OPS Forum Fundamentals of Attitude 19.05.2006

29
JFK/RB, 2005-11-30 Fundamentals of Attitude OPS-G Forum 19.05.2006 Uwe Feucht

description

Uwe Feucht, a flight dynamics expert, will present fundamental concepts related to the mathematics and physics of attitude determination and discuss attitude control during flight.

Transcript of OPS Forum Fundamentals of Attitude 19.05.2006

Page 1: OPS Forum Fundamentals of Attitude 19.05.2006

JFK/RB, 2005-11-30

Fundamentals of Attitude

OPS-G Forum19.05.2006

Uwe Feucht

Page 2: OPS Forum Fundamentals of Attitude 19.05.2006

BackgroundBackground

This Presentation is compiled from:

Lecture on Satellite Technique, TU Umea/TU Lulea

Spacecraft Operations Course, DLR

Page 3: OPS Forum Fundamentals of Attitude 19.05.2006

ContentContent

1. Introduction to Spacecraft Attitude2. Parameterization of Attitude3. Deterministic Attitude Determination4. Attitude Control

Page 4: OPS Forum Fundamentals of Attitude 19.05.2006

1. Introduction to Spacecraft Attitude

Mathematically attitude is a coordinate transformation

In space attitude is the orientation of the spacecraft main axes w.r.t. a reference system

An example for a spacecraft coordinate system:

What is Attitude ?

Page 5: OPS Forum Fundamentals of Attitude 19.05.2006

1. Introduction to Spacecraft Attitude

Example for a body coordinate system:

! Not valid for all Satellites !

Page 6: OPS Forum Fundamentals of Attitude 19.05.2006

2. Parameterization of Attitude

There are 3 common ways of describing attitude:

1) Direction Cosine Matrix

The DCM is a 3x3 rotation matrixIt describes vectors in one system w.r.t. another systemE.g. multiplication of a vector in body coordinates with the DCM can transform its coordinates into the reference system

E.g. a rotation with φ around the x-axis:

⎥⎥⎥

⎢⎢⎢

ϕϕ−ϕϕ=

cossin0sincos0

001AX

Page 7: OPS Forum Fundamentals of Attitude 19.05.2006

2. Parameterization of Attitude

2) Euler Angles

3 angles describe 3 successive rotations around 3 body axes.

Numbers 1,2,3 describe the type of body axes and the rotation order.

E.g. an Euler 1-2-3 rotation stands for the following rotation sequence:

with φ around the 1-axes (x-axis), thenwith θ around the new 2-axes (rotated y-axis), finallywith ψ around the new 3-axes (rotated z-axis)

Page 8: OPS Forum Fundamentals of Attitude 19.05.2006

2. Parameterization of Attitude

Page 9: OPS Forum Fundamentals of Attitude 19.05.2006

2. Parameterization of Attitude

3) Quaternions

Quaternions are hypercomplex numbers with 1 real and 3 imaginary components.

A rotation with φ around an axis [e1, e2, e3] can be expressed by thequaternion

q = [q1, q2, q3, q4] with

q1 = e1 sin φ/2q2 = e2 sin φ /2q3 = e3 sin φ /2q4 = cos φ /2

Page 10: OPS Forum Fundamentals of Attitude 19.05.2006

3. Deterministic Attitude Determination

Attitude is described by 3 parameters, thus in terms of vectors:

At least 2 vectors in both body- and reference system are needed,e.g. sun- and earth-vector or 2 star-vectors, or….

With these u and v in both systems an orthogonal frame is set up:

with q = u, r = u x v and s = q x r

and the body and reference matrices MB = [qB rB sB ], MR = [qR rR sR ]

yields the attitude matrix

A = MB MRT

Page 11: OPS Forum Fundamentals of Attitude 19.05.2006

4. Attitude Control – Why ?

Basically a satellite remains intertially fixed in space:

Page 12: OPS Forum Fundamentals of Attitude 19.05.2006

4. Attitude Control – Why ?

But there are disturbances, e.g. the gravity gradient:

M

CoMr F2

F1

Page 13: OPS Forum Fundamentals of Attitude 19.05.2006

4. Attitude Control – The Control Loop

or magnetic effects: GeographicGeomagnetic North

Northβ

S

and others like internal, aerodynamic or solar radiation disturbances

Page 14: OPS Forum Fundamentals of Attitude 19.05.2006

4. Attitude Control – The Control Loop

Comparator G1(s) G2(s) G3(s)

Desired attitude Actual attitude

φin + φout¯ φerrorφout H(s)

Actual attitude feedback

AttitudecontrollerAttitude

controllerSpacecraftdynamics

Spacecraftdynamics

AttitudesensorsAttitudesensors

ActuatorActuator

Thus there is the need for an automatic attitude control:

Page 15: OPS Forum Fundamentals of Attitude 19.05.2006

4. Attitude Control – The Control Loop

torquesT

tensorinertiaJ

JTdtdJ

KrK

rrrr

ωωω×−=

attitudeS/Cdynamics

torque

dynamic equ. of motion kinematic equ. of motion

T ω qq

dtdq

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−−

−−

=

00

00

21

321

312

213

123

ωωωωωωωωωωωω

Page 16: OPS Forum Fundamentals of Attitude 19.05.2006

4. Attitude Control – Sensors

Sun Sensors:

φz

φx φy

I1

I2I3

I4

Page 17: OPS Forum Fundamentals of Attitude 19.05.2006

4. Attitude Control – Sensors

Earth Sensors:

I1

I2 I3

I4

And: Combined earth- and sun sensor (CESS) based on thermistors

Page 18: OPS Forum Fundamentals of Attitude 19.05.2006

4. Attitude Control – Sensors

Star Sensors:

εψ

εφ {εθ

FOV

Page 19: OPS Forum Fundamentals of Attitude 19.05.2006

4. Attitude Control – Sensors

Star Sensor (Sodern):

Page 20: OPS Forum Fundamentals of Attitude 19.05.2006

4. Attitude Control – Sensors

Mechanical Gyros: z

H = I ωg z

ζ

Gimbalframe

Scale

ωbSpring constant

k Tx y

Page 21: OPS Forum Fundamentals of Attitude 19.05.2006

4. Attitude Control – Sensors

Phase meter

d1d2

QuantumR of light

ωb

Laser emitter⎟⎟⎠

⎞⎜⎜⎝

⎛=

∆=

cR

NUUU bininout λ

ωπφ 2

24cos2

cos

Laser Gyros:

Page 22: OPS Forum Fundamentals of Attitude 19.05.2006

4. Attitude Control – Sensors

and:

Magnetometers – measuring the direction of the earth magnetic field

GPS – using interferometry of the carrier signal

Page 23: OPS Forum Fundamentals of Attitude 19.05.2006

4. Attitude Control – Sensor Accuracies

€…€€€€€€€€€€€€€€€€

0.1….5 deg5 arcsec0.01 deg0.005 deg3 deg1 deg

Earth SensorsStar SensorsMech. GyrosLaser GyrosMagnetometerGPS

€…€€€0.05….5 degSun Sensors

PriceAccuracySensor Type

Page 24: OPS Forum Fundamentals of Attitude 19.05.2006

4. Attitude Control – Actuators

Reaction Wheels:(here: 1 spare wheel skewed)

Page 25: OPS Forum Fundamentals of Attitude 19.05.2006

4. Attitude Control – Actuators

Thrusters (cold or hot):(also for wheel unloading)

FL

M

L

F

)(2)( 0max MFLt

IT wheel ==∆−

=ωω

)(2 0max ωω −=∆

FLIt wheel

Page 26: OPS Forum Fundamentals of Attitude 19.05.2006

4. Attitude Control – Actuators

Wheel unloading (momentun dumping):

ωmax

ω = 0

ωmin

Day1 2 3 4 5 6 7 8 9 10 11

Page 27: OPS Forum Fundamentals of Attitude 19.05.2006

4. Attitude Control – Actuators

Magnetic Torquers (interacting with the earth magnetic field):

Page 28: OPS Forum Fundamentals of Attitude 19.05.2006

Euler error angles [deg]

4. Attitude Control – Results

Uncontrolled spacecraft:

Interval: 1 orbital period(i.e. 5,700 sec)

Page 29: OPS Forum Fundamentals of Attitude 19.05.2006

4. Attitude Control – Actuators

Attitude control by reaction wheels: