Optical Flow Brightness Constancy The Aperture problem Regularization Lucas-Kanade Coarse-to-fine...

download Optical Flow Brightness Constancy The Aperture problem Regularization Lucas-Kanade Coarse-to-fine Parametric motion models Direct depth SSD tracking.

If you can't read please download the document

  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    223
  • download

    1

Transcript of Optical Flow Brightness Constancy The Aperture problem Regularization Lucas-Kanade Coarse-to-fine...

  • Slide 1
  • Slide 2
  • Optical Flow
  • Slide 3
  • Brightness Constancy The Aperture problem Regularization Lucas-Kanade Coarse-to-fine Parametric motion models Direct depth SSD tracking Robust flow
  • Slide 4
  • Optical Flow: Where do pixels move to?
  • Slide 5
  • Motion is a basic cue Motion can be the only cue for segmentation
  • Slide 6
  • Motion is a basic cue Motion can be the only cue for segmentation
  • Slide 7
  • Motion is a basic cue Even impoverished motion data can elicit a strong percept
  • Slide 8
  • Applications tracking structure from motion motion segmentation stabilization compression mosaicing
  • Slide 9
  • Optical Flow Brightness Constancy The Aperture problem Regularization Lucas-Kanade Coarse-to-fine Parametric motion models Direct depth SSD tracking Robust flow
  • Slide 10
  • Definition of optical flow OPTICAL FLOW = apparent motion of brightness patterns Ideally, the optical flow is the projection of the three-dimensional velocity vectors on the image
  • Slide 11
  • Caution required ! Two examples : 1. Uniform, rotating sphere O.F. = 0 2. No motion, but changing lighting O.F. 0
  • Slide 12
  • Mathematical formulation I (x,y,t) = brightness at (x,y) at time t Optical flow constraint equation : Brightness constancy assumption:
  • Slide 13
  • Optical Flow Brightness Constancy The Aperture problem Regularization Lucas-Kanade Coarse-to-fine Parametric motion models Direct depth SSD tracking Robust flow
  • Slide 14
  • The aperture problem 1 equation in 2 unknowns
  • Slide 15
  • Aperture Problem: Animation
  • Slide 16
  • The Aperture Problem 0
  • Slide 17
  • Slide 18
  • What is Optical Flow, anyway? Estimate of observed projected motion field Not always well defined! Compare: Motion Field (or Scene Flow) projection of 3-D motion field Normal Flow observed tangent motion Optical Flow apparent motion of the brightness pattern (hopefully equal to motion field) Consider Barber pole illusion
  • Slide 19
  • Slide 20
  • Optical Flow Brightness Constancy The Aperture problem Regularization Lucas-Kanade Coarse-to-fine Parametric motion models Direct depth SSD tracking Robust flow
  • Slide 21
  • Horn & Schunck algorithm Additional smoothness constraint : besides OF constraint equation term minimize e s + e c
  • Slide 22
  • The calculus of variations look for functions that extremize functionals and
  • Slide 23
  • Calculus of variations Suppose 1. f(x) is a solution 2. (x) is a test function with (x 1 )= 0 and (x 2 ) = 0 for the optimum :
  • Slide 24
  • Calculus of variations Using integration by parts : Therefore regardless of (x), then Euler-Lagrange equation
  • Slide 25
  • Calculus of variations Generalizations 1. Simultaneous Euler-Lagrange equations : 2. 2 independent variables x and y
  • Slide 26
  • Hence Now by Gausss integral theorem, so that = 0 Calculus of variations
  • Slide 27
  • Given the boundary conditions, Consequently, for all test functions . is the Euler-Lagrange equation
  • Slide 28
  • Horn & Schunck The Euler-Lagrange equations : In our case, so the Euler-Lagrange equations are is the Laplacian operator
  • Slide 29
  • Horn & Schunck Remarks : 1. Coupled PDEs solved using iterative methods and finite differences 2. More than two frames allow a better estimation of I t 3. Information spreads from corner-type patterns
  • Slide 30
  • Slide 31
  • Horn & Schunck, remarks 1. Errors at boundaries 2. Example of regularization (selection principle for the solution of ill-posed problems)
  • Slide 32
  • Results of an enhanced system
  • Slide 33
  • Optical Flow Brightness Constancy The Aperture problem Regularization Lucas-Kanade Coarse-to-fine Parametric motion models Direct depth SSD tracking Robust flow
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Optical Flow Brightness Constancy The Aperture problem Regularization Lucas-Kanade Coarse-to-fine Parametric motion models Direct depth SSD tracking Robust flow
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Optical Flow Brightness Constancy The Aperture problem Regularization Lucas-Kanade Coarse-to-fine Parametric motion models Direct depth SSD tracking Robust flow
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Optical Flow Brightness Constancy The Aperture problem Regularization Lucas-Kanade Coarse-to-fine Parametric motion models Direct depth SSD tracking Robust flow
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Optical Flow Brightness Constancy The Aperture problem Regularization Lucas-Kanade Coarse-to-fine Parametric motion models Direct depth SSD tracking Robust flow
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Optical Flow Brightness Constancy The Aperture problem Regularization Lucas-Kanade Coarse-to-fine Parametric motion models Direct depth SSD tracking Robust flow
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Textured Motion http://www.cs.ucla.edu/~wangyz/Research/w yzphdresearch.htm http://www.cs.ucla.edu/~wangyz/Research/w yzphdresearch.htm Natural scenes contain rich stochastic motion patterns which are characterized by the movement of a large amount of particle and wave elements, such as falling snow, water waves, dancing grass, etc. We call these motion patterns "textured motion".