Nominal Insulation thickness m. (cm)

pipe d” 4” a” 1” f I, 2” size (0.95) (1.27) (1.91) (2.54) &, (5.ORI

m

0

3” 5 3 I :” 7 4 2 I :” 9 7 3 2 I ” IO 8 5 3 I

I:” I2 IO 7 5 2 I It” I4 II 8 6 3 2 2” I5 I3 IO 8 5 3

8

I K*= 2.0 K*= 3.0

Fig. 6. Outdoor piping insulation design graphs (Base Case 3). Number legend is given in Table 4. CR is given in eqn 9; CrM is the resultant total system cost.

Page 11: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

Optimal insulation of solar heating system pipes and tanks 603

4. DESIGN GRAPHS

Equation (8) can be used to generate graphs relating system variables CR to system costs CTM by combining eqns (18), (19), and UA variables defined from Base Case 3 for outdoor piping, Base Case 6 for indoor piping and Base Case 7 for indoor storage tanks. These become optimal insulation design graphs because CR can be varied to obtain minimal CTM from the graphs. Direct calculation of the optimal thickness through differentiation of the rate of heat loss with ti was not implemented for two reasons: (1) because the cost function is discontinuous due to the discrete values of commercial

Table 5. Indoor piping insulation number legend (for use with Fig. 7).

1" lOY51

Curve number lnsulat~on thtckness in. (cm)

i" a' I" I i” 2" (I 271 (l.Yl) (2.54) (3X1) 15081

2” 6 4 I I ,, 8 6 3 1 $ IO x 5 3 I" I2 IO 7 5 I:" 15 I? Y 7 4 2 I J" I6 14 II 8 5 3 2" I7 16 13 IO 7 5

K*= 3.0

I I I I I1 I I I I f I I I 0123401234012345

c, x 10 3

Fig. 7. Indoor piping insulation design graphs (Base Case 6). Number legend is given in Table 5. CR is given in eqn 9; CTM is the resultant total system cost.

Page 12: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

604 GERARD F. JONES and NOAM LIOR

pipe diameters and insulation thicknesses and (2) the present method provides more information by indicating CTM for a variety of CR values.

Equation (8) was thus plotted in Fig. 6 for outdoor piping insulation. Nomenclature for Fig. 6 is given in Table 4.

Table 6. Indoor hot water storage tank insulation number legend (for use with Fig. 8).

Tank Curve number outsIde Insulation lhlckness inches (cm)

diameter. : I ,5.‘,8, $2,

4 5 6 7 8 leet cm) (1.27) (2.54) (IO 16) 1127) (15.24) (17.78) I20 32)

Ii (0.45)

2

(061) 3

(0.9 I ) 4

11.22) 5

(1.52) 6

(1.83) 7

(2.13)

$4, 9

(2.74)

17 II

20 14

2x 20

32 2s

34 29

36 31

33

35

36

x

I?

16

20

23

27

29

30

3 I

5 3

Y 6

I2 9

I5 I2

IX I5

21 I8

24 20

26 22

2 I

5 4 3 2

7 6 5 4

IO x 7 6

I2 IO Y 8

14 13 II IO

17 I5 13 I2

19 I6 I5 I3

Fig. 8. Indoor hot water storage tank insulation design graphs (Base Case 7). Number legend is given in Table 6. CR is given by eqn 13, Cr, is the resultant total system cost.

Page 13: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

Optimal insulation of solar heating system pipes and tanks 605

Indoor piping insulation design graphs are shown in Fig. 7 with the D and ti combina- tion legend listed in Table 5. A comparison of like combinations of D and ti from Figs. 6 and 7 indicate that UA differences as large as 32% exist, justifying the develop- ment of both an indoor and outdoor piping insulation design graph. Indoor hot water storage tank insulation design graphs are shown in Fig. 8, with the d2 and ti combination legend listed in Table 6.

Inspection of Figs. 6, 7 and 8 with Tables 4, 5 and 6 shows that the “critical diameter” (the value of d3 for which the UA value is a maximum for all other independent variables fixed) is smaller than d3 determined from any combination of pipe diameter and insula- tion thickness used in this analysis. Therefore, in all cases, UA for a given pipe diameter decreases with increasing insulation thickness, thus confirming the statement made earlier that all diameters considered in this report are above critical. The optimal insula- tion thickness, total annual heat loss, insulation and heat loss costs and R-value are determined for a particular pipe (or tank) in a given system as follows:

(1) Obtain insulation material and jacketing costs for each insulation thickness start- ing from the smallest available thickness for the particular pipe size of interest, and from economic and system design information and labor costs which apply to the pro- ject, calculate CR (or Cz) for each thickness, using eqn (9) (or eqn (13)).

(2) Knowing whether the pipe to be insulated is indoor or outdoor, find from Table 4 or 5 (6) the curve numbers which correspond to the pipe (or tank) size and the insulation thicknesses.

(3) Knowing whether the pipe to be insulated is indoor or outdoor and the value of k* for the particular insulation under investigation, enter the CR (or Cg) value in the proper figure (6, 7 or 8).

(4) From the correct curve number read off the value of CrM (or Cr.,) that corrres- ponds to each value of CR (or Cx).

(5) The optimal insulation thickness is that which gives the smallest value of CrM (or cl,,). The CrM (or Cb,) axis intercept for this insulation thickness is the value UA* (or UA*‘).

For the optimal insulation thickness, the total annual cost per unit length of piping is

CT = CTMCsF(Tf - T,), $/yr.ft (23)

and the total annual heat loss per unit length of insulated pipe is

Q1 = (UA*)F(T, - T,), lo6 Btu/yr.ft (24)

For storage tanks, the total annual cost is:

C’T = ~n&,F(T~ - T,), $/yr (25)

and the total annual heat loss is:

Q’ = (UA*)‘IF(Ts - T,), lo6 Btu/yr. (26)

In addition, the overall insulation R-value for a particular insulation thickness of cylindrical pipes and tanks? is calculated by

R(or R’) = 8760 x 10m6/UA*(or UA*‘), ft length of cylinder. hr. “F/Btu (27)

The procedure can be repeated for several different insulation materials having different k* values to determine the economic optimal insulation material for a particular pipe (or tank) size. The system variables F, C,, Tf and T, can be determined by hourly computer simulation or by using annual averages by techniques such as proposed in Refs 4 and 5. CS can also be calculated from eqn (7).

tit is noteworthy that this is not the same as the more commonly used R-value for flat insulation which is in units of ft’ hr”F/Btu.

Page 14: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

Tab

le

7. U

A*

valu

es f

or n

omin

al

pipe

siz

e, i

nsul

atio

n th

ickn

ess,

an

d k*

co

mbi

natio

ns

for

outd

oor

tubi

ng.

Nominal

pipe

size

I/A

* x

103,

Btu

/ft-y

r F

Insulation tha

kne

ss,

inc

he

s(c

m)

Legend Fxxed

*

lnsulatlon

thickness

Fixed

k' = 1.0

nominal

k' = 2.0

E

pipe

k*

= 3

.0

T

size

k’

= 4.0

0'

s

l.loD

0.886

0.668

0.555

2.120

1.730

1.310

1.100

3.080

2.530

1.940

1.620

3.990

3.290

2.540

2.140

1.320

1.060

0.787

0.646

2.550

2.060

1.540

1.270

3.690

3.010

2.280

1.890

4.760

3.910

2.980

2.480

0.750 (1.91) I.00

(2.54) 1.50

(3.81) 2.00

(5.08) 2.50

(6.35) 3.00

(7.62) 3.50

(8.89) 4.00 (10.16) 4.50 (11.43) 5.00 (12.70) 5.50 (13.97) 600

(15.24)

0.429 0.847

1.250 1.650

3.368

3.302

0.267

0.244

0.227

0.215

0.205

0.197

0.190

0.184

0.179

0.729

0.601

0.531

0.485

0.453

0.428

0408

0.393

0.379

0.368

0.358

1.080

3.895

0.792

0725

0.677

0.640

0.611

0.587

0.568

0.551

0.536

1.430

1.190

1.050

0.962

0.899

0.851

0.813

0.781

0755

0.733

0.714

0.488 0.962

1.420 1.870

0.414

3.336

0.294

0.267

0.248

0.233

0.222

0.212

0.205

0.198

0.193

0.820

0667

0.584

0.531

0.493

0.465

0.442

0.424

0.409

0.396

0.384

1.220

0.994

0.872

0.793

0.737

0.695

0.661

0.634

0.612

0.592

0.575

1.610

1.320

I.lM)

I.050

0.979

0.923

0.879

0.843

0.813

0.788

0.766

0.577 I.140

1.680 2.210

0.484 0.957

1.420 I.870

0.386

0.334

0.301

0.766

0.664

0.598 0.277

0.260

0.552

0.518

0.825

0.774

1.100

1.030

0.306

0.286

0.610

0.569

0.911

0.850

1.210

1.130

0.343

0318

0482

0.634

1.020

0.947

1.350

1.260

Page 15: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

1.44

0 1.

190

0.87

7 0.

716

0.54

9 0.

462

0.40

7 0.

370

0.34

2 0.

321

2.87

0 0.

303

0.28

9 2.

310

1,72

0 0.

277

0.26

7

Ii

1.41

0 1.

090

0.91

7 0.

810

0.73

6 0.

681

4.16

0 3.

370

2.53

0 0.

639

0.60

5 0.

577

2.09

a 0.

553

1.61

0 0.

533

1360

1.

210

I.10

0 1.

020

0.95

5 0.

904

5.35

0 4.

370

0.86

3 3.

310

2.14

0 0

828

0.79

8 2

130

1.81

0 I.

600

I .46

0 1.

350

I 27

0 I.

200

1150

1.

100

I.06

0

I.83

0 I 4

50

1.05

0 0.

852

0.64

3 0.

535

0.46

8 0.

422

0.38

8 0.

362

0.34

1 3.

510

2.8

IO

0.32

4 0.

310

0.29

8

2 2.

060

1.68

0 1.

270

1.06

0 0.

929

0.83

Y

0.77

2 5.

060

0.72

0 4.

060

0.67

9 3.

030

0.64

6 0.

617

0.59

3 2.

470

1.89

0 1.

580

1.38

0 1.

250

1.15

0 6.

490

1.08

0 1.

020

5.28

0 3.

960

0.96

5 3.

250

0.92

4 0.

888

2 49

0 2.

090

1.83

0 1.

660

1 53

0 14

30

1.35

0 I

280

I 23

0 1.

180

2.18

0 1.

720

1.24

0 0.

992

0.74

0 O

.Mw

0.

529

0.47

4 0.

434

0.40

3 0.

378

21

4.17

0 3.

320

2.42

0 1.

950

1.46

0 I.

210

I ,05

0 0.

943

0.86

3 0.

802

0.75

4 o-

358

0.71

4 o.

342

0.68

1 o.

327

0.65

3 o

6.C

W

4.82

0 3.

550

2.88

0 2.

170

1.8c

dl

1.57

0 1.

410

1.29

0 I .

2M)

1.13

0 7.

670

6.22

0 1.

070

1.02

0 0.

977

4.63

0 3.

770

2.86

0 2.

380

2.07

0 1.

860

1.71

0 1.

590

I.50

0 1.

420

-0

1.35

0 1.

300

b.

3 2.

560

2.01

0 1.

440

1.14

0 0.

843

0.68

9 0.

594

0.52

9 0.

482

0.44

6 0.

418

0.83

2 o.

394

0.37

5 E

4.88

0 3.

870

0.35

9

3 2.

800

2.24

0 1.

670

I 360

1.

180

1.05

0 6.

990

0.96

0 5.

600

0.88

8 4.

Icm

0.

786

3.31

0 0,

748

0.71

5 5’

2.

470

2.03

0 1.

760

1.57

0 1.

430

1.33

0 I.

240

8.93

0 I.

170

7.22

0 1.

120

1.07

0 5.

340

4.33

o 3.

250

2.68

0 2.

320

2.08

0 19

00

1760

1.

650

1.56

0 1.

490

1.42

0 z ii

2.

900

2.27

0 1.

620

1.28

0 0.

936

0.76

0 0.

652

0.57

9 0.

525

0.48

5 0.

452

0.42

6 B

5.

520

4.37

0 0.

404

3.15

0 0.

386

3i

2.51

0 1.

850

1.m

1.

290

1.15

0 7.

890

1.04

0 0.

964

0.90

1 6.

310

4.bm

0.

849

3.69

0 0.

806

0.76

9 2.

740

2.24

0 1.

930

1.71

0 1.

560

0 1.

440

lO.O

oa

1.35

0 8.

110

5.98

0 1.

270

12M

l 1.

150

4.83

0 3.

600

2.95

0 2.

550

2.27

0 2.

070

I.91

0 1.

790

I.68

0 1.

600

1 53

0 g

3.25

0 2.

530

I.79

0 1.

420

$ 1.

030

0.80

1 0.

709

0.62

7 0.

568

0.52

2 6.

150

0.48

6 4.

860

0.45

7 3.

490

0.43

3 0.

413

4 2.

770

2.03

0 1.

640

1410

1.

250

I.13

0 8.

770

I.04

0 0.

966

0.91

1 I

7.01

0 5.

100

4.07

0 3.

m

0 96

3 0.

822

2.44

0 2.

090

1.86

0 1.

680

1.55

0 1.

450

1.36

0 1

290

g

11.2

cKl

9.m

6.

620

1.23

0 5.

330

3.95

0 3.

220

2.77

0 24

60

2.23

0 2.

OK

l 1.

920

1.81

0 1.

710

1.63

0 P

.

s

3.94

0 3.

060

2.16

0 1.

690

1.22

0 0.

974

0.82

6 0.

726

0.65

4 0.

598

0.55

5 0.

520

I Y

7.

440

5.86

0 4.

190

3.31

0 t 0

.491

0.

466

5 2.

400

1.93

0 1.

640

1.44

0 1.

300

1O.M

) 1.

190

1.10

0 1.

040

! B

8.

430

6.10

0 4.

860

3.54

0 0.

977

2.86

0 0.

929

2.43

0 2.

150

I.94

0 1.

780

13.4

0 1.

650

10.8

0 7.

910

I.55

0 6.

340

I .4m

1.

390

4.66

0 3.

770

3.22

0 2.

840

2.57

0 2

350

2.19

0 2.

050

I.94

0 B

1.

840

‘CI e.

Page 16: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

Tab

le

8.

UA

* va

lues

for

nom

inal

pi

pe s

ize,

ins

ulat

ion

thic

knes

s,

and

k* c

ombi

natio

ns

for

indo

or

tubi

ng.

I t

Lege

nd

hxed

in

sula

tion

thic

knes

s FI

xed

kg = 1.0

Nom

inal

k' = 2.0

i* = 3.0

PfPC

si

ze

I;*

= 4.

0 l/A

* x

IO’,

Blu

lft-y

r ‘F

3.69

4 1.

270

I.760

2.

190

3.84

2 1.

530

2.11

0 2.

620

3.99

3 I .

x00

2.47

0 3.

060

1.19

0 2.

150

2.95

0 3.

630

0.82

1 I 0.

635

I.520

I.2

00

Insu

latio

n th

ickn

ess.

in

ches

(c

m1

1.00

(2

54)

15

0 (3

.81)

2.

00

(5.0

8)

0.35

7 0.

296

0.26

3 0.

689

0.57

9 0.

517

l.ooo

0.

851

0.76

3 I.3

00

I.110

1.

wO

0.40

1 0.

329

0.28

9 0.

773

0.64

2 0.

568

1.12

0 0.

942

0.83

9 1.

450

1.23

0 I.1

00

0.46

7 0.

378

0.32

8 0.

899

0.73

6 0.

644

I.300

1.

080

0.94

9 1.

680

I.400

I.2

40

0.53

4 0.

426

0.36

7 1.

030

0.82

8 0.

719

1.48

0 1.

210

I.060

1.

910

1.58

0 1.

390

0.62

I

0.48

8 0.

416

1.19

0 0.

948

0.81

4 1.

720

1.38

0 I.2

00

2.20

0 I.8

00

1 570

2.50

(6

.351

3.

00

17.6

2)

3.50

(8

.89)

4.

00

(10.

16)

4.50

(II

43

) 5.

00

(12.

70)

5.50

(1

3.97

) 6.

00

(15.

24)

$

0.24

1 0.

225

0.21

3 0.

204

0.19

6 0.

1x9

0.18

4 0.

179

; 0.

475

0.44

5 0.

422

0.40

4 0.

389

0.37

6 0

365

0.35

6 0.

704

0.66

1 0.

628

0.60

1 0.

579

0.56

0 0.

545

0.53

1 $ 3

0.92

8 0.

873

0.83

0 0.

795

0.76

7 0.

743

0.72

2 0.

704

r

0.26

4 0.

245

0.23

1 0.

220

0.21

I

0.20

4 0.

197

0.19

2 3

0.52

0 0.

485

0.45

8 0.

437

0.41

9 0.

405

0.39

2 0.

382

0.76

9 0.

719

0.68

I

0.65

0 0.

625

0.60

3 0.

535

0.56

9

1.01

0 0.

949

O.E

99

0.86

0 0.

827

0.79

9 0.

766

0.75

5

0.29

7 0.

274

0.25

8 0.

244

0.23

4 0.

225

0.21

7 0.

210

0.58

5 0.

542

0.51

0 0.

484

0.46

3 0.

446

0.43

I

0.41

8 0.

865

0.80

4 0.

757

0.72

0 0.

690

0.66

5 0.

643

0.62

4 1.

140

LO60

l.w

xl

0.95

2 0.

913

0.88

0 0.

852

0 82

8

0.32

9 0.

303

0.28

3 0.

268

0.25

5 0.

245

0.23

6 0.

228

0.64

8 0

598

OSM

) 0.

530

0.50

6 0.

485

0.46

8 0.

454

0.95

8 0.

886

0.83

1 0.

788

0.75

2 0.

723

0.69

8 0.

676

1.26

0 1.

170

I.100

1.

040

0.99

5 0.

957

0.92

5 0.

897

0.37

1 0.

339

0.31

5 0.

297

0282

0.

269

0.25

9 0.

250

0.72

9 0.

668

0.62

3 0.

587

0.55

8 0.

534

0514

0.

497

1.08

0 0.

989

0 92

4 0.

872

0.83

0 0.

796

0.76

6 0.

741

1.41

0 I.3

00

1.22

0 I.1

50

1.10

0 1.

050

1.01

0 0.

982

Page 17: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

1.35

0

I

I.10

0

2.42

0 2

020

0.68

8 0.

535

0.45

3 0.

401

0.36

5 0.

339

0.31

8 0

301

0.28

8 0

276

I 31

0 i.w

i 0.

886

0.78

Y

0.72

0 0.

669

0.62

9 0

597

0.57

0 0

548

1.89

0 15

10

I.30

0 I

160

1.07

0 0.

992

0 93

4 0.

887

0.84

9 0.

2116

2.

430

I .97

0 1.

700

1.53

0 ‘.

4cQ

1.

310

1.23

0 I.

170

l.l?‘

l 1.

080

0.26

6 0

528

‘4

2.23

0

2.83

0

0.78

7 I.

040

0.99

7 1.

870

2.66

0 3.

370

0.52

4 1.

020

I.50

0 1.

960

0.41

6 0.

384

0.35

8 0.

338

0.32

2 0.

308

0.29

6

0.82

0 0.

757

0.70

9 0.

670

0 63

8 0.

611

0.58

8

I.21

0 1.

120

I.05

0 0.

995

0.94

8 0.

909

0.87

5

1.59

0 1.

480

1390

13

’0

1.25

0 1.

200

I.16

0

0.46

0 O

.YO

3 1.

330

1.75

0

0 52

0 I.

020

I.50

0 1.

970

2

0.46

8 04

29

0.39

9 0.

920

0.84

6 0

789

I.36

0 ‘2

50

I.17

0 1.

790

1 65

0 1.

540

0.32

6 0.

646

0 96

2

1.27

0

0.59

7 1.

160

I.70

0 2.

220

0.37

5 0.

356

0.34

0 0.

743

0.70

5 0.

673

I.10

0 1.

050

Loo

0

1.46

0 1.

390

1.33

0

0.41

4 0.

392

0.37

3

1.17

0 2.

190

3.10

0 3.

930

I.36

0 2.

530

3.58

0 4.

530

21

0.52

2 0.

471

1.03

0 1.

510

1 0.

940

0.87

3 ’

390

1 :I;

;

0.35

6

0.70

7 1.

050

I.39

0

0.67

4 O

S84

1.14

0 1.

680

2.20

0

2.08

0

2.97

0

3.80

0

2.30

0 “5

80

t 1.

920

1’3l

o 3

1.99

0 I.

830

I.70

0

0.8’

9 1.

220

I.60

0

0.64

1 0.

571

0.5’

9 0.

480

0.44

8 1.

250

1.12

0 1.

020

0.94

7 0.

886

1.84

0 1

650

1.5’

0 1.

400

1.32

0 2.

4’0

2.17

0 1.

990

1.85

0 1.

730

0.69

7 1.

360

2.oo

o 2.

620

0.6’

8 0.

561

0,51

7 0.

482

1.21

0 l.l

cQ

1.02

0 0.

953

1.79

0 1.

630

1.5’

0 1.

410

2.35

0 2.

150

1.99

0 I .

%a

1.62

0 1.

180

0.95

2 0.

715

0.64

5 0.

592

3.05

0 2.

270

1.85

0 I.

400

1.27

0 1.

170

4.35

0 I

3.28

0 2.

700

5.54

0 4.

240

3.51

0 I

2 33

0 2.

070

’ ,87

0 1.

730

3.04

0 I

2.71

0 I

2.46

0 I

2.27

0

0.8’

1

1.58

0 os

so

I mo

0.38

4 0.

76’

1.13

0

2.6’

0 2.

080

1.52

0 1.

220

4.62

0 3.

790

2.84

0 2.

320

6.26

0 5.

230

4.0’

0 3.

320

7.64

0 6.

470

5.06

Q

4.23

0

3:

1.50

0

0.4’

0 0.

813

1.21

0 1.

600

1.69

0 3.

150

1.35

0

2.56

0 3.

660

4.66

0

2.91

0 2.

320

5.15

0 4.

2’0

6.97

0 5.

810

8.49

0 7.

180

4 4.

440

5.60

0 2’

79i’

3.

600

1 2’

3’o

3.oo

O

3.54

0.

2.8’

0 i

2.03

0

6.24

0 5.

080

3.78

0 8.

420

6.99

0 5.

320

‘0.2

0 8.

640

6 69

0

0.46

3 0.

917

1.36

0 I .

x00

‘fi’

o 2.

120

I ‘.

5’o

2.ow

I

‘.43

o 1.

890

Page 18: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

‘Tab

le

9.

CIA

*’ v

alue

s fo

r ta

nk

outs

ide

diam

eter

, in

sula

tion

thic

knes

s,

and

k*

com

bina

tions

fo

r in

door

w

ater

-fill

ed

ther

mal

st

orag

e ta

nks.

Tank

outside

diameter

reet on)

Lenend

d‘

Fired

0

insulation

thickness

!.a = 1.0

Fixed

k' = 20

oufslde

k"=3U

diameter

II* = 4.0

Insu

latio

n th

ickn

ess,

in

ches

(c

m)

1.5

fO.45)

2.0

(0.61)

3.0

(0.91)

4.0

11.22)

5.0

(1.52)

6.0

(1.83)

7.0

(2.13)

RO

(2.44)

9.0

12.74)

0.5

(1.27)

1 1.0

(2.54) 1

2.0

15.08,

0.903

0.516

I 520

0.Y28

LY90

1270

2.360

I.570

---I

---

1.210

0.689

2030

1230

2.660

1.6yO

3.lW

2.0x0

0.288

0.541

0.769

0.977

0.381

l---

- 0.714

1.010

1.280

1.850

1 1.050

I 0.579

J.100

I.BBU

I.080

4.050

2.560

1520

4.800

3.150

1.930

3.250

5.430

I ‘.8

50

3.280

7080

4.470

8.370

5.480

4010

2280

6.690

4.040

8.710

54M

I0300

6740

1.020

0.711

1.880

I.340

2.640

1.900

3.330

2.430

I.260

0.879

2.310

1.640

3240

2.340

4090

2.980

I

4.810

2.740

1.510

ROIO

4.830

2 770

lO.4w

6.570

3.880

12.300

8.050

4.880

6500

2.050

10.800

3.740

I4100

I 3 710

6.530

X.870

16.600

10.900

I 5.230

6.580

3.0

(7.62)

0.205

0.392

0.566

0.728

4.0

II0 16)

5.0

(12.7)

6.0

(IS.241

7.0

(17.78)

8.0

(20.32)

0.269

0.514

0.739

0949

0.162

0.13s

0.117

0.104

0.w4

0.313

0.263

0.229

0.204

0.185

0455

0385

0.336

0300

0.273

0590

0.501

0.440

0.394

0.359

0211

0175

0.151

0.133

0.120

0.40

6 0.340

0.294

0.260

0.235

0.590

0.496

0.431

0.383

0.346

0764

0.645

0.562

0.501

0.454

0.406

0.316

0.260

0.222

0.195

0.174

0.770

0.605

0.502

0.431

0.380

0.340

I.100

0.875

0.730

0.630

0.557

0.500

I.410

I.130

0.947

0.820

0.726

0.654

0554

0.429

0.352

0.300

0.262

0.233

1.040

0.818

0.677

0.579

0.508

0.454

1.4YO

I.180

0981

0844

0743

0.665

I.910

1.520

1.270

I.100

0.947

0.868

0.550

I 0.451

I o.v.3

0334

0.297

t.040

0.863

0.737

0.646

0.576

I.500

1.250

1.070

I

0.941

I 0.841

0.680

1840

l.Y30

I.280

2.360

5.557

1.530

I.610

1.060

1.970

0.473

1.310

I.390

0.905

I.690

0.412

1.150

1720

0.792

l.490

0.36

6

1.030

I.100

0.706

1.340

1.060

0817

0.669

OS68

0.494

0,439

2.970

1.540

1.270

1.080

0.947

0.843

2.790

2.200

1.820

I.560

1.370

I.220

3.550

2.820

2.350

2.020

1.780

1.590

1.240

0.961

0.787

0.668

0.582

' 0.516

2.300

I.800

1.490

1.270

I.110

0.987

3.270

2.570

2.130

1.830

l.tXlO

1.4uI

4.160

3.290

2.740

2.360

2070

1.850

I.440

2.660

3.760

4.790

1.110

2960

2.080

3.790

9.911

0.773

0.673

0.597

I.710

I.460

1.280

I.140

2.460

2100

1.840

I.650

3.150

2.710

2.380

2.130

Page 19: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

IO

(25.4) 1

I2

(3048) I

14

(35.56) 1

I6

WO.64) 1

I8

(45.72) I

20

(SO.81 1

22

(55.88) 1

24

(60.96)

I.5

(0.45)

0.080

0.070

0.063

0.058

0.158

0.139

0.126

0.234

0.207

0.187

0.172

0.308

0.273

0.247

0.227

0.142

t 0.066

0.062

0.122

0182

0.058

0.115

c 0.171

0.227

0.079

0.101

0.088

0.198

0.174

0.293

0257

0.386

0.339

2.0

(0.61)

1 0.162

'.'09

0.258

0.241

0.215

0.14J

0.290

3.0

(0.91)

0.085

0.168

0.249

0.330

0.145

0.125

0.284

0.246

0.419

0.364

0.551

0.479

I 0.156

0.233

0.308

4.0

(1.22)

0.193

0.165

0.377

0.325

0.555

0479

0.726

0.628

0.10

9 0.

102

0.216

0.201

0.321

0.299

0.424

0.395

5.0

(1.52)

0.245

0.209

0.183

0.164

0.148

0.136

0.126

0.118

0.477

0.409

0.359

0.322

0.292

0.269

0.249

0.233

0.699

0.601

0.530

0.476

0.433

0.398

0.369

0.345

0.913

0.787

0.695

0.625

0.570

0.525

0.487

0.456

6.0

(1.83)

0.300

I 0.256

I 0.224

I 0.199

I 0.180

I 0.165

0.152

0.142

0582

0.498

0.437

0391

0.354

0.325

0.300

I

0.280

0.852

0.731

0.643

0.576

0.523

0.480

0.444

0.415

1.110

0.956

0.842

0.756

0.687

I

0.631

I

0.585

I

0.546

7.0

(2.13)

0.359

0.306

0.267

0.237

0.214

0.196

0.181

0.168

0.695

0593

0.520

0.464

0.420

0.384

0.355

0.330

I.010

0.868

0.763

0.682

0.618

0.567

0.524

0.488

1.320

1.130

0.997

0.893

0.811

0.744

0.689

0.642

8.0

(2.44)

0.422

0.359

0.313

0278

0.251

0.813

0.694

0.607

0.541

0.489

I.180

I.010

0.889

0.794

0.719

1.540

1.320

1.160

1.040

0.941

0.488

0.415

0.361

0.321

0.289

0.263

0.242

0.225

0.937

0.799

0.699

0.623

0.562

0.514

0.473

0.440

1.360

I.160

1.020

0.911

0.825

0.755

0.696

0.647

1.770

I.510

1.330

I.190

1.080

0.988

0.913

0.849

9.0

(2.74)

,”

,,,

Page 20: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

612 GERARD F. JONES and NOAM LIOR

5. DESIGN TABLES

Should more precision be desired in the optimal insulation selection, a method is presented which provides the actual numerical UA* values listed in Tables 7, 8 and 9 for outdoor (Base Case 3) and indoor (Base Case 6) piping and indoor storage tanks (Base Case 7), respectively. The optimal insulation thickness and associated information is determined for a particular pipe (or tank) in a given system as follows:

(1) Repeat step (1) of the previous section. (2) From the applicable Table 7, 8 or 9, find the value of UA* (or UA*‘) which

corresponds to the particular pipe (or tank) size under consideration for the proper value of k* and for the range of insulation thicknesses being investigated.

(3) Obtain CrM (or Ck,) by adding the values of UA* (or UA*‘) and CR (or Cx) which correspond to the same pipe size and insulation thickness combination.

(4) The optimal insulation thickness is that which gives the smallest value of CTM (or C;,). The optimum value of UA* (or UA*‘) is that which corresponds to the optimal insulation thickness. Equations to determine the annual heat loss, associated material and heat loss costs, and R-values are the same as those given in Section 4. The above procedure can be repeated for several different insulation materials having different k* values to determine the economic optimal insulation material for a particular pipe (or tank) size.

6. INSULATION DESIGN EXAMPLE: THE UNIVERSITY OF PENNSYLVANIA SOLAROW HOUSE

6.1 Description of System and Design Data The University of Pennsylvania SolaRow house is a three storey brick row house

located just south of the campus in Philadelphia. It was retro-fitted for both solar space and water heating (cf. Lior et aL6). Water is circulated from three 350 gallon storage tanks? located in the basement to 33 flat-plate solar collectors located on the roof. Net collection area is 475 ft’. The collectors are arranged in five rows. Each row has either five or seven collectors connected in parallel and the rows are connected in series. The main collector supply and return lines consist of l$” type L nominal copper water tube. The collector upper and lower distribution headers are 2” nominal tube size. These nearly horizontal pipes are larger to minimize frictional resistance during gravity-driven draindown. Upon demand for house heating, the solar heated water is circulated automatically from the tanks through 1” nominal copper tubes to and from a water-to-air heat exchanger located at the air intake of a fuel fired auxiliary furnace. Existing ducts then distribute the air throughout the house. In addition, a domestic hot water preheat heat exchanger is immersed in two of the three storage tanks to supply preheated city water to the existing gas-fired domestic hot water heater. Freeze protection is by automatic drain-down into the thermal storage tanks when the water temperature drops below 38°F. To minimize admission of oxygen and startup transients, the water is retained in the pipes at higher temperatures, even when no water circulation is taking place.

To determine the optimal insulation, the following data (see Section 2.2) are applied for the University of Pennsylvania SolaRow house:

Mi = $20,000 M, + M, = $50.00

L, = 165 x lo6 Btu q = 0.47

noi = n(; 1 f yr

a(r) = aCzj = 0.2

Bo, = P(2) = 0

TDiameter = 3’, height = 7’.

p = 0.005 h,,, = h{,, = 0.003

m(i) = mC2) = 20 yr

ymcl) = y,(2) =

B=O Tf outdoor = 1lO”F

Tf indoor = 90°F

Page 21: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

Optimal insulation of solar heating system pipes and tanks 613

G(1) = G(2) = 0

g = 0.06 d = 0.07 t = 0.18

t, =o

For all outdoor piping = F(T, - T,) = 24°F For indoor piping = F(TJ - T,) = 23°F

For thermal storage tanks = F(TI - T,,) = 63°F c, = 0.03 O/ft

Tf , F(T, - T,), and q were determined from estimates supplied by SOLSYS, the Univer- sity of Pennsylvania solar heating system simulation computer program7 which used Philadelphia hourly ambient temperatures and insolation values.

6.2 Optimization Example Using the above information and the E-values calculated in Appendix B, the cost

of solar heat is obtained from eqn (7) as

C, = {[20000(1.173) + 50(20.9226)]/(0.47)165(25)} + 0 = $12.64/106 Btu.

It is important to note that 9 = 0.47 (as assumed here) only when there are no heat losses through insulation. Hence, after the optimal insulation values are determined, these heat losses must be calculated, and the value of rl modified. Since q would decrease, C, would increase, and several iterations of the procedure may need to be performed. As described in more detail in Section 6.3 below, only two iterations were needed in all cases considered here. Continuing the first iteration, CR can be computed for outdoor piping from eqn (9) as:

CR = [l.l73(Ci + Cj + C,) + (20.9226)0.03]/25(12.64)(24)

= (1J547)10-4(Ci + Cj + Cl) + (8.236)10W5. (28)

Based on specific values of (Ci .+ Cj + C,), eqn (28) is used to determine the optimal fiberglass insulation (k* = 2.0) thickness for an outdoor-located 13” copper tube used in SolaRow, as demonstrated in Table 10, By inspection of the last column (first itera- tion), the minimal value of CTM is 1.628 x 10e3. Therefore, the optimal insulation thick- ness is l$” with a total annual heat loss per unit length (from (24)) of

Qi = (1.09)10m3(24) = 0.0262 x lo6 Btu/ft-yr.

The total present value average annual cost of insulation per unit length (from (23)) is:

CT = (1.628)10W3(12.64)24 = $0.49/ft-yr.

It is interesting to note that of the total present value average annual cost per foot, $0.33 or 67% is for energy (CTM = UA* for CR = 0) and the remainder is for insulation material and labor. As shown in Section 6.3 below, the heat losses through the total system’s insulation were not negligible. As mentioned above, r] must be recalculated. The second iteration changed the optimal insulation thickness to 2” and correspondingly changed the above values of QI and Cr. The second iteration is also shown in Table 10.

6.3 Results and Comparison with the ETI Method By following the procedure used in the construction of Table 10, the optimal insulation

was determined for all tubing sizes and storage tanks in the SolaRow house solar heating system. Table 11 lists the major results obtained by both the present technique and the ET1 method3.

Table 11 also shows the percentage of the computed useful solar energy collected which is lost through the optimal insulation thickness (24.9% total for the first iteration) and through the actual insulation thickness (32.3% total) installed in SolaRow. Although the heat escaping through insulated surfaces in the basement does not represent a com- plete loss in winter, the total losses through insulation are significant. They could be reduced if the length of pipe and surface areas of thermal storage tanks can be reduced, and if the residence time of the warm working fluid (water in this case) can be

Page 22: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

Tab

le

10.

Cal

cula

tion

of t

he o

ptim

al

fibe

rgla

ss

insu

latio

n th

ickn

ess

for

1 :”

nom

inal

co

pper

tu

be,

loca

ted

outd

oors

.

Insu

latio

n C

* C

, C

, C

, +

c,

+

C

, th

ickn

ess

Insu

latio

n Ja

cket

mg

Lab

or

c”st

, T

otal

co

st.

in.

cost

, S/

f1

cost

, o/

a w

t, w

ft)

(cm

) (s

/m)

(S/m

) W

m)

(s/m

)

C,

x 10

”:

1st

itera

tion

2nd

itera

tion.

10

” B

tu

ft

- yr

-

-F

CW

W

bi”.

fr

om

Tab

le

4

(c/a

*)

x 10

from

Fi

g.

6 or

T

able

7.

IO

” B

tu

-.__

-_

It

- yr

-

-F

c,,

x IO

’ fr

om

Fig.

6

or

eqn

(8)

1st

itera

tion

2nd

itera

tion.

lo

6 B

tu

ft

- yr

-

‘F

: 0.

65

( I.2

71

(2.1

31

(2.\4

,

0.78

(2.5

5)

1:

1.19

(3.8

1)

(3.9

0)

2 2.

24

f5F

) (7

.34)

(6.&

,

3.40

(ll.l

5l

0.51

(1

.67)

0.

6 I

(2.O

w

0.71

(2 3

3)

0.80

(2

.62)

0.

90

12.9

5)

0.82

1.

98

(2.6

9)

(6.4

9)

0.95

2.

34

(3 i

I)

1.04

(3.4

11

1.13

13.7

0)

I 22

(4

.001

(7.6

7)

2.94

(9.6

4)

4.17

I 13.

67)

5.52

11

8.10

1

0.38

9

0.29

2 0,

445

0334

0.

538

0.40

4 0.

728

0.54

7 0.

937

0.70

4

II 6 2

2.31

0

I.41

0

1.09

0

0.91

7

0.81

0

2.69

9 2.

602

I.85

5 I.

744

1.62

8

I.49

4 I.

645

I .46

4

I.74

7 I

<Id

Tab

le

it.

Opt

imal

in

sula

tion

thic

knes

s,

cost

s,

and

heat

lo

ss

impl

icat

ions

fo

r So

laR

ow,

dete

rmin

ed

by p

rese

nt

tech

niqu

e an

d E

T1

met

hod.

Loc

?.iii

Xl

Nom

inal

Pipe

da

met

er,

in.

Tot

al

thic

knes

s

P’pe

O

ptim

al

in

leng

th.

i&la

ti”n

Sola

Row

h

mat

eral

in

.

(“0

(W

(cm

)

Out

door

If 19

4 (5

9.2)

2 24

5 (7

4.7)

Arm

stro

ng

Ii

Arm

agla

ss

(3.8

1)

(2.0

) A

rmst

rong

14

A

ItlW

IaSS

(3

.81)

no

i

Pres

ent

tech

niqu

e O

ptim

al

Opt

imal

in

sula

tion

thic

knes

s,

R-v

alue

. in

. hr

It

‘F

/Btu

(cm

) W

C/W

$8)

9.6

(5.5

2)

,5.‘

,*,

8.3

(4.7

8)

ET

1 M

etho

d T

otal

c”

st

Tot

al

annu

al

Opt

imal

0r

A

nnua

l co

st

of

insu

latio

n C

”S,

or

insu

latio

n an

d th

ickn

ess,

c,

+

c,

+

c,

, he

at

loss

he

at

loss

. I”

. s/

rt

S/R

-yr

J/f&

Y1

(cm

) (W

m)

(SW

-yr)

(g

/m-y

r)

li

2,94

0.

37

0.59

(3

.81)

(9

.64)

(1

.22)

(1

.94)

I to

1:

4.

52

0.43

0.

67

(2.5

43.8

1)

(14.

82)

(I .40

) (2

.18)

Rat

io

of

annu

al

heat

lo

ss

1”

annu

al

mta

l C

O?.

,,

“4

Ann

ual

heat

lo

ss

from

to

tal

pipe

le

ngth

. 10

4Btu

/yr

(MJi

yrl For

F

or

thic

knes

s op

timal

in

stal

led

thic

knes

s I”

So

laR

ow

63

4.27

5.

08

(450

4)

(536

2)

64

6.23

7.

92

(657

3)

(835

1)

Rat

to

of

annu

al

insu

latr

on

heat

L

oss

to

usef

ul

sola

r he

at

colle

cted

. O

/D

F”1

F

or

thtc

knes

s op

tm3l

in

stal

led

thic

knes

s in

So

laR

oa

5.5

6.6

81

10.3

Indo

or

(IS”

146

(44.

5)

I~

-,

ArII

EtW

lg

Arm

allo

x

(2.0

) A

rmst

rong

A

ccot

herm

(2.0

)

i 1:

IO

.5

(2.:4

, 3.

12

0.32

0.

49

65

I15

I.66

1.

5 2.

3 Il

.901

(3

.81)

(6

.10)

(1

0.23

) (1

.05)

(1

.62)

(1

208)

(I

754)

I 8.

4 L

&I,

2.43

0.

40

0.56

71

3.

49

4.40

4.

5 5.

7 (2

.54)

(4

.87)

(7

.97)

(0

.99)

(1

.49)

(3

864)

(4

641)

Indo

or

AC

iUl

ther

mal

ou

tsid

e st

orag

e di

amet

er

lank

3

36

7ft

high

per

all

thre

e ta

nks

-.

OW

elIS

- 6

14

4OfH

11

230

353

41

181.

21

66

2.90

5.

70

3.8

74

Cor

ning

(I

5 24

) (3

5.56

) (2

.32)

pe

r (3

057)

(6

016)

Fibe

rgla

ss

tank

12

.01

tBas

ed

on t

ank

leng

th,

not

surf

ace

area

.

Page 23: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

Optimal insulation of solar heating system pipes and tanks 615

diminished. Specifically, in the present SolaRow system, the warm water is retained in the collectors and piping even in periods when the water does not circulate (see Section 6.1). If the water were drained back in to the thermal storage tanks when useful solar energy is not being collected, this residence time would be reduced signifi- cantly, giving FAT values of 15°F (instead of 24°F) and 14°F (instead of 23°F) for outdoor and indoor piping, respectively. With the present insulation, the heat losses would then be reduced to 22.8% (from the present loss value of 32.3%).

It is noteworthy that an a-priori design for these new FAT values resulted in optimal insulation thickness equal to that calculated for the present FAT values in the cases of the 13” outdoor and indoor pipes, but one step smaller for the 2” outdoor and 1” indoor pipes. This is to be expected, since smaller FAT values lead to reduced heat losses, a fact which leads to an amount of insulation which is optimally smaller. Such a-priori design for the lower FAT values results in an insulation heat loss of 18.2x, as compared to the 24.9% loss incurred through insulation optimized on the present FAT values. Any energy savings achieved by this method must, however, be judged against the disadvantages of frequent drain-down such as accelerated corrosion rates, increased pumping energy during startup, etc.

The cost of useful solar heat (C,, eqn (7)) influences the value of the optimal insulation through eqn (6). The value qt in eqn (7) used in the present calculations did not take into account heat losses through the insulation. This initial assumption of zero heat losses through insulation is typical of most solar system design procedures. If insulation heat losses are significant, this assumption leads to wrong values of q, and hence of C, and of optimal insulation. Generally, the heat losses increase the cost of solar heat, thus economically justifying better insulation. An iterative method can be used in such cases :

(1) Obtain an q value with the assumption of zero insulation heat loss. (2) Determine the optimal insulation for this q. (3) Calculate the insulation heat losses. (4) Recalculate q based on (3). (5) Redetermine the optimal insulation for the new value of q. (6) Recalculate the heat losses. (7) Continue the above procedure (4)(6) till the optimal insulation values for two

successive iterations are equal.

The above described iterative procedure was conducted for calculating the optimal SolaRow insulation described in Table 11. It was found that only one iteration was required in addition to the initial calculation. No change resulted in the optimal insula- tion values except for the 1 ),, outdoor pipe and the thermal storage tank. In these cases, the optimal insulation thickness increased by one step: from lg to 2”, and from 12” to 14, respectively. The new value of q is (0.76)(0.47) = 0.36, and the corrected cost of solar heat is

C, = $12.64/0.76 = $16.63/106 Btu

The correct value of the total optimal insulation heat loss is 24% of the collected solar energy.

7. CONCLUSIONS AND RECOMMENDATIONS

7.1 The Proposed Method The above described method for determining optimal insulation is oriented specifically

to solar heating systems in their pertinent range of parameters, addressing the particular realistic thermal and economic aspects of this problem. The economic aspect of the problem is treated by a present-value life-cycle cost analysis. Nominal commercial pipe

tThe fraction of annual space heating and domestic hot water contributed by solar energy.

Page 24: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

616 GERARD F. JONES and NOAM LIOR

diameters and insulation thicknesses were used in the development of the method to allow more accurate results for practical applications. The method, assisted by the design graphs (Figs. 6, 7 and 8) or Tables (7, 8 and 9), is simple and straightforward to use. Apart from the value of the optimal insulation, the method also provides, when needed, additional information, such as amounts of energy lost through the insulation and annual costs of these energy losses. Total annual costs of insulation material, labor and lost heat, as well as the sensitivity of these costs to the proposed insulation, are also provided.

7.2 Comparison to the ETI Method Although the ET13 method for determining optimal insulation is well-accepted, the

present method has a few advantages over it for solar heating systems: (1) it is oriented specifically to solar heating system problems and parameters; (2) it is based on a more comprehensive economic model than that of the ETI, which is particularly important here due to the extreme sensitivity of solar heating systems to economics; (3) it provides, when needed, more information about insulation system selection than just optimal thick- ness; (4) it addresses nominal commercial pipe and insulation size directly. It is slightly more time-consuming than the ET1 nomographs, but given the data, it can provide optimal insulation values within l&30 min of manual (or hand calculator) calculations.

As indicated in Table 11, the optimal insulation thicknesses obtained by this method are sometimes close to those determined by the ET1 method for the same conditions and are either equal, or in most cases, one step higher. This difference most likely arises mainly from the application of the more comprehensive economic model in the present method.

7.3 The Heat Transfer Sensitivity Analysis It was found that in the range of parameters pertinent to solar heating systems,

three variables dominate heat loss through insulation. These are the nominal pipe dia- meter (or tank diameter), the thermal conductivity of the insulation, and the insulation thickness. Neglecting the influence of the other variables by keeping them at constant “base case” values results in errors of up to + 14% for pipes and & 19% for tanks. These errors were considered acceptable.

7.4 Insulation for the SolaRow House and for Solar Heating Systems in General A major conclusion from the insulation analysis for SolaRow is that the loss of

heat through the solar heating system’s insulation is significant, amounting to 32% of the solar energy collected for the presently installed insulation, and 24% for optimal insulation. This arises mainly due to two reasons: (1) the existence of a large extent of insulated surface: 439 ft of lp and 2” outdoor pipe, 206 ft of 1” and lt” indoor pipe, and 240 ft2 of thermal storage tank surface area; (2) the flow strategy which retains the water in the pipes after the system has stopped collecting useful solar energy, which thus permits heat loss during longer periods of time.

A major recommendation arising from this study is, therefore, that heat losses through insulation must receive careful quantitative consideration during the solar heating sys- tem’s design process. Such losses could be reduced by minimizing: the length of piping, the surface of thermal storage tanks and the residence time of hot working fluid in the system in general, and in its oudoor portion in particular. For example, a reduction in total heat loss from 24% to 18% resulted from a change in the flow strategy in the SolaRow system by which the water would be allowed to drain into the thermal storage tanks when no useful energy is collected. An additional conclusion is that since the quantity F(TJ - T,) exhibits a large influence on the estimate of the heat loss (and thus on the determination of the optimal insulation thickness), further work is required to provide more accurate engineering design values of it as a function of system design and environmental variables.

Page 25: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

Optimal insulation of solar heatiqg system pipes and tanks 617

Another important observation is the high cost of insulation: $2944 total (composed of $1666 for materials and $1278 for labor) for optimally insulating the SolaRow heating system, or close to 15% of the total system’s cost. Again, reduction of the length of pipe and of the surface area for the thermal storage tanks would decrease these costs.

Acknowledgements-This study was supported in part by grants from the Pennsylvania Science and Engineer- ing Foundation, the U.S. Department of Housing and Urban Development, and the Solar Heating and Cooling Research and Development Branch, Office of Conservation and Solar Applications, U.S. Department of Energy.

9. NOMENCLATURE (Excluding symbols defined in Appendices)

A = Heat transfer area. cp = Specific heat, Btu/lbm”F. c = cost.

C, = First year cost of auxiliary energy delivered to storage, $/lo6 Btu. Ci = Base cost of the insulation material, including the cost of fitting and valve

insulation prorated over the straight pipe length, O/ft. Cj = Base cost of insulation jacketing, S/ft. Cl = Base cost of insulation labor, S/ft.

C, = Base cost of maintenance during the first year, Sjft. C, = Present value annual average cost of solar heat, defined in eqn (7),

!S/( lo6 Btu-yr). CR = Cost ratio defined in eqn (9), (Btu/yr-ft”F) x 10p6. CT = Total annual cost of insulation and lost energy defined in eqn (6).

C TM = Modified cost defined in eqn (8), (Btu/ft-yr”F) x 10e6. d = Diameter in. D = Nominal pipe diameter, in. E = Economic coefficients defined in eqns (Bl)-(B4). f = Moody friction factor.

fL = Type of fluid heated in collectors. F = Annual usage factor (0 I F I 1) of the insulated component. This is the

annual fraction of time which the solar collection system (or storage tanks) loses heat.

g = Gravitational constant. h = Heat transfer coefficient, Btu/hr”F ft2. k = Thermal conductivity, Btu/hr”F ft.

k* = kj (British units)/O.OlO, nondimensional. 1 = Pipe length or tank height, ft.

LB = Total annual space heating and domestic hot water load, lo6 Btu/yr. Mi = Initial capital cost of solar heating system including all labor and materials,

$. M, = First year maintenance cost of solar heating system, $. M,, = First year operating cost of solar heating system, $. M, = Index indicating type of pipe.

n = Period of economic analysis (usually life of system), years. Nu = Nusselt Number.

P = Pressure head, ft. Pr = Prandtl Number. Q = Heat flow rate, Btu/hr. Q’ = Total heat flow rate through tank surface, Btu/hr.

r = Radius, in. R = Thermal resistance, ft”F hr/Btu.

Re = Reynolds Number. t = Thickness, in.

T = Temperature, “F.

EGY Vol. 4. No. 4-l

Page 26: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

618 GERARD F. JONES and NOAM LIOR

u = Error coefficient defined in eqn (20). U= Overall heat transfer coefficient. v= Wind velocity, miles per hour.

B= Y= A=

AT = E=

II=

0=

p= v=

P= 0=

4 - API1 =

Greek symbols

Volumetric expansivity “F-i. Coefficient defined by eqn (AlO). Difference. T, - T,, “F (“C). Surface emissivity. Fraction of annual space heating and domestic hot water load contributed by solar energy. 1 or 0, 1 corresponding to auxiliary heating of storage tank water directly, 0 corresponding to no direct auxiliary heating of water. Dynamic viscosity, lbm/ft sec. Kinematic viscosity ft2/sec. Mass density, lbm/ft3. Stephan-Boltzman constant. Pressure gradient in pipe, dimensionless.

Subscripts

a = Air, auxiliary. up = Average between the air and outside insulation surface.

b = Tank bottom. f = Hot fluid. i = Inside, or insulation. j = Jacketing. 1 = Length of cylinder, or labor.

m = Maintenance. o = Outside. p = Outside surface of insulation, or insulation. r = Radiative. t = Inside surface of pipe or tank wall, top of tank.

Superscripts

’ = Pertains to thermal storage tanks.

REFERENCES

1. J. J. Malloy, Thermal Insulation, Van Nostrand Reinhold Company, New York (1969). 2. ASHRAE Handbook of Fundamentals, Chapter 2, ASHRAE, 345 East 47 Street, New York, NY 10017

(1972). 3. York Research Corp., ET&Economic Thickness for Industrial Insulation, Federal Energy Administration

Conservation Paper No. 46, PB 259937, NTIS, U.S. Department of Commerce, Springfield, VA 22161, Aug. (1976).

4. P. J. Lunde, Solar Energy 19, 685 (1977). 5. J. A. Duffie and W. A. Beckman, Solar Energy Thermal Processes, J. Wiley, New York (1974). 6. N. Lior, J. Lepore and S. Shore, PROC. JOINT AS/ISES and SESC CONF., Winnipeg, Canada. Vol. 4,

36 Aug 15-20 (1976), AS/ISES, Inc., American Technological University, P.O. Box 1416, Killeen, TX 76541.

7. N. Lior, J. O’Leary and D. Edelman, PROC. AS/ISES CONF., 3-15, Orlando, FL, June 610 (1977) AS/ISES, Inc., American Technological University, P.O. Box 1416, Killeen, TX 76541.

8. B. Gebhart, Heat Transfer, McGraw Hill, New York (1977). 9. F. Kreith, Fundamentals of Heat Transfer, International Textbook Company, Scranton, PA (1973).

10. C. D. Barley and C. B. Wynn, Solar Energy 21, 4, 279 (1978).

Page 27: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

Optimal insulation of solar heating system pipes and tanks 619

APPENDIX A: DEVELOPMENT OF THE HEAT TRANSFER MODEL

Consider the thermal circuit for the case of steady radial heat flow from a hot fluid through a composite circular wall of length tt, assuming zero contact resistance between components as shown in Fig. 2 (neglecting contact resistance results in a conservative estimate of insulation thickness), with 2r, = di, i = 1,2,3.

RI = l/nd,lhi (AlI

R2 = 1n(d2/dr)/2rrlk, (A2)

R3 = ln(d~/d~)/2~lki (A3)

R5 = l/xdJh, (A4)

Rs = l/xd,lh, (As)

h, = 4W[(T, + X)/2]‘. (A@

For 7; = T.>

1 R, = ~__,

l/R5 + l/J& (A7)

and the expression for the rate of radial heat flow, per unit length of cylinder, is

QI = (Tf - T)/i$l & = WI - T,)/{(lldlh) + CWd4M2kpl

+ [ln(d~/d~)/2kj] i [t/d,(h, + h,)]) = UAA’T (A8)

where AT E Tr - T.,

and U is the overall heat transfer coefficient based on surface area A and A is the surface area selected per unit length of pipe. Since

then

dz/d, = 1 + (2r,/di) and ds/dz = 1 + (hi/d*), (A9)

Thus,

d3 = [l + (h,/d,f + (2~~/d~)]d~ 3 yd,. MO)

UA = n[(l/dihi) + {ln[l + (2tp/d,)]/2k,j + {ln[l + (2tJdl + 2t,)]/2ki}

+ I&‘&(~, + Ml- ’ (Aft)

= rate of heat loss per unit of pipe length per unit of AT. The value of h, for both indoor and outdoor piping can be evaluated for 10000 < Re 4 120000 from the fully developed turbulent flow heat transfer correla- tions

and the Fanning Equation’ with:

as follows:

Nu = 0.023 ReF* PrF4

f = 0.184Rej0.20

(Al2)

(Al3)

hi = 0.31076 kpf;” 4”’ Pr:” ~7”‘” (Btu/hr ft’“F) (A14)

where 4 = AP/l, dimensionless pipe pressure gradient. The value of h, for outdoor piping (forced convection dominant) is determined by:’

where

ft, = (kJyd,)(0.4 ReFs + 0.6 Ref.67) Pr:4 (&~,,,)“~25 (AlS)

Re, = ydt V/v,,, T’p = (T. + T&2.

For indoor piping where natural convection dominates?

W6)

h, = 0.27[(T, - T.)/yd1]“4 W7)

Generally, the characteristic length used in the calculation of natural convection heat transfer coefficients is the diameter for horizontal cylinders and the height for vertical ones. A comparison of the optimal insulation thickness required when using the two lengths shows negligible differences for typical installations. For simpli- city, all natural convection heat transfer coefficients were therefore determined in this study based on diameter.

For the indoor thermal storage tanks, h, in eqn (All) is evaluated from?

hi = 0.56 k~[~~~,c~~T~ - T,~(d~v,k~)- ‘]‘.”

tOther symbols are defined in Section 9.

(A181

Page 28: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

620 GERARD F. JONES and NOAM LIOR

For vertical tanks with legs, II,,,, and hi,* in eqn (5) are evaluated from eqn (A17) with yd, replaced by d,, and eqn (Al 8) respectively.

Also’

hi,, = kf/dl and ho,, = O.l2[(T, - T,)/dJ 114 (A19)

APPENDIX B: EQUATIONS FOR CONVERTING CASH FLOWS TO PRESENT VALUES

The terms E used in Section 2.2 to convert cash flows to present-values (cf. Barley and Wynn”) are defined as follows:

EI~, = u(j) - Bo, - g<~C(l + s)/(l + 41” + C(1 - thj, + h&‘(d, 9, n(j))

+ (1 - @(jJ ((1 - t) CJV, 0, &j#p(&j,, 9 mfjJ1

+ CPM i(j) > m,j,/WI i(j), m(jJ 1 - B

E2t.j) = (1 - t,V’(d, ‘;n(j)y n)

E3 = (1 - tdP(d, r,, 4

& = (1 - rrfP(4 rf, n)

where

(Bl)

W4

(B3)

(B4

The index j = 1 for the insulation or

j = 2 for the complete solar system.

uo, = Downpayment fraction of first cost. /_?o, = Investment tax credit fraction, if applicable. o(i) = Fractional salvage value at end of equipment life.

9 = Annual general inflation rate, (per cent/l(M). d = Annual discount rate, which could be chosen as either that for mere inflation, for an opportunity

cost of money, or for a required return on investment, (per cent/lOO). t = Annual incremental income tax rate (only applicable in business applications, where the capital

expenses are income tax deductible, otherwise t = O), (Per cent/K@ tr = Same as t, but only applicable if maintenance, operating and fuel expenses are tax deductible,

otherwise t, = 0. p = Actual annual property tax rate, (per cent/BlO). h = Annual insurance cost as a fraction of the first cost.

and

P(d, r, n) = [(l + d)” - (1 + r)“]/(l + d)“(d - r) for d # r (W

P(d,r,n)=n/(l+r) for d=r (B6)

n = Period of economic analysis (usually life of system), years. i,, = Annual interest rate on loan or mortgage, (per cent/lOO).

mcj, = Period of loan or mortgage, years. 3 = Cumulative present worth of depreciation tax credits per dollar invested: with straight line

depreciation:

Bsr, = ~(1 - o)P(d, 0, k)/k (B7)

with Declining Balance:

B,, = thP(d, - 6/k, k)/k (W

and with Sum of Years Digits

B SOYD = 2r(l - cr)[P(d,,, 0, k) + i[k - 1 - P(d, 0, k - lJ/dl]/k(k + 1) (B9)

where

k = Depreciation lifetime. 6 = Declining balance multiplier.

r,o, = Annual fractional rate of increase in maintenance expense. r, = Annual fractional rate of increase in operating expense of solar system. r, = Annual fractional rate of increase in auxiliary fuel expense.

To demonstrate the use of these equations, they are applied in determining the optimal insulation for the SofaRow house, with the specific data listed in Section 6.1 of this paper. Using eqn (B5):

Page 29: OPTIMAL INSULATION OF SOLAR HEATING SYSTEM …lior/documents/Optimal... · Optimal insulation of solar heating system pipes and tanks 595 (9) Annual system usage factor. (10) Annual

Optimal insulation of solar heating system pipes and tanks 621

P(d, g, n) = P(O.O7,0.06,25) = (1 + 0.07)25 - (1 + 0.06)25 = 209226

(1 + 0.07)25(0.07 - 0.06) ’

P(d, 0, m) = P(O.O7,0, 20) = (1 + O.O7)*O - 1 = 1o594o (1 + o.07)2°0.07 .

Pfi, 0, m) = P(O.09, 0, 20) = (’ + 0’09) 20 - 1

(1 + 0.09)*0(0.09) = 9.1285

P(d, i, m) = P(O.O7,0.09, 20) = (1 + o.07)20 - (1 -t- o.09)2° = 22,4143

(1 i- o.07)2°(o.07 - 0.09)

P(0, i, m) = P(O,O.O9,20) = 1 - (1 + 0.09)20 = 51 1601 l(0 - 0.09) . ’

From eqn (Bl) and the above:

E -E l(1) - ,t2t = 0.2 - 0 - 0 + [(l - 0.18)0.005 + 0.003]20.9226

+ (I - 0.2) (I

(1 22.4143

- 0.18)gj9; + 0.18 ___ 51.1601 1 - 0 = 1.173.

From eqn (82)

E 2(l) = E2(21 = P(d, rmr n) = P(O.O7,0.06,25) = 20.9226.

From eqn (B3)

E, = P(d, r,,, n) = P(O.O7,0.06, 25) = 20.9226.