Optical RAM:Optical RAM: A solution path to “True” optical...

23
Optical RAM: Optical RAM: A solution path to “True” optical packet switch Ken-ichi Kitayama Osaka University Osaka University E-mail:[email protected] Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 1 Osaka Univ.

Transcript of Optical RAM:Optical RAM: A solution path to “True” optical...

Page 1: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

Optical RAM:Optical RAM:A solution path to “True” optical packet switch

Ken-ichi Kitayama

Osaka UniversityOsaka UniversityE-mail:[email protected]

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 1 Osaka Univ.

Page 2: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

Acknowledgments

Colleagues of the 5-year-long (2006~2010) R&D program, “Optical RAM for all-optical packet switch,” supported by NICT

NTT Photonics Labs & Basic Research Labs NTT Photonics Labs. & Basic Research Labs.

Osaka University

Kyushu University Kyushu University

NEC

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 2 Osaka Univ.

Page 3: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

Growth of e-router capacity

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 3 Osaka Univ.G.Epps, OFC2008, Workshop

Page 4: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

What are problems with conventional e-router?

Segmented into 8 small fixed-length packets for low-speed parallel proc.

Large buffer required to store all the small-size packets for the assembly

Output buffering

Input buffering, Label proc.

Line Card Line Card

Fill Interframe Gap (IFG)

8 xe-switching

planes

Input packets

Large buffer required to store

O/E O/E E/O E/O O/E O/E E/O O/E E/O O/E E/O E/O

Li C d MUXDEMUXO/E E/O

Large power dissipationdue to MUX/DEMUX

Large buffer required to store all the input packets for segmentation

Line Card MUXDEMUXO/E E/O

EO E

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 4 Osaka Univ.

due to MUX/DEMUX

Page 5: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

High-end e-routers : A product example

Maximum configuration: 92Tbps 72 x LC chassis + 8 x Fabric

“Cisco will continue to push traditional technology,” by G.Epps

“Paralleism can be pushed further,” by R.TuckerchassisIs e-router’s capacity growth sustainable in speed

and power consumption?Is e router’s CO footprint acceptable for Green IT?

Is e-router’s capacity growth sustainable in speed and power consumption?Is e router’s CO footprint acceptable for Green IT?

14kW x 92

Is e-router’s CO2 footprint acceptable for Green IT?Is e-router’s CO2 footprint acceptable for Green IT?

14kW x 92~1 MegaWatt !!

Cisco CRS 1 with 1000 ports

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 5 Osaka Univ.

Cisco CRS-1 with 1000 ports, 250 ms(10Gbps) buffering per port

G.Epps, OFC2008, Workshop

Page 6: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

Challenges of optical packet switch

Solution path to the bottlenecks of e-routersSolution path to the bottlenecks of e-routers Power-consumption bottleneck Speed bottleneck Power-consumption bottleneck Speed bottleneck

Challenges:Challenges:Challenges:

“Clean-slate photonic-native architecture” Totally different from current e-routers, aiming at small-buffer

Challenges:

“Clean-slate photonic-native architecture” Totally different from current e-routers, aiming at small-buffer y , gsize, high-speed as well as low-power consumption

y , gsize, high-speed as well as low-power consumption

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 6 Osaka Univ.

Page 7: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

Architecture of “True” optical packet switch

OutputInput buffering,Fill Interframe Output buffering

8 x

Input buffering, Label proc.

Line Card Line Card

Fill Interframe Gap (IFG)

Input packetsHeader processor

e-switching planes

p p

Optical switchOptical buffer

O/E O/E E/O E/O O/E O/E E/O O/E E/O O/E E/O E/O

Scheduler

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 7 Osaka Univ.

Page 8: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

Architecture of optical RAM buffer subsystem

Scheduler

Write-in Readout address

Opt

address Read-out light source

Opt Opt.PSC

Opt.PSCdr

esse

r

pler

2-D array optical bit memory (100x100)

2-D array optical bit memory (100x100)

Opt.SPC

Opt.SPC

Input packet

Opt.PSC

OptOpt

ical

add

Cou

p

Opt.SPC

Opt Opt.PSC

Optical signal

Electrical signalWrite-in

Opt.SPC

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 8 Osaka Univ.

Electrical signallight sourceSPC: Serial-to-parallel converterPSC: Parallel-to-serial converter

Page 9: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

Optically “Write/Read” techniques

Signal light

2-D PC memory arrayi) Addressing in space

......

......

......

...Signal light

Bias lightii) Adressing in spectral domain

Signal light

ii) Adressing in spectral domain

......

......

......

...

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 9 Osaka Univ.

Bias lightWavelength converter

Page 10: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

InGaAsP PC resonator1 4 I G A P

PhC engineerings

• Reducing adversary thermal effect

PhC engineerings

• Reducing adversary thermal effect

1.4m-InGaAsP32x6um

by smaller PhC area, bandgap narrowing, smoothing PhC surface

• Fast heat diffusion• Protect carrier diffusion using BH

by smaller PhC area, bandgap narrowing, smoothing PhC surface

• Fast heat diffusion• Protect carrier diffusion using BH

Pin Pout

Mi i f bi 10 W

inte

nsity

] Write Erase

Protect carrier diffusion using BHProtect carrier diffusion using BH3m

30 m

Minimum power of bias light

10 W

Energy of signal light 24 fJRetention time 250 ns

Ligh

t [

W]

ut

(Signal-in) (Bias-off)

10

102

10W10W24fJ24fJ

Retention time 250 ns

Mem

ory

outp

[a. u

.] W/o erase W erase

Note: 1500B Ethernet frame~300ns@40GbpsON

250ns250ns(1)

(2) (3)

(4)

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 10 Osaka Univ.

M

Time (ns)0 100 200 300OFF OFF

(1) (4)

Page 11: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

Optical bistable operation of PC resonator

Bi ONSi l iSi l ffR d l iR d l ffR t 30

mis

sion

Micro-cavity

Bi

Bias ONSignal inSignal offRead pulse inRead pulse offReset400nm

30 m

Tran

sm

“1”Bias Output

SignalRead pulse

Reset

=1543.0 nm

r [5d

B/d

iv]

“0”

Bias

Signalutpu

t pow

er

Optical powerSignal

Readout

Output-20 -18 -16 -14

Input power in PhC waveguie [dBm]

=1542.8 nmOu

Challenges Challenges

Input power in PhC waveguie [dBm]

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 11 Osaka Univ.

Long retention time High-dense integration up to 100k~1M Long retention time High-dense integration up to 100k~1M

Page 12: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

Switch architectures : Optical RAM vs. WC

w/ Optical RAM buffer w/o Optical RAM buffer

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 12 Osaka Univ.

Page 13: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

Packet loss rateP i i l• Poisson arrival

• Buffer size=1500B@ 40Gbps• 4x4 sw, 8s, M shared buffers with feedback• Packet lenghs: 40B (75%), 1500B (25%)#1

100

100g ( ), ( )

...#15

• Contention cannot be resolved with only wavelength conversion w/o buffer but solved with small buffer

• Buffer retention time ~200ns shows a low packet loss rate with 15

• Contention cannot be resolved with only wavelength conversion w/o buffer but solved with small buffer

• Buffer retention time ~200ns shows a low packet loss rate with 15

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 13 Osaka Univ.

pbuffer palnes, 22500B (=180kbits) in the switch up the load of 0.2

pbuffer palnes, 22500B (=180kbits) in the switch up the load of 0.2

Page 14: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

Power consumption : How far we can go?

Currently In 2015~2019

e - Router1 MW(14nW/bit)

0.5 MW1/2(14nW/bit)1/5~1/OPS 200~300 kW 100~50 kW

/7Using O-E-O buffer Using optical RAM

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 14 Osaka Univ.

Note: 16x16x 72 SWs @ 40Gbps

Page 15: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

Thank you !Thank you !

Questions?

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 15 Osaka Univ.

Page 16: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

Architecture of optical RAM buffer system

Scheduler

Write-in Readout address

Opt

address Read-out light source

Opt Opt.PSC

Opt.PSCdr

esse

r

pler

2 D ti l2 D ti l

Opt.SPC

Opt.SPC

Input packet

Opt.PSC

OptOpt

ical

add

Cou

p2-D array optical bit memory

2-D array optical bit memoryOpt.

SPC

Opt Opt.PSC

Optical signalWrite-in

Opt.SPC

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 16 Osaka Univ.

Electrical signallight sourceSPC: Serial-to-parallel converterPSC: Parallel-to-serial converter

Page 17: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

Optical addressing in space using MMI switch

1550nmCW

Phase shifter

CW

AppliedAppliedvoltage

Wavelength dependence< ±1dB

Rise time=1.4ns, Fall time=1.2nsRise time=1.4ns, Fall time=1.2ns

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 17 Osaka Univ.

Extiction ratio=10dBExtiction ratio=10dB

Page 18: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

Optical addressing in spectral domain

Tunable laserMZ-SOA

8x8 AWGF

Requirements for Tunable laserResponse time ~5ns

Port 3Compact

Easy to integrate other components

Port 5

Port 4Low tuning current

Compact wavelength routing switch

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 18 Osaka Univ.

(500 ns/div)

Port 5Compact wavelength routing switch5.1mm x 2.1 mm

Page 19: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

Architecture of optical RAM buffer system

Scheduler

Write-in Readout address

Opt

address Read-out light source

Opt Opt.PSC

Opt.PSCdr

esse

r

pler

Opt.SPC

Opt.SPC

Input packet

2 D ti l2 D ti lOpt.PSC

OptOpt

ical

add

Cou

p

Opt.SPC

Opt

2-D array optical bit memory

2-D array optical bit memory

Opt.PSC

Optical signalWrite-in

Opt.SPC

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 19 Osaka Univ.

Electrical signallight sourceSPC: Serial-to-parallel converterPSC: Parallel-to-serial converter

Page 20: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

All-optical SP/PS bidirectional converter

SPCSPC0

Pump pulse /4 plateCollimator

PBS

Time window Surface-

23

Delay lines

PBSInput packetInput packet

normal all-optical switchParallel output Parallel output

PSCPSC0

Pump pulse

23

PBSOutput packet Output packet

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 20 Osaka Univ.

Parallel input Parallel input

Page 21: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

Optical memory devicesAllAll--optical RAMoptical RAM Fiber delay lineFiber delay line Slow lightSlow lightFIFO (First-in-first-out)

Passive

AllAll--optical RAMoptical RAM Fiber delay lineFiber delay line

Contl. of prop. length Contl. of GV

Active

Bit-by-bit memory via bistability

Slow lightSlow light

Fib l Material Waveguide

FIFO (First-in-first-out)

Q t

Passive(non-radiative)

Surface-emission Fiber Semicon.Waveguide

O t

Active(radiative)

Micro-cavity

Ph iPol MMI BDL

Fiber loop Material dispersion

Waveguidedispersion

FiberSemicon. Semicon.

EIT, CPO, FWM

Quantum wire

Photoniccrystal

Micro ring Opt.sw +fiber

PhotonicCrystal

Pol. bistability

MMI-BDLflip-flop

Cell size 10m2 100m2 1000m2 50000m2 Large Compact* Compact Compact

Powerconsumption ~10W ~100W ~10mW ~100mW

Access speed

1W/pkt 2W/pkt - -

~10ps ~10ps 7ps <100ps A few ns A few ns*** ***

****

A few ns***

A few ns***

AccessParallel/serial

2-D parallel Parallel

・-sensitive・PDL

・PDL・All-optical shift register

・FIFO・Discrete time

・Narrow bandwidth ****・Short time storageNotes

Parallel/serial Parallel Parallel Parallel Parallel

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 21 Osaka Univ.

* <10x10m2 + I/O=>30x30m2

** Depending on optical amplifier count*** Speed of optical switch**** < 20GHz

PDL・Large-scale s/p conv. ・Small capacity ・Small capacity

Note: SRAM: <0.6m2, <1W, <2ns w/o O-E-ONote: SRAM: <0.6m2, <1W, <2ns w/o O-E-O

Page 22: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

Buffer size for packet routersRule of thumb

#1: Larger the buffer size is, the lower the packet loss probability becomes. #2: TCP requires the buffer capacity B;

B = RTT x Link capacity

Rule of thumb

Recent findings

Note1: For RTT=250 ms@40Gbps, B=10 Gbits => 36Mbit-SRAM x 300 Note2: OC192 (10Gbps) line card has a 1.6Gbits buffer (13k Ether packets).

Good news for all packet routers !Good news for all packet routers !

• Buffer size can be reduced to B=RTT x Link capacity/ √n (n: connection count).Ex. Buffer size for 1Mbps flows x 40,000 @40Gbps can be reduced from 10Gbits to 50Mbits

• Paced TCP can further reduce the buffer size down to10~20 packets.

• Is this only the case with ADSL?

Issues

Paced TCPWhat happens to > gigabit access?

• Is it practical that TCP has to be replaced with another TCP at end hosts?

Access:2.5Mbps

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 22 Osaka Univ.

M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T.Roughgarden. Part III: Routers with very small buffers. ACM/SIGCOMM CCR, 2005.M.Wang, Globecom2007, G06P04 (Washington DC., Dec.208).

Page 23: Optical RAM:Optical RAM: A solution path to “True” optical ...conference.vde.com/ecoc-2009/programs/documents/ws... · Input buffering, Label proc. Line Card Line Card Fill Interframe

Architecture of conventional e-router

Segmented into 8 small fixed-length packets for low-speed prallel proc.

Large buffer required to store all the small-size packets for the assembly

Output buffering

Input buffering, Label proc.

Line Card Line Card

Fill Interframe Gap (IFG)

8 xe-switching

planes

Input packets

Large buffer required to store

O/E O/E E/O E/O O/E O/E E/O O/E E/O O/E E/O E/O

Li C d MUXDEMUXO/E E/O~1 MegaWatt / 10?~1 MegaWatt / 10??

Large power dissipationdue to MUX/DEMUX

Large buffer required to store all the input packets for segmentation

Line Card MUXDEMUXO/E E/O

EO E

OPS with 1000 ports,

gg

Sept.19, 2009 北山 ECOC2009 Workshop “Optics in Computing” 23 Osaka Univ.

due to MUX/DEMUXwith optical RAM buffer