Optics i 18 Coherence Interference

download Optics i 18 Coherence Interference

of 32

Transcript of Optics i 18 Coherence Interference

  • 8/18/2019 Optics i 18 Coherence Interference

    1/32

     

    Coherence and Interference

    Coherence

    Temporal coherenceSpatial coherence

    InterferenceParallel polarizations

    interfere; perpendicularpolarizations don't.

    The Michelson Interferometer Fringes in delay

    Measure of Temporal CoherenceThe Fourier Transform Spectrometer 

    The Misaligned Michelson Interferometer Fringes in position

    Measure of Spatial Coherence

    Opals use interference

    et!een tiny

    structures to yield

    right colors.

  • 8/18/2019 Optics i 18 Coherence Interference

    2/32

     

    The Temporal Coherence Time and

    the Spatial Coherence Length

    The temporal coherence time is the time the !a"e#fronts remain e$uallyspaced. That is% the field remains sinusoidal !ith one !a"elength&

    The spatial coherence length is the distance o"er !hich the eam !a"e#

    fronts remain flat&

    Since there are

    t!o trans"erse

    dimensions% !e

    can define a

    coherence area.

    Temporal

    Coherence

    Time% τc

    Spatial

    Coherence

    ength

  • 8/18/2019 Optics i 18 Coherence Interference

    3/32

     

    Spatial

    and

    TemporalCoherence

    (eams can ecoherent or

    only partially

    coherent

    )indeed% e"en

    incoherent*in oth space

    and time.

    Spatial and

    TemporalCoherence&

    Temporal

    Coherence;

    SpatialIncoherence

    Spatial

    Coherence;

    TemporalIncoherence

    Spatial and

    Temporal

    Incoherence

  • 8/18/2019 Optics i 18 Coherence Interference

    4/32

     

    The coherence time is the reciprocal of

    the bandwidth.

    The coherence time is gi"en y&

     

    !here ∆ν is the light and!idth )the !idth of the spectrum*.

    Sunlight is temporally "ery incoherent ecause its and!idth is

    "ery large )the entire "isile spectrum*.

    asers can ha"e coherence times as long as aout a second%

    !hich is amazing; that's +,-, cycles/

    1/c

      vτ   = ∆

  • 8/18/2019 Optics i 18 Coherence Interference

    5/32

     

    The spatial coherence depends on the

    emitter size and its distance away.

    The "an Cittert#0erni1e Theorem states that the spatial

    coherence area Ac is gi"en y&

     

    !here d  is the diameter of the light source and D is the distance a!ay.

    (asically% !a"e#fronts smooth

    out as they propagate a!ay

    from the source.

    Starlight is spatially "ery coherent ecause stars are "ery far a!ay.

    2 2

    2c

     D

    λ 

    π Α =

  • 8/18/2019 Optics i 18 Coherence Interference

    6/32

     

    Irradiance of a sum of two waves

    { }2

    *

    2

    1

    1Rec E E 

     I I I 

    ε 

    = + +

    ×% %

    2ifferent

    colors

    2ifferent polarizations

    Same

    colors

    Same polarizations

    1 2 I I I = +

    1 2 I I I = + 1 2 I I I = +

    Interference only occurs !hen the !a"es ha"e the same color and

    polarization.

    3e also discussed incoherence% and that4s !hat this lecture is aout/

  • 8/18/2019 Optics i 18 Coherence Interference

    7/32 

    The irradiance when combining a beam with

    a delayed replica of itself has fringes.

    Suppose the t!o eams are E 0 exp(iωt ) and E 0 exp[iω(t -τ )]% that is%a eam and itself delayed y some time τ &

    O1ay% the irradiance is gi"en y&

    { }*1 1 2 2Re I I c E E I ε = + × +% %

    { }*0 0 02 Re exp[ ] exp[ ( )] I I c E i t E i t ε ω ω τ  = + × − −% %

    { }2

    0 02 Re exp[ ] I c E iε ωτ = +%

    20 02 cos[ ] I c E ε ωτ = +

    %

    0 02 2 cos[ ] I I I    ωτ = +

    Fringes (in delay

    #

     I 

    τ

  • 8/18/2019 Optics i 18 Coherence Interference

    8/32 

    !arying the delay on purpose

    Simply moving a mirror can vary the delay of a beam by many

    wavelengths.

    Since light travels 300 µm per ps, 300 µm of mirror displacement

    yields a delay of 2 ps. Such delays can come about naturally, too.

    Moving a mirror backward by a distance L yields a delay of:

    τ    =   2  L /cDo not forget the factor of 2!Light must travel the extra distanceto the mirror—and back!

    Translation stage

    Input

    beam E(t)

     E(t– τ )

    Mirror

    Output

    beam

  • 8/18/2019 Optics i 18 Coherence Interference

    9/32

     

    "e can also vary the delay using

    a mirror pair or corner cube.

    Mirror pairs involve tworeflections and displacethe return beam in space:But out-of-plane tilt yieldsa nonparallel return beam.

    Corner cubes involve three reflections and also displace the returnbeam in space. Even better, they always yield a parallel return beam:

    “Hollow corner cubes” avoid propagation through glass.

    Translation stage

    Input

    beam E(t)

     E(t– τ )

    MirrorsOutput

    beam

    [EdmundScientific]

  • 8/18/2019 Optics i 18 Coherence Interference

    10/32

     

    The #ichelson Interferometer 

    Beam-splitter

    Input

    beam

    Delay

    Mirror

    Mirror

    Fringes (in delay$

    [ ] [ ]{ }

    [ ]{ }

    { }

    *

    1 2 0 1 0 2

    2

    2 1 1 2 0 0

    Re exp ( 2 ) exp ( 2 )

      2 Re exp 2 ( ) ( / 2)

      2 1 cos( )

    out  I I I c E i t kz kL E i t kz kL

     I I I ik L L I I I c E 

     I k L

    ε ω ω 

    ε 

    = + + − − − − −

    = + + − ≡ = =

    = + ∆

    since

    ∆ L = 2(L2 – L1)

    The Michelson Interferometer splits a

    eam into t!o and then recominesthem at the same eam splitter.

    Suppose the input eam is a plane

    !a"e&

     I out 

     L1

    !here& ∆ L = 2( L2 – L1)

     L2 Outputbeam

    5(right fringe652ar1 fringe6

  • 8/18/2019 Optics i 18 Coherence Interference

    11/32

     

    The #ichelson

    Interferometer 

    Beam-splitter

    Input

    beam

    Delay

    Mirror

    Mirror

    The most o"ious application of

    the Michelson Interferometer is

    to measure the !a"elength of

    monochromatic light.

    ∆ L = 2(L2 – L1)

     I out 

     L1

     L2Outputbeam

    { } { }2 1 cos( ) 2 1 cos(2 / )out  I I k L I Lπ λ = + ∆ = + ∆

     

  • 8/18/2019 Optics i 18 Coherence Interference

    12/32

     

    %uge #ichelson Interferometers

    may someday detect gravity

    waves.

    Beam-splitter

    Mirror

    Mirror

     L1

     L2

    7ra"ity !a"es )emitted y all massi"e o8ects* e"er so slightly !arp

    space#time. 9elati"ity predicts them% ut they4"e ne"er een detected.

    Superno"ae and colliding lac1 holes emit gra"ity !a"es that may e

    detectale.

    7ra"ity !a"es are 5$uadrupole6

    !a"es% !hich stretch space in

    one direction and shrin1 it in

    another. They should cause

    one arm of a Michelsoninterferometer to stretch and

    the other to shrin1.

    :nfortunately% the relati"e distance ) L1-L2 ~ 10-16 cm* is less than the

    !idth of a nucleus/ So such measurements are "ery "ery difficult/

     L1 and L2  1m/

  • 8/18/2019 Optics i 18 Coherence Interference

    13/32

     

    The LI&' proect

     < small fraction ofone arm of the

    CalTech I7O

    interferometer=

    The uilding

    containing an arm

    The control center 

    CalTech I7O

    >anford I7O

  • 8/18/2019 Optics i 18 Coherence Interference

    14/32

     

    The LI&' fol)s

    thin) big*

    The longer the interferometer

    arms% the etter the

    sensiti"ity.

    So put one in space%of course.

  • 8/18/2019 Optics i 18 Coherence Interference

    15/32

     

    Interference is easy when the light wave is a

    monochromatic plane wave. "hat if it+s not,

    For perfect sine !a"es% the t!o eams are either in phase orthey4re not. 3hat aout a eam !ith a short coherence time????

    The eams could e in phase some of the time and out of phase

    at other times% "arying rapidly.

    9ememer that most optical measurements ta1e a long time% so

    these "ariations !ill get a"eraged.

  • 8/18/2019 Optics i 18 Coherence Interference

    16/32

     

    -dding a

    non

    monochro

    matic

    wave to a

    delayedreplica of

    itself 

    2elay @ period

    )AA τc*&

    2elay + τc&

    Constructi"e

    interference for

    all times

    )coherent*5(right fringe6

    2estructi"e

    interference forall times

    )coherent*

    52ar1 fringe6*

    Incoherent

    addition Bo

    fringes.

    2elay -&

  • 8/18/2019 Optics i 18 Coherence Interference

    17/32

     

    Suppose the input eam is not monochromatic)ut is perfectly spatially coherent*&

      ⇒  I out   = 2 I   + c ε  Re{ E (t+2L1 /c) E*(t+2L2  /c)}

    Bo!% I out  !ill "ary rapidly in time% and most detectors !ill simply

    integrate o"er a relati"ely long time% T &/ 2 / 2

    1 2

    / 2 / 2

    ( ) 2 Re ( 2 / ) *( 2 / )

    T T 

    out 

    T T 

    U I t dt U IT c E t L c E t L c dt  ε 

    − −

    µ ⇒ µ + + +∫ ∫ 

    The #ichelson Interferometer is a

    Fourier Transform Spectrometer 

    The Field -utocorrelation/

    Beam-splitter

    Delay

    Mirror

     L1

     L2

    2 Re ( ') *( ' 'U IT c E t E t dt  ε τ 

    −∞

    µ + − )∫ 9ecall that the Fourier Transform of the Field

  • 8/18/2019 Optics i 18 Coherence Interference

    18/32

     

    Fourier Transform Spectrometer Interferogram

    The Michelson interferometer outputthe interferogramFourier

    transforms to the spectrum.

    The spectral phase plays no role/ )The temporal phase does% ho!e"er.*

       I  n   t  e  g  r  a   t  e   d 

       i  r  r  a   d   i  a  n  c  e

    - 2elay

    Michelson interferometer

    integrated irradiance

    2π/ω0

    1/∆ω

    Fre$uency

       I  n   t  e  n  s   i   t  y

    ω0

    Spectrum

    ∆ω

     < Fourier Transform Spectrometer's detected light energy "s. delay

    is called an interferogram.

  • 8/18/2019 Optics i 18 Coherence Interference

    19/32

     

    Fourier Transform Spectrometer 0ata

    Interferogram

    This interferogram

    is "ery narro!% so

    the spectrumis "ery road.

    Fourier Transform Spectrometers are most commonly used in the

    infrared !here the fringes in delay are most easily generated.

  • 8/18/2019 Optics i 18 Coherence Interference

    20/32

     

    Fourier Transform Spectrometers

    MaDimum path difference& , m

    Minimum resolution& -.--E cm

    Spectral range& G.G to ,H µm

     

  • 8/18/2019 Optics i 18 Coherence Interference

    21/32

     

    [ ] [ ]{ }

    [ ]{ }

    *

    0 0

    2

    0

    2

    0

    Re exp ( cos sin exp ( cos sin

      Re exp 2 sin

      cos(2 sin )

     E i t kz kx E i t kz kx

     E ikx

     E kx

    ω θ θ ω θ θ  

    θ 

    θ 

    − − − − +

    µ −

    µ

    Crossed 1eams

    θ

    k +

    k −r

     z

     x

    ˆˆcos sink k z k xθ θ + = +

    ˆˆcos sink k z k xθ θ − = −

    r

    cos sink r k z k xθ θ +⇒ × = +r

    cos sink r k z k xθ θ − × = −r r

    { }*0 0 02 Re exp[ ( )] exp[ ( )] I I c E i t k r E i t k r ε ω ω + −= + − × − − ×r rr r

    Cross term is proportional to&

    Fringes (in position

     x

     I out (x)

    ˆ ˆ ˆr xx zz  = + +

    2 /(2 sin )k π θ Λ =Fringe spacing&

  • 8/18/2019 Optics i 18 Coherence Interference

    22/32

     

    Irradiance vs. position for crossed beams

    Irradiance fringes occur !here the eams o"erlap in space and time.

  • 8/18/2019 Optics i 18 Coherence Interference

    23/32

     

    1ig angle$ small fringes.

    Small angle$ big fringes.

    2 /(2 sin )

    /(2sin )

    k π θ 

    λ θ 

    Λ =

    =

    The fringe spacing% Λ&

     

  • 8/18/2019 Optics i 18 Coherence Interference

    24/32

     

    The fringe spacing is&

    Λ  -., mm is aout the minimum fringe spacing you can see&

     2ou can3t see the spatial fringes unless

    the beam angle is very small/

    sin /(2 )

    0.5 / 200

      1/ 00 !"# 0.15

    ! !

    θ θ λ 

    θ µ µ 

    ≈ = Λ

    ⇒ ≈

    ≈ =   o

    /(2sin )λ θ Λ =

  • 8/18/2019 Optics i 18 Coherence Interference

    25/32

     

    Spatial fringes

    and spatial

    coherence

    Interference is incoherent )nofringes* far off the aDis% !here

    "ery different regions of the

    !a"e interfere.

    Interference is coherent )sharp

    fringes* along the center line%!here same regions of the

    !a"e interfere.

    Suppose that a eam is temporally%

    ut not spatially% coherent.

  • 8/18/2019 Optics i 18 Coherence Interference

    26/32

     

    The #ichelson

    Interferometer 

    and Spatial FringesSuppose !e misalign the mirrorsso the eams cross at an angle!hen they recomine at the eamsplitter.

  • 8/18/2019 Optics i 18 Coherence Interference

    27/32

     

    #ichelson#orley e4periment

    ,Jth

    #century physicists thought that light !as a "iration of amedium% li1e sound. So they postulated the eDistence of a medium

    !hose "irations !ere light& aether .

    Michelson and Morley

    realized that the earth could

    not al!ays e stationary

    !ith respect to the aether.

     

  • 8/18/2019 Optics i 18 Coherence Interference

    28/32

     

    #ichelson#orley 54periment$ 0etails

    If light re$uires a medium% then its "elocity depends on the "elocity ofthe medium. Kelocity "ectors add.

    Parallel

    "elocities

     

  • 8/18/2019 Optics i 18 Coherence Interference

    29/32

     

    Perpendicular

    "elocity to mirror 

    Perpendicular

    "elocity after mirror 

    #ichelson#orley 54periment$ 0etails

    In the other arm of the interferometer% the total "elocity must e

    perpendicular% so light must propagate at an angle.

    $"i#$t r

    $%&t$&r r

    $tot%" r

    2 2$ $$ "i#$   %tot%"    r t    &t$&= −

    $"i#$t r

    $%&t$&r r

    $tot%" r

  • 8/18/2019 Optics i 18 Coherence Interference

    30/32

     

    #ichelson#orley 54periment$ 0etails

    Perpendicular

    propagation

    $%&t$&r rParallel and

    anti#parallel

    propagation

    2 2

    $ $

    2 1

    [1 $ / ]

     L Lt 

    c c

     L

    c c

    ∆ = +− +

    = −

    P

    2 2

    2 2

    2$

    2 1

    1 $ /

     Lt 

    c

     L

    c   c

    ⊥∆ =−

    =

    The delays for the t!o arms depend

    differently on the "elocity of the aether/

    If $ is the earth4s "elocity around thesun% D ,- ms% and L  , m% then&

    et c e the speed of light% and $ e the "elocity of the aether.

    1%~ 10 st t    −⊥

    ∆ − ∆P

  • 8/18/2019 Optics i 18 Coherence Interference

    31/32

     

    #ichelson#orley

    54periment$ 6esults

    Michelson and Morley's results

    from

  • 8/18/2019 Optics i 18 Coherence Interference

    32/32

    Fresnel3s 1iprism

     < prism !ith an apeD

    angle of aout ,LJ

    refracts the left half of the

    eam to the right and the

    right half of the eam tothe left.

    Fringe patternoser"ed y interfering

    t!o eams created y

    Fresnel's iprism