Operator’s Manual...Dry Gas Meter which reads gas sample volume in liters to three decimal places....

88
APEX INSTRUMENTS, INC. Method 6 Source Sampler – Model 623 (SK-25 Version) Operator’s Manual Method

Transcript of Operator’s Manual...Dry Gas Meter which reads gas sample volume in liters to three decimal places....

  • APEX INSTRUMENTS, INC.

    Method 6 Source Sampler – Model 623 (SK-25 Version)

    Operator’sManual

    Method

  • M E T H O D 6 S O U R C E S A M P L E R – M O D E L M C 6 2 3

    Operator’s Manual

    Apex Instruments, Inc.204 Technology Park LaneFuquay-Varina, NC 27526

    Phone 919-557-7300 • Fax 919-557-7110Web: www.apexinst.com

    E-mail: [email protected]

    Revision No: 2Revision Date: April 2007

  • Introduction..............................................5

    System Description ....................................7Source Sampler Console ..........................8

    Vacuum Subsystem ..............................10Electrical Subsystem.............................11Thermocouple Subsystem.....................11

    Probe Assembly......................................12Mini VersaCase.......................................14VersaCase 2 ...........................................15Umbilical Cable with Umbilical Adapter...16Glassware Sample Trains.......................17

    Operating Procedures ...........................19

    Setup and Check of Source Sampling System......................................................19

    Initial Set-up Procedure ..........................19System Check.........................................21

    Main Power Circuit ................................21Thermocouple Circuits ..........................21Pump Power Circuit...............................21Remote Auxiliary Power Circuit .............21Elapsed Timer Circuit ............................21Heater Circuits ......................................21

    Initial Sampling System Leak Check.......22

    Calibration and Maintenance ................23

    Calibration Procedures.............................23Dry Gas Meter.........................................23

    Metering System Leak Check Procedure..............................................................26Initial or Semiannual Calibration of Dry Gas Meter .............................................26Post-Test Calibration of the Source Sampler Console...................................28

    Calibration of Thermocouples .................29Initial Calibration of Probe Heater ...........30

    Maintenance and Troubleshooting...........31Source Sampler Console ........................31Internal Diaphragm Pump .......................31Dry Gas Meter.........................................33

    Optical Encoder.....................................34Digital Totalizer .......................................35

    Program Mode ......................................35Scale Factors ........................................36

    Temperature Controllers .........................37Probe, Filter and *Auxiliary Setup..........37

    Temperature Display...............................38Temperature Display Setup...................38

    Temperature Controllers and Temperature Display Maintenance...............................39Pressure Meter Gauge............................39Thermocouple Wiring and Thermocouple Display ....................................................40Electrical Power Circuits .........................41Sample (Vacuum) Line on Umbilical Cable................................................................41Timer.......................................................42

    Setup ....................................................42

    Appendix A .............................................43

    Electrical and Plumbing Diagrams...........43

    Appendix B .............................................47

    Calibration Data Sheets ........................... 47

    Appendix C .............................................49

    Applicable Method Procedures ................49Leak-Check Procedures of Non-Isokinetic Sampling Trains ......................................50EPA Method 4 Moisture Approximation ..51EPA Method 6 for Sulfur Dioxide ............52EPA Method 11 for Hydrogen Sulfide in Fuel Gas Streams ...................................54EPA Method 15A for Total Reduced Sulfur Compounds from Sulfur Recovery Plants in Refineries................................................56EPA Method 16A for Total Reduced Sulfur Compounds.............................................58EPA Method 18 for Organic Compounds60EPA Method 26 for Hydrogen Halides and Halogens.................................................64EPA Method 106 for Vinyl Chloride.........67EPA Method 308 for Methanol ................68EPA-SW-846 Method for Volatile Organic Compounds.............................................70EPA-SW-846 Method for Volatile Organic Compounds.............................................72EPA-SW-846 Method for Volatile Organic Compounds.............................................75EPA-SW-846 Method 0051 for HCl and Cl2................................................................80

    Appendix D .............................................83

    Field Data Sheets.....................................83

    TABLE OF CONTENT

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    5

    Introduction

    The purpose of this manual is to provide a basic understanding of the Apex Instruments Model MC-623 Source Sampler Console and gaseous sampling glassware systems. Sections of the manualinclude description of sampling system hardware, set-up and system check, calibration procedures, and troubleshooting and maintenance. Appendices contain electrical diagrams, calibration data sheets, and specific test method sampling procedures. This manual is based so that a representative gas samples can be collected according to the procedures established by the United States Environmental Protection Agency (USEPA) for sampling trains which use midget impinger glassware trains and/or adsorbent tube or gas bag sampling trains. The Model MC-623 Source Sampler Console and various glassware sampling systems are applicable for the following test methods and pollutants listed in Tables 1-1 and 1-2.

    Table 1-1. List of US EPA Test Methods Applicable to MC-623 Source Sampler Console

    Method No. Pollutants

    4 Stack Gas Moisture (Approximation Method)

    6 Sulfuric Acid Mist and Sulfur Dioxide

    6A Sulfur Dioxide, Moisture and Carbon Dioxide

    6B Sulfur Dioxide and Carbon Dioxide

    11 Hydrogen Sulfide in Petroleum Refinery Fuel Gas Streams

    15A Total Reduced Sulfur from Petroleum Refinery Sulfur Plants

    16A Total Reduced Sulfur

    18 Integrated Bag Sampling for Organic Compounds

    18 Adsorption Tube Sampling for Organic Compounds

    26 Hydrogen Chloride and Chlorine

    106 Integrated Bag Sampling for Vinyl Chloride

    308 Methanol

    Chapter

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    6

    Table 1-2. Hazardous Waste Combustion Source Test Methods in EPA-SW-846 Applicable to MC-623

    Source Sampler Console

    Method No. Pollutants

    0030 Volatile Organic Compounds (VOST)

    0031 Volatile Organic Compounds (SMVOC or SuperVOST)

    0040 Principle Organic Hazardous Constituents (POHCs) Using Tedlar Bags

    0051 Hydrogen Chlorine and Chlorine

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    7

    System DescriptionThe Apex Instruments MC-623 source sampling system consists of four (4) main components, shown in Figure 1-1:

    1. Source Sampler Console, which consists of dry gas meter, meter pressure gauge, internal diaphragm vacuum pump, vacuum pump controls, and electrical controls.

    2. Probe Assembly, which includes a probe sheath with glass probe liner, integrated tube heater and thermocouple.

    3. VersaCase sample glassware cabinet, which includes a probe clamp (33.9-mm standard), monorail/handle bracket, adjustable framing for different types of glassware trains, coolant reservoir brackets which accommodate standard modular impinger cases, removable front and rear access doors, and bracket for umbilical and electrical connections.

    4. Umbilical Cable, which connects the VersaCase and glassware train with the Source Sampler Console.

    5.

    Figure 1-1. Apex Instruments Method 6 Source Sampling System.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    8

    Source Sampler Console

    The Source Sampler Console is the operator’s control station that monitors gas sample volume and temperatures at the sampling location, and controls system sampling rate and system temperatures. Figure 1-2 illustrates the Apex Instruments Model MC-623 Source Sampler Console’s front panel. The Model 623 has an electronic digital gas meter display, with a reset function to start each test at zero.

    Figure 1-2. Model MC-623 Source Sampler Console Front Panel.

    Assembly in the field is simple. The connections for sample line and Umbilical Cable electrical (4-pin and thermocouple) are located on the front panel for easy access.

    Table 1-3 presents the features and specifications of the MC-623 Apex Instruments Source Sampler Console. The MC-623 Source Sampler Console has:

    Coarse (on/off) and Fine Flow Control Valves make it simple to adjust sampling flow rates.

    Dry Gas Meter which reads gas sample volume in liters to three decimal places.

    Automatic Temperature Controllers with individual circuit breakers for filter (Method 26), probe heat and auxiliary are standard equipment.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    9

    The Temperature Display and 6-channel Thermocouple Selector Switch enable the operator to monitor temperatures throughout the sampling system.

    The Vacuum Gauge reads system vacuum in the range 0-100 kPa (0-30 in. Hg).

    The digital Elapsed Timer monitors sampling time in Hours/Minutes/Seconds by the on/off toggle switch.

    The front panel has four (4) latches -- one in each corner -- which unscrew and enable the operator to pull out the Source Sampler Console from the cabinet using the convenient handle.

    Table 1-3. Features and Specifications of Apex InstrumentsModel MC-623 Source Sampler Console

    Features MC-623 Source Sampler Console

    Gas Meter Positive displacement diaphragm meter, 45 Lpm maximum and 0.33 Lpm minimum flow rate

    Meter Display 8-digit LCD, push button reset for volumetric totalizer, factory set 0-99999.999 liter totalizer, 0.003 liter resolution

    Temperature Control

    Digital solid-state autotuning controllers with solid-state power relay external relay, 120 VAC/5A or 220 VAC/3A resistive load

    Temperature Display

    3½ digit red LCD display, -200°C to 1250°C range, 1°C resolution, with external 6-channel selector switch

    Sample Pump Internal miniature diaphragm pump with 6.0 Lpm capacity @ free flow conditions and 2.6 Lpm capacity @ 254 mm Hg

    Umbilical Connections

    Electrical: 4 pin AmphenolSample Line: 6.35 mm (1/4 inch) quick connect

    Dimensions 36.8 x 40.6 x 26.7 cm (14½ x 16 x 10½ inches)

    Power 110 V / 60 Hz standard,220 V / 50 Hz optional

    Weight 12.7 kg (28 lb)

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    10

    The Source Sampler Console has Vacuum, Electrical, and Thermocouple sub-systems.

    VACUUM SUBSYSTEM

    The vacuum subsystem consists of a sample inlet quick-connect fitting, Vacuum Gauge, internal diaphragm vacuum pump assembly, internal fittings, two (2) control valves (Coarse and Fine), Dry Gas Meter, Meter Pressure Gauge, and pair of orifices controlled by a solenoid switch. Figure 1-3 is a diagram of the plumbing and gas flow direction.

    Figure 1-3. Plumbing Flow Diagram of MC-623 Source Sampler Console.

    The Internal Vacuum Pump is a miniature diaphragm-type and provides the vacuum for extracting the gas sample from the stack and then through the various components of the source sampling system.

    The sample flow rate is controlled by the Coarse Control Valve and the Fine Increase Valve. The Coarse Control Valve is a ball valve with a 90 handle rotation from CLOSED to full OPEN. This valve blocks the flow from the SAMPLE INLET quick-connect to the Vacuum Pump inlet.

    The Fine Increase Valve is a needle-type valve with five (5) turns from closed to full open. The Fine Increase Valve allows flow to re-circulate from the pump outlet back to the pump inlet. This dual valve configuration enables very precise control of the sample flow rate.

    The Dry Gas Meter is a positive displacement diaphragm volumetric totalizer meter with optical encoder and digital LCD display and reset push button to start each sampling run at 0.000 liters.

    A Meter Pressure Gauge (scale 0-100 mm H2O) is used to monitor sampling flow rate.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    11

    ELECTRICAL SUBSYSTEM

    The Source Sampler Console is factory-configured for 115 VAC / 60 Hz electrical power. Configuration for 220 VAC / 50 Hz operation is an available option.

    The electrical subsystem provides switch power to each circuit, controlled by seven switches: MAIN POWER ON, PUMP POWER ON, TIMER ON, SPARE OUTPUT ON, PROBE ON, FILTER ON and AUXILIARY ON.

    All circuits are protected by four (4) front panel mounted circuit breakers. A 15 amp circuit breaker protects main power, and two 5 amp breakers each protect probe and filter heat circuits. These circuit breakers detect and interrupt overload and short circuit conditions, providing an important safety factor. If the circuit breaker opens, or “trips,” indicating interruption of the circuit, investigate and repair the electrical fault, and then reset the breaker by pressing the circuit breaker switch. The Electrical Schematic for the Source Sampler Console is presented in Appendix B.

    A 4-pin electrical connection between Source Sampler Console and Umbilical Cable for probe and filter heater. The pin configuration is presented in the Electrical Schematic in Appendix B.

    THERMOCOUPLE SUBSYSTEM

    The thermocouple subsystem measures and displays temperatures critical to sampling operation. The thermocouple system consists of five (5) Type K thermocouples, extension wires, male/female connectors, receptacles which accept both mini and standard Type K thermocouple plugs, a 6-channel selector switch and a digital temperature display with internal compensating junction.

    There are automatic temperature controllers for probe and filter heat which receive an input signal from the electrical subsystem and maintain these temperatures within a close range of the set point. The temperature controllers are digital programmable temperature controllers. The thermocouple electrical diagram is presented in the Electrical Schematic.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    12

    Probe Assembly

    The Probe Assembly consists of the following:

    A probe liner (MPL-36_, where “_” is borosilicate glass (G) standard, quartz (Q), or Teflon(T)), with several options for probe tip and connection end, and

    A stainless steel probe sheath and probe tube heater (MPH-36).

    Figure 1-4 illustrates a Probe Assembly. Table 1-4 presents maximum stack gas temperatures for various probe liner materials. Probe lengths vary from 0.914-m (36-inches) to 1.828-m (72-inches) nominal length.

    Figure 1-4. Probe Assembly for MC-623 Sampling System.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    13

    Table 1-4.Maximum Stack Gas Temperatures for Probe Liner Materials

    Probe Liner MaterialMaximum

    Temperature

    Teflon 177C (350F)

    Borosilicate Glass 480C (900F)

    Stainless Steel 650C (1200F)

    Quartz 900C (1650F)

    The Probe Assembly connects to the VersaCase with several connections:

    The probe sheath is mounted to the VersaCase using a hinged clamp with wing-nuts that is attached to the VersaCase.

    Extending from the probe assembly is a thermocouple male connector, which connects to female thermocouple connector of the Umbilical Cable junction box.

    An electrical plug connects to the electrical outlet on the Umbilical Cable junction box..

    The outlet ball or end of the Probe Liner is inserted through the entry hole of the VersaCase compartment to connect with the desired sampling train glassware.

    Table 1-5 lists available probe sheath and liner materials and maximum allowable stack temperature.

    Table 1-5.Probe Configuration Temperature Ratings

    Probe Assembly ConfigurationMaximum

    Temperature

    Stainless Steel Sheath and Glass Liner 480C (900F)

    Stainless Steel Sheath and Liner 650C (1200F)

    Inconel Sheath and Liner 980C (1800F)

    Inconel Sheath and Quartz Liner 980C (1800F)

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    14

    Mini VersaCase

    The VersaCase (VSB4) is used for support, protection and environmental control of the glassware in the sampling train. It is a compact, lightweight portable lab frame for supporting complex and variable glassware configurations. The VersaCase 4 consists of an aluminum cabinet, which is easily configured for EPA Methods 6 (SO2) and 26 (HCI/CI). The VersaCase 4 features:

    Handle and monorail attachment.

    Aluminum cabinet with dimensions 16.83 cm deep x 24.13 cm wide x 31.75 cm high (6.625 x 9.5 x 12.5 inches), with overall height of 39.4 cm (15.5 inches).

    Adjustable and removable stainless steel hinged probe clamp, (adjustment ±.125 inches).

    Dual access doors.

    Convenient high strength plastic bracket support the VU-Cord. (Umbilical Cord with Power Box)

    Figure 1-5 VSB4 VersaCase

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    15

    VersaCase 2

    The VersaCase (VSB2) is used for support, protection and environmental control of the glassware in the sampling train. It is a lightweight portable lab frame for supporting complex and variable glassware configurations. The VersaCase consists of an aluminum cabinet with internal pre-punched panel which is easily configured for various methods. Custom configuration kits are available for EPA Methods 6 (SO2), 26 (HCl/Cl2), 0030 (VOST), 0031 (SMVOC), and 0040 (bag sampling). The VersaCase features:

    Handle and monorail attachment.

    Aluminum cabinet with dimensions 27.9 cm deep x 30.5 cm wide x 61 cm high (11 x 12 x 24 inches), with overall height of 70.5 cm (27¾ inches)

    Removable stainless steel hinged probe clamp.

    Dual access doors.

    Stainless steel guides for sliding on and off a removable impinger case for coolant reservoir and re-circulation pump (methods with coil condenser).

    Figure 1-6 VersaCase2 with pre-punched panel.

    Figure 1-7 VersaCase Set-up for Midget Impinger Sampling Train.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    16

    Umbilical Cable with Umbilical Adapter

    The Umbilical Cable (VU-30) connects the VersaCase and Probe Assembly section of the source sampling system to the MC-623 Source Sampler Console. Standard length is 9.14 meters (30-ft), but it can be ordered in 18.3-m (60-ft) or 27.4-m (90-ft) lengths. The Umbilical Cable contains:

    The primary gas sample line, 6.35-mm (¼-inch) with male quick-connect to the Source Sampler Console and, at the opposite end on the Junction Box, a 6.35-mm (¼-inch) male swagelok fitting.

    Four (4) thermocouple extension cables for type K thermocouples, which terminate with full size connectors for durability. The connectors have different diameter round pins to maintain proper polarity, and will not fully connect if reversed. Each thermocouple extension wire in the Umbilical Cable is numbered for temperature measurement of Probe heat, Filter heat, Impinger Exit (or VOST adsorbent tube), and Auxiliary (spare).

    AC power lines for the heaters in the Probe Assembly and Filter (if used). The power cable terminates with an amphenol (military style) connector on each end. The body of the amphenol is the ground conductor. A line-up guide is placed on each connector’s end, and the retainer threads should be engaged for good contact.

    The Umbilical Cable is covered with a woven nylon mesh sheath to restrain the cable and reduce friction when moving the cable. Multiple Umbilical Cables can be connected together if needed to reach longer lengths.

    The Umbilical Cable junction box connects to the plastic bracket on the VersaCase. This bracket serves as a strain relief between the Umbilical Cable and the glassware train and Probe Assembly.

    Figure 1-8. VersaCase Umbilical Cable

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    17

    Glassware Sample Trains

    The sample glassware train contains the glass components necessary for execution of the chosen sampling method. For example, a US EPA Method 6 train contains the impingers for absorption of selected pollutants, and connecting glassware pieces. Figure 1-9 illustrates the glassware of the US EPA Method 6 sampling train.

    The order in which a typical USEPA Method 6 glassware train is constructed is as follows:

    1. Three-way valve MGN-3 (connects to probe liner’s ball joint)

    2. 1st Impinger MGN-1A (modified tip)

    3. U-Tube MGN-2

    4. 2nd Impinger MGN-1AO (orifice tip)

    5. U-Tube MGN-2

    6. 3rd Impinger MGN-1A (modified tip)

    7. U-Tube MGN-2

    8. 4th Impinger MGN-1A (modified tip)

    9. Outlet Adapter with thermocouple well and 12/5 socket MGA-100, all held together with Pinch Clamps (BS-12)

    Figure 1-9 USEPA Method 6 Glassware Sampling Train Configuration.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    18

    The order in which a typical US EPA Method 0031 glassware train, shown in Figure 1-10, is constructed is as follows:

    1. Three-way valve VG-1 (connects to probe liner’s end with GA-15 screw-joint accessories) and Charcoal Trap VG-6

    2. 1st Coil Condenser VG-34 (screw-joints), surgical tubing 9.5-mm for water re-circulation

    3. 1st Adsorbent Tube VG-6

    4. Adsorbent Tube Connector 4SC4-PFA (Teflon swage fitting)

    5. 2nd Adsorbent Tube VG-6

    6. Water Trap, 40-mL with #15 screw-joints VG-54

    7. FEP Tubing, 6.35-mm x 61-cm

    8. 2nd Coil Condenser VG-34 (screw-joints)

    9. 3rd Adsorbent Tube VG-6

    10. Drying Tube with glass frit VG-2 (screw-joints)

    11. Vinyl Tubing, 6.35-mm x 61-cm

    Figure 1-10 US EPA Method 0031 Glassware Sampling Train Configuration.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    19

    Operating ProceduresSetup and Check of Source Sampling SystemCarefully unpack the contents, saving the packing material until the parts have been examined for shipping damage and the sampling system has been completely assembled. Check each item against the packing list. If any item is damaged or missing, notify your supplier or Apex Instruments immediately. Table A-1 in Appendix A lists the items in a Source Sampling System that are recommended for a system check and a spare parts list.

    Initial Set-up Procedure

    These instructions are for a “dry run” set-up of a midget impinger (USEPA Method 6) sampling train. Do not load or charge liquids in the impingers. The objective is to set-up the equipment to check whether everything works.

    1. Remove all items from packaging and place in an open area.

    2. Slide the Probe Liner into the Probe Assembly making certain the straight end of the Probe Liner extends approximately 2.54 cm (1 inch) beyond the slotted end of the Probe Assembly. Attach the ball joint to the Probe Liner using the bored cap and seal. Insert the Glass Wool plug into the cup end of the Probe Liner as illustrated in Figure 2-4.

    3. Place the Probe Assembly in the hinged probe clamp, which is attached to the VersaCase. Tighten the probe clamp using the wing nut. Carefully insert the ball joint through the hole of the VersaCase so that the ball end protrudes into the VersaCase allowing the elbow joint to be readily attached to the ball joint.

    4. Connect the Umbilical Cable’s junction box to the VersaCase by sliding the support rod on the back of the junction into the VersaCase’s plastic bracket. Plug the Probe Heater electrical plug into the receptacle marked Probe on the junction box. Plug the probe thermocouple plug into the thermocouple receptacle on the junction box.

    5. Set up the impingers for the method 6 sampling train as illustrated in Figure 2-1. Connect the U-Tubes to the impingers using the Pinch Clamps that are provided. Place the tray in the base of the VersaCase and attach the elbow to the ball joint of the Probe Liner to the ball joint of the first impinger. Complete the setup by attaching the Outlet Adapter (MGA-101) to the ball joint of the last impinger. The final connection is the Outlet Adapter’s sample line to the Umbilical Cable junction box, and the Outlet Adapter’s thermocouple to the Umbilical

    Chapter

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    20

    Cable’s No. 3 thermocouple receptacle. A diagram of the glassware configuration is shown in Figure 1-9.

    Top View

    Figure 2-1. Midget Impingers and Ice Packs in an Insulated Sample Tray.

    1. Connect the Umbilical Cable to the Source Sampler Console. Connect the Umbilical Cable amphenol plug to the amphenol receptacle on the front panel of the Source Sampler Console. Connect the numbered Umbilical Cable thermocouple plugs into the receptacles on the Source Sampler Console front panel. Insert the Umbilical Cable sample line male quick-connect into the Source Sampler Console female quick-connect.

    2. Plug the Source Sampler Console into an appropriate electrical power source.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    21

    System Check

    Follow the set-up procedure in the previous section before starting system check procedure.

    MAIN POWER CIRCUIT

    Turn on the main power switch of the Source Sampler Console. The cabinet cooling fan should operate when the power is switched on.

    THERMOCOUPLE CIRCUITS

    The temperature indicator display should illuminate and display ambient temperature when the six-channel selector switch is set to 6 -- METER. Plug a single thermocouple into each of the five thermocouple receptacles and dial the six-channel selector switch to each of the other five positions and check for correct ambient temperature.

    PUMP POWER CIRCUIT

    Turn on the PUMP POWER ON switch to activate the pump motor. After hearing that it works, turn the pump off.

    REMOTE AUXILIARY POWER CIRCUIT

    Plug in a test light or some other electrical test source into the REMOTE AUX receptacle on the lower left corner of the front panel. Turn on the REMOTE AUX ON switch to activate the circuit and check that power is supplied. (Controlled by Solid State Relay.)

    ELAPSED TIMER CIRCUIT

    The timer will begin to count when the TIMER ON switch is turned on and stops when the switch is turned off. The display is reset to zero with a push button on the face of the timer display. The timer is factory-set to read hour/minutes/seconds but can read minutes and tenths of minutes if specified in the purchase order.

    HEATER CIRCUITS

    Turn on the power switches for the filter heater “FILTER ON” (only for USEPA Method 26 and EPA-SW-846 Methods 0040 and 0051) and the probe heater “PROBE ON.” The indicator lights on the automatic temperature controllers will illuminate and read ambient temperature. Adjust the Temperature Controllers to approximately 120C (248F) and check the temperature display to verify if the heaters are working. The procedure is as follows:

    1. Press and hold the SET button. (To set Heater Circuit Setpoint.)

    2. Press one of the arrow keys to alter the setpoint either upward or downward.

    3. Release SET to complete the change.

    4. Then turn off the filter and probe heaters.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    22

    Initial Sampling System Leak Check

    Apex Instruments, Inc. recommends that a leak check of the Source Sampler Console be conducted, followed by a system leak check. The Source Sampler Console leak check and the system leak check are to be “dry” runs as described.

    1. Close the Coarse Valve (clockwise) and the Fine Control Valve (counter clockwise) on the Source Sampler Console.

    2. To conduct the Source Sampler Console leak check, insert a male quick-connect, with rubber stopper into the SAMPLE INLET. In order to conduct the system leak check, insert a rubber stopper into the probe inlet.

    3. Turn on the Vacuum Pump -- marked PUMP POWER ON.

    4. Slowly open the Coarse Valve to the full open position, and increase the Fine Increase Valve (clockwise).

    5. The pump vacuum, as indicated on the Vacuum Gauge, should read a system vacuum within 25 kPa (6-in Hg) of the barometric pressure. For example, if the barometric pressure is 100-kPa (30-in Hg), then the Vacuum Gauge should read at least 75-kPa (23-in Hg).

    6. Turn the Fine Increase Valve back (counter-clockwise), and slowly release the plug or seal. Then turn off the Vacuum Pump.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    23

    Calibration and MaintenanceCalibration ProceduresTest results from a stack emission test are meaningless without calibration of the sampling and analytical equipment components. The creation and maintenance of a regularly scheduled calibration and record keeping program are critical to conducting any stack testing program. Without calibration, sampling cannot be verified as having been conducted accurately.

    Components of the MC-623 sampling system which require calibration are:

    1. Dry Gas Meter.

    2. Thermocouples (dry gas meter and sampling train components) and Digital Temperature Indicator

    Table 3-1 presents a summary of the calibrations required, equipment used for calibration, acceptance limits, calibration frequency and actions required if calibration fails to meet acceptance limits.

    Dry Gas Meter

    The MC-623 Source Sampler Console’s dry gas meter is calibrated using the calibration procedures contained in US EPA Method 6 (Sections 5.1.1 and 5.1.2), EPA-SW-846 Method 0051 (Sections 7.1.1.1 and 7.1.1.2), and in Handbook: Quality Assurance/Quality Control (QA/QC) Procedures for Hazardous Waste Incineration, EPA/625/6-89/023 (Appendix A for EPA-SW-846 Method 0030).

    An initial or full calibration is conducted at three (3) selected flow rate (Pm) settings for each flow Orifice and with at least 5.0 liters of gas metered. The initial calibration should occur once every 6 months or if the results of a post-test 3-point calibration show that the dry gas meter calibration factor (Y) has changed by more than 5% from the pre-test calibration value. The calibration factor (Y) results for an initial calibration should fall within the interval Y 0.02Y, where Y is the average for all three calibration runs.

    Post-test calibrations use an abbreviated calibration procedure (described in Section 5.1.2 of US EPA Method 6) with two independent calibration runs at a single intermediate flow rate (Pm) setting corresponding to the test sampling flow rate, and with at least 3.0 liters of gas metered. Post-test calibrations should be conducted after each field test series or quarterly, whichever is less. The tester always has the option of conducting a more rigorous calibration check.

    Chapter

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    24

    Table 3-1.Sampling System Equipment Calibration and Frequency

    ComponentCalibrated Against

    AcceptanceLimits Frequency

    Action If Unacceptable

    Dry Gas Meter 1. Wet Test Meter2. Secondary Reference DGM

    Yi = Yavg 0.02Yavg

    Semiannually Recalibrate, repair or replace

    Post-test 2-point 1. Wet Test Meter2. Secondary Reference DGM

    Y = Y 0.05Yavg After each field test

    Recalibrate at 3-points per orifice and 5.0 L

    Pressure Meter Measured during DGM calibration

    None; create curve of Meter Pressure vs. flow rate in standard L/min

    With DGM Repair or replace

    Thermocouples and Digital Indicator

    Certified Hg-in-glass thermometer in ice slush and boiling water

    Stack: 1.5% KDGM: 3CFilter: 3CExit: 1C

    After each field test

    Recalibrate, repair or replace

    A wet test meter is used to calibrate the dry gas meter of the Source Sampler Console. It also must be calibrated and have the proper capacity. The wet test meter should have a capacity of at least 1.0 L/min. No upper limit is placed on the capacity; however, a wet test meter should make at least one complete revolution at the specified flow rate for each of the three independent calibration runs. Wet test meters are calibrated by the manufacturer to an accuracy of 0.5%. Calibration of the wet test meter must be checked about every two years. A certificate of its calibration should be maintained in the quality assurance record keeping system.

    Alternatively, a secondary dry gas meter which has been calibrated against a wet test meter or bell prover liquid positive displacement technique and which remains in the laboratory may be used for calibration.

    Section 7.2 of Method 6 allows the use of critical orifices for volume and sampling rate measurements. Basically, the procedure requires a calibration with a bubble flow meter before and after each test run. For the volume measurement to be valid, the before and after flow rates must agree to within ±5.0%. Method 6 currently does not specifically allow the use of critical orifices as calibration standards for its metering system as does Method 5.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    25

    Model 623 Source Sampler

    000000

    1. Probe2. Filter3. Aux4.

    1

    2

    3

    4

    5

    6

    Temperature Selection

    020 40

    60 80100

    mm of water

    -20

    10

    20

    3040

    50

    60

    70

    0

    0-30

    -25

    -15-10

    -5

    CAUTION

    Risk of Electric Shock

    Sample

    115 VAC-60HZ

    SpareOutput

    Meter Pressure

    Vacuum

    Probe Filter Aux.

    Main Power

    PumpPower Timer

    SpareOutput

    FineIncrease

    FlowContro l

    CoarseOpen

    Probe Filter

    Temperature Aux

    Meter Volume Liters

    Elapsed Time

    Closed

    OPEN

    OPENOPEN

    OPENRemove

    Figure 3-1. Diagram of Source Sampler Console Calibration vs. Wet Test Meter.

    In calibrating the Source Sampler Console, the operator is determining the dry gas meter calibration factor (Y), which is the ratio of accuracy of the wet test meter’s (or secondary reference dry gas meter’s) volume measurement to the dry gas meter volume measurement, all corrected to standard conditions. Note: US EPA standard conditions are 20C (293K) and 760 mm Hg. The equation for the calibration factor (Y) is:

    13.6

    P+P273)+(t)V-(V

    P273+tV=Y

    mbarwdidf

    bardwi

    Where Vw = Volume measured by wet test meter, L

    td = Average temperature of dry gas meter, C

    Pbar = Barometric pressure at the meters, mm Hg

    Vdf = Final volume measured by the dry gas meter, L

    Vdi = Initial volume measured by the dry gas meter, L

    tw = Average temperature of wet test meter, C

    Pm = Pressure drop across the dry gas meter, mm H2O.

    Both the initial and post-test calibration procedures are described here. Prior to conducting a calibration run, the Source Sampler Console should be leak-checked.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    26

    METERING SYSTEM LEAK CHECK PROCEDURE

    Figure 3-2 shows a plumbing diagram of the MC-623 Source Sampler Console. Leak-check the metering system (drying tube, Fine control valve, pump, pressure meter, and dry gas meter) as follows:

    1. Temporarily attach a suitable rotameter (air flow range of 0-40 cc/min) to the outlet of the dry gas meter, and place a vacuum gauge at the inlet of the drying tube.

    2. Plug the drying tube inlet. Turn on the pump, open the Coarse control valve and close (FINE INCREASE) the Fine control valve to pull a vacuum of at least 34 kPa or 250 mm Hg (10 in. Hg).

    3. Close the Coarse control valve, and note the flow rate as indicated by the rotameter.

    4. A leak of < 0.02 L/min (20 cc/min) must be recorded or leaks must be eliminated.

    5. Carefully release the vacuum gauge before turning off the pump.

    Figure 3-2. MC-623 Source Sampler Console Plumbing Diagram.

    INITIAL OR SEMIANNUAL CALIBRATION OF DRY GAS METER

    The Source Sampler Console and dry gas meter are calibrated by connecting the Source Sampler Console to a wet test meter or secondary reference dry test meter, according to the set-up shown in Figure 3-1. A series of five (5) calibration runs are conducted using Flow Meter for desired flow settings between .25 to 4 Lpm. For the initial or full recalibrations, at least 5.0-L of gas must pass through the dry gas meter during each calibration run.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    27

    If a wet test meter is used as the calibration standard, it should have a meter correction factor of 1.000. Alternatively, a properly calibrated secondary reference dry gas meter may be used to calibrate the Source Sampler Console’s dry gas meter. Use the following procedure:

    1. Before starting the calibration, fill out a meter calibration data sheet (can be a computer spreadsheet) as shown in Appendix C. Record barometric pressure at the start of calibration, the Source Sampler Console and wet test meter identification numbers, date and time of calibration, and confirmation of acceptable leak checks on the Source Sampler Console.

    2. Connect the outlet of the wet test meter to the inlet (SAMPLE INLET) of the Console Meter, as shown in Figure 3-1. Connect the inlet side of the wet test meter to a saturator (reverse impinger with water), which is open to atmosphere. Note: Do not use a drying tube.

    3. Turn on the pump and adjust the Coarse and Fine control valves on the Source Sampler Console to set the flow rate at about 1-L/min. Allow both meters to run in this manner for at least 15 minutes to let the meter stabilize and the wet test meter to wet the interior surfaces.

    4. Turn off the pump.

    5. Record initial settings of dry gas meter volume reading, wet test meter volume reading, dry gas meter temperature, and wet test meter temperature.

    6. Start the pump and quickly adjust the Pressure Meter to the desired setting. Start the Elapsed Timer on the Source Sampler Console at the same time that the pump is started.

    7. Let the pump run until a dry gas volume of at least 5.0-L is indicated by the dry gas meter. Allow the calibration run to continue until the next minute elapses, then stop the pump and Elapsed Timer.

    8. Record the final dry gas meter volume reading, wet test meter volume reading, dry gas meter temperature, and wet test meter temperature. Calculate the dry gas meter and wet test meter volumes by subtracting initial readings from final readings. Calculate the average dry gas meter and wet test meter temperatures.

    9. Repeat the calibration run at each successive setting on the Pressure Meter. Suggested values are 80, 50-60, and 20-35 mm H2O, recording same data as before.

    10. At the conclusion of the two sets of three calibration runs, calculate the average Y (ratio of accuracy of the wet test meter to the dry gas meter). The tolerance for individual Y values is 0.02 from the average Y. If a value in this range is not obtained, the orifice opening should be adjusted or replaced, or the dry gas meter may require servicing.

    11. If the Y is acceptable, record the values on a label on the front face of the Console Meter, and use for subsequent test runs. Plot the Pressure Meter reading for each calibration run vs. the standardized flow rate in L/min, to develop a calibration curve for sample flow rate, as shown in Appendix C. The completed forms should be forwarded to the supervisor for approval and filed in the calibration log book.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    28

    POST-TEST CALIBRATION OF THE SOURCE SAMPLER CONSOLE

    A post-test, or 2-point, calibration of the Source Sampler Console should be conducted after each trip to and from the field or test series to ensure that the dry gas meter correction factor (Y) has not changed by more than 5%. A post-test calibration check is conducted with at least 3.0-L of gas run through the dry gas meter. The Console Meter leak check is not conducted because a leak may be corrected that was present during the test series. Use the following procedure:

    1. Before starting the calibration, fill out a meter calibration data sheet (can be a computer spreadsheet) as shown in Appendix B. Record barometric pressure at the start of calibration, the Source Sampler Console and wet test meter (or secondary DGM) identification numbers, and date and time of calibration.

    2. Connect the outlet of the wet test meter to the inlet (SAMPLE INLET) of the Console Meter, as depicted in Figure 3-1. Connect a saturator to the wet test meter inlet.

    3. Turn on the pump and adjust the Coarse and Fine control valves on the Source Sampler Console to set the flow rate at about 1-L/min. Allow both meters to run in this manner for at least 15 minutes to let the meter stabilize and the wet test meter to wet the interior surfaces.

    4. Record initial settings of dry gas meter volume reading, wet test meter volume reading, dry gas meter temperature, and wet test meter temperature.

    5. Start the pump and quickly adjust the Pressure Meter to the average setting used for the test series. Start the Elapsed Timer on the Source Sampler Console at the same time that the pump is started.

    6. Let the pump run until a dry gas volume of at least 3.0-L is indicated by the dry gas meter. Allow the calibration run to continue until the next minute elapses, then stop the pump and Elapsed Timer.

    7. Record the final dry gas meter volume reading, wet test meter volume reading, dry gas meter temperature, and wet test meter temperature. Calculate the dry gas meter and wet test meter volumes by subtracting initial readings from final readings. Calculate the average dry gas meter and wet test meter temperatures.

    8. Repeat the calibration run at same setting on the Pressure Meter.

    9. Calculate the percent change in the meter calibration factor Y.

    10. If the calibration factor Y does not deviate by more than 5%, then the dry gas meter volumes obtained are acceptable, and continue to use the initial Y-value on the faceplate.

    11. If the dry gas meter Y values obtained before and after the test series differ by more than 5%, the test series shall be either voided, or calculations for the test series shall be performed using the lower Y value (gives lower sample volume, therefore higher concentration values).

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    29

    Calibration of Thermocouples

    Apex Instruments suggests the following procedures for calibrating thermocouples and temperature display readouts. Thermocouples should be checked for calibration at three temperatures, for example, ice-point and boiling point of water and ambient temperature. Thermocouples such as the stack gas thermocouple which are used at higher temperatures than boiling water can be checked for calibration using a hot oil bath. Another more modern technique is to use a Thermocouple Simulator Source (M5C-22), as shown in Figure 3-3. The M5C-22 can calibrate without external compensation or icebaths, with a temperature range from 0 to 2,100F in divisions of 100F for 22 precise test points.

    A temperature sensor calibration form is provided in Appendix C. Acceptable reference materials are:

    ASTM mercury-in-glass reference thermometers.

    NIST-calibrated reference thermocouples/potentiometers.

    Thermometric fixed points, e.g., ice bath and boiling water.

    NIST-traceable electronic thermocouple simulators.

    Thermocouple Calibration procedure as follows:

    1. Prepare an ice-water bath in an insulated container (such as the Cold Box).

    2. Insert the thermocouple and a mercury reference thermometer into the bath.

    3. Allow the readings of both to stabilize, and record the temperatures on a thermocouple calibration data sheet, as shown in Appendix C.

    4. Remove the thermocouple and allow it to stabilize at room temperature.

    5. Insert again the thermocouple into the bath, and record another reading.

    6. Repeat Steps 4 and 5.

    7. Calculate the average of the thermocouple readings and the average of the reference thermometer readings. The averages should differ by less than 1.5% of the absolute temperature (K) for the stack thermocouple.

    1. Place a beaker of distilled water on a hot plate, add a few boiling chips and heat to boiling.

    2. Repeat Steps 2 through 7 as above.

    1. Set both the thermocouple to be checked and a mercury reference thermometerside-by-side at ambient temperature.

    2. Repeat Steps 2 through 7 as above.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    30

    1. Place a container of oil on a hot plate and heat to a temperature below the boiling point. DO NOT BOIL.

    2. Repeat Steps 2 through 7 as above.

    Additional calibration procedures are performed on the temperature display. To check the linearity of the temperature display, a thermocouple simulator (Apex Model M5C-22) is used. Connect the simulator to the temperature display, as illustrated in Figure 3-3, and record on a calibration data sheet the display reading at each temperature setting.

    Figure 3-3. Thermocouple Simulator for Temperature Display Calibration Check.

    Initial Calibration of Probe Heater

    Apex Instruments calibrates the probe heater assembly before shipping according to procedures outlined in USEPA APTD-0576. Probes are constructed according to specifications given in USEPA APTD-0581, which is the original 1971 document entitled “Construction Details of Isokinetic Source-Sampling Equipment,” by Robert M. Martin (available from National Technical Information Service (NTIS) as document PB-203 060). The procedure in APTD-0576 involves passing heated gas at several known temperatures through a probe assembly, and monitoring and verifying that the probe assembly is capable of maintaining 120C 14C.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    31

    Maintenance and TroubleshootingSetting up and adhering to a routine maintenance program will help to ensure trouble-free operation of the source sampling system. In addition, a carefully documented maintenance and calibration system will help to assure that accurate results are obtained during stack testing activities. The following text describes maintenance and troubleshooting procedures for the various subsystems of the MC-623 Source Sampler Console and sampling system.

    Source Sampler Console

    To inspect the inside components of the Source Sampler Console, make sure the power cord is disconnected. Remove the front panel and tray from the cabinet by turning the four panel latches (in corners of front panel) counterclockwise with your fingers or a flathead screwdriver until the latch releases. Slide out the panel using the handle at the bottom-center of the faceplate. Once the panel is partially pulled out, reach inside and disconnect (unplug) the fan wire from the fan assembly. Visually inspect all of the mechanical and electrical components. Clean any accumulated dust off the components.

    Internal Diaphragm Pump

    The Gast micro diaphragm pump (Model 15D AC) is an oil-less pump which never requires lubrication. The sealed bearings are grease-packed. The required ambient temperature is 0 to 40C (32 to 105F). For operation at temperatures outside this range, it is prudent to store the Source Sampler Console in a warmed or cooled environment before use in source testing. The service life of the diaphragm and head gasket will be reduced by petroleum or hydrocarbon products. Remember: The pump is designed for pumping clean, dry air. Protect it against entrance of dirt, excessive moisture and chemical contamination, and you will receive years of trouble-free service.

    Figure 3-4 is an exploded view diagram of the Model 15D AC vacuum pump, with parts identified. Servicing can include cleaning and replacement of the diaphragm and/or head assembly. Do not attempt to replace the Connecting Rod or Motor Bearings. If after cleaning the unit and/or installing a new diaphragm or head assembly, the unit still does not operate properly, contact Apex Instruments and return the pump for repair or replacement. Before servicing, always disconnect the pump’s power source before servicing, and always vent all air lines to the pump to remove pressure. Failure to do so can result in personal injury and/or property damage.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    32

    Head Screws

    Head

    Valve

    Valve Plate

    Retainer Plate

    Diaphragm

    FanMotor

    GroundWire

    Base

    ConnectingRod Assembly

    Bracket

    Figure 3-4. Diagram of Model 15D AC Mini Diaphragm Vacuum Pump.

    Follow these steps to replace the diaphragm:

    1. Disconnect the pump from electrical service.

    2. Vent all air lines to the pump to remove pressure.

    3. Label the ports noting the direction of the arrows so you can orient the pump head correctly during reinstallation.

    4. Remove the four corner head screws and remove the head, valve and valve plate. Remove flat head screws on retainer plate.

    5. Remove the retainer plate and diaphragm.

    6. Clean the pump head and retainer using water-based solvents. CAUTION: Do not use petroleum-base compounds, acids, caustics or chlorinated solvents to clean or lubricate any parts. It will reduce the service life of the pump.

    7. Re-attach the retainer plate and diaphragm to rod with flat head screw. Torque to 0.09 kg-meters (8 inch-lb.). CAUTION: Do not overtighten head screw(s). To do so will damage unit and will reduce performance.

    8. NOTE: Re-assemble the valve plate, valve and head as a unit before re-installing onto the pump. These three parts assemble together in a single orientation. Once the parts are assembled, place back onto the pump in the same orientation as before disassembly.

    9. Make certain the diaphragm lines up with the four screw holes, then re-install the valve plate, valve and head. Tighten 4 head screws to 0.045 kg-meters (4 inch-lb.).

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    33

    The troubleshooting guide for the diaphragm pump is as follows:

    SYMPTOM POSSIBLE CAUSE POINT TO CHECK REMEDY

    Won’t Start -Electrical connection-Dirty muffler-Wrong or low voltage-Pressure/vacuum on head-Thermal overload tripped-Too cold

    -Ensure electrical power is supplied-Is muffler clogged?-Inspect power supply-Inspect relief valve-Inspect above points-Check ambient temp

    -Check plug or wire connection-Replace muffler-Apply proper voltage-Reset or replace relief valve-Replace unit-Warm Source Sampler Console

    Excessive Noise -Wrong voltage-Plumbing leak-Check valve leaks

    -Inspect power supply-Inspect hoses for cracks-Inspect check valve

    -Apply proper voltage-Replace hose-Repair or replace check valve

    Overheating -Dirty filter-Dirty muffler-Low voltage-Dirty valves

    -Inspect filter-Is muffler clogged?-Inspect power supply-Remove head and inspect valve

    -Replace filter-Replace muffler-Apply proper voltage-Clean/replace valve

    Low Pressure or

    Low Vacuum

    -Dirty filter-Dirty muffler-Low voltage-Wrong AC voltage frequency-Damaged or contaminated diaphragm-Dirty valves

    -Inspect filter-Inspect muffler-Inspect power supply-Inspect power supply-Remove head and valve plate, inspect diaphragm-Remove head & inspect valve

    -Replace filter-Replace muffler-Apply proper voltage-Supply proper electrical power-Replace diaphragm

    -Clean/replace valve

    Dry Gas Meter

    The dry gas meter, shown in Figure 3-5, are not field adjustable. The routine maintenance consists of performing the required periodic calibrations and calibration checks, described in Chapter 3.1. If the dry gas meter fails repeatedly to calibrate against a wet test meter, then return the meter to Apex Instruments or the factory for repair.

    Figure 3-5. Dry Gas Meter (SK-25) with Digital Totalizer.

    Optical

    Digital

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    34

    OPTICAL ENCODER

    To check the Optical Encoder follow the following guidelines:

    Figure 3-6 SK-25 Dry Gas Meter with Optical Encoder

    1. Disconnect Inlet and Outlet plumbing.

    2. Remove screw from bracket underneath the floor panel.

    3. Carefully pull meter back away from front panel and undo Optical Encoder wires.

    4. Unscrew the four (4) plate screws and remove front plate.

    5. Loosen first set screw and pull out Encoder.

    6. Reconnect Encoder wiring making sure the wire colors are in the correct order.

    7. Spin Optical Encoder armature and look at totalizer to see if any movement (increase for forward movement and decrease for backwards movement.) If this movement occurs the Encoder is working properly. If it does not, retrace wires per schematic in Appendix A of this manual, and verify wiring is correct.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    35

    Digital Totalizer

    PROGRAM MODE

    To enter the program mode, a connection must be made between terminals #1 and #5 on the back of the totalizer. It is common to use a wire with alligator clips on each end to make this connection.

    There are four program-mode screens. Upon making the connection between the terminals, the totalizer will display screen 1 – Count Scale Factor. Press and hold the key while repeatedly pressing the key to advance to successive programming screens, as described in the following table:

    Programming ScreensScreen Function

    1 Count Scale Factor2 Count Decimal Point3 Reset to Offset Value4 Reset Key Enable/Disable

    Screen 1 – Count Scale Factor

    The count scale factor is used to convert the incoming count pulses to the desired unit of measure to be displayed (cubic feet, cubic meters, liters, etc.). The Totalizer Scale Factor can be located on the Apex Instruments Source Sampler Console Calibration Sheet.

    1. The far right digit will be flashing upon making the connection between the terminals. Press

    the key until reaching the desired digit value. Note: Pressing and holding the key will cause the numbers to auto-scroll.

    2. Press the key to move the flashing digit one place to the left. Change this digit to the desired value with the key. Repeat this process until all digits are set correctly.

    Screen 2 – Count Decimal Point

    The scaler has six digits available with a user-defined fixed decimal point. The second screen is used to enter the decimal point display on the totalizer screen. Press and hold the key and then press

    the key to move from Screen 1 to Screen 2.

    Press the key to move the decimal point to the desired position.

    Screen 3 – Reset to Offset Value

    Do not make any adjustments to this field. The LCD should read P000.000.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    36

    Screen 4 – Reset Key Enable/Disable

    The fourth screen in the program mode allows the user to enable or disable the front panel (Zero) Reset Key.

    1. This program is ENABLED (R) as shipped from Apex Instruments, Inc. This allows the user

    to re-zero the totalizer using the key at any point. To change this setting (No R), press the key while in the programming mode.

    2. The reset terminal on the rear panel is still active when the front reset button is disabled.

    To Exit Programming Mode

    Break the connection between terminals #1 and #5.

    Your totalizer is now ready to be calibrated to the Source Sampler Console.(see Ch. 4 Calibration Procedures, section Initial or Semiannual Calibration of Dry Gas Meter, pg 20.)

    SCALE FACTORS

    For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is ±0.02. If the value range is not obtained you must calculate a new Count Scale Factor as follows:

    Multiply the Nominal Count Scale Factor programmed into the Totalizer by the Meter Calibration Factor. For example, if the Meter Y was 0.98, then:

    (CS)new = (CS) nominal X Y

    (CS)new = 1.35000 x 0.98

    Program (CS)new into the Totalizer (reconnect jumper wire and program.)

    Record the Count Scale Factor (CS)new on the Meter Calibration Sheet, and proceed with the rest of the Meter Calibration as usual.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    37

    Temperature Controllers

    The Temperature Controllers for probe, filter box heat and auxiliary (PROBE, FILTER and AUX on front panel), after setting temperature to the desired setpoint, receive a signal from the thermocouple subsystem and maintain these temperatures within a close range of the setpoint. The standard Temperature Controllers on the Model MC-623 are digital devices with push-button controls. Although they can perform many programmable functions, these Temperature Controllers have been pre-programmed and then “locked out” to perform only the functions required by the Source Sampler Console and source sampling system.

    PROBE, FILTER AND *AUXILIARY SETUP

    1. Set the Setpoint.

    a. Push and hold set key.

    b. Use up or down key to change value to 121.

    2. Set CNF9

    a. Push up and down keys together until Aut is displayed.

    b. Push down key until CNF9 displays.

    c. Push set key and hold. Push up or down to change to YES.

    d. Release key. IN will be displayed.

    e. Push set key and hold. Push up or down until H is displayed. Release key.

    f. Push down key to display C_F.

    g. Push and hold set key and up or down until display reads °C.

    h. Push up or down until dISP is displayed.

    i. Push set key and hold. Push up or down until AcSP is displayed.

    * To use Auxiliary as secondary output circuit follow the following procedure:

    1. Set the setpoint as in 1b above.

    2. Change the Thermocouple setpoint value to a number above the outside ambient temperature (i.e. 426°).

    3. Place a thermocouple bridge in AUX thermocouple panel jack.

    Thermocouple

    Bridge

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    38

    Temperature Display

    The Temperature Display (TEMPERATURE on front panel) for thermocouple inputs was also a temperature controller, but has been programmed and “locked out” to be used only as a temperature display.

    TEMPERATURE DISPLAY SETUP

    1. Set CNF9

    a. Push up and down keys together until Aut displays.

    b. Push down key until CNF9 displays.

    c. Push set key and hold. Push up or down to change to YES.

    d. Release key. IN will be displayed.

    e. Push set key and hold. Push up or down until H is displayed. Release key.

    f. Push down key to display C_F.

    g. Push set key and hold. Push up or down until display reads °C.

    h. Push down key until Ot2 is displayed.

    i. Hold set key and push up or down key until t 75 is displayed.

    j. Push down key until tI 7 is displayed

    k. Push set key and hold. Use down key to get to dLon.

    l. Release keys and red light beside the #2 should be on.

    m. Set disp on Temperature Display to AC.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    39

    Temperature Controllers and Temperature Display Maintenance

    Maintenance consists of removing the front panel from the cabinet, and making sure the electrical contacts are free from dirt, dust and moisture.

    If you see an Error Code on the display:

    1. Be aware that most errors are input (sensor) related.

    2. Read the table below and follow its recommendations:

    Display Probable Cause Recommended Action

    Er 1 Reversed thermocouple connection + to - Change the sensor leads on Terminals 1 and 2.

    Er 2 Sensor type mismatch or open RTD. Check RTD, replace as necessary.

    Er 3 Sensor type mismatch. Check selection of sensor.

    Er 4 No thermocouple, open thermocouple, bad connection, or broken wire.

    Check the sensor, replace or repair as necessary.

    Er 5 Electrical noise. Cycle power to system. See if error clears. Check system for electrical interference.

    No Display

    Control is inoperable. Check for line voltage at terminals 7 and 8.

    Pressure Meter Gauge

    No lubrication or periodic servicing is required for the Pressure Meter Gauge. Keep the case exterior and cover clean. Occasionally disconnect pressure lines to vent both sides of the gauge to atmosphere and re-zero. The gauge is calibrated and zeroed in the vertical position at the factory.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    40

    Thermocouple Wiring and Thermocouple Display

    The most commonly used thermocouple (TC) in stack testing applications is the Type K. Calibration guidance is given by the USEPA in Emission Measurement Technical Information Center (EMTIC) Guidance Documents GD-024 and GD-028. A Type K TC, even with large wire gauge sizes, will eventually fail if subjected to sustained temperatures 1,090C (2,000F). Even short excursions will shorten the useful life of the TC. Other types of TCs should be considered for sustained temperatures above 1,090C.

    TC Wire Not Functioning Properly

    Check to see if TC leads have not detached from screw posts inside TC plugs or receptacles. This causes an open TC circuit when there is NO junction and reads “ER 4” on the temperature display. This condition occurs when there is no device connected to that channel, or when one of the wires in the circuit has broken or become disconnected.

    TC Reads Lower Value Than Expected

    Under-reading is usually caused by second unintended junction in TC circuit, such as a short in one wire (TC display reads average of two junctions). The most common place for the short is in connectors, with unintended junction reading ambient temperature. Quick check is to disconnect TC at connection farthest away from Source Sampler Console. If display reads “ER 4” for an open circuit, then there is NOT a short in the extension circuit. Check connector on the measuring device.

    TC Display Susceptible to Static Electricity

    When sampling hot dry gas across probe, ground with a grounding strap the either the Probe Assembly (to the stack) or make sure the Umbilical Cable always connected.

    TC Selector Switch Clean contacts of accumulated dust periodically with electrical switch spray cleaner. Check switch connections by connecting TC simulator to each receptacle on faceplate and verifying that each channel reads temperature selected by simulator. Note: TC attached to outlet of DGM is wired directly to selector switch and should read ambient temperature.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    41

    Electrical Power Circuits

    Electrical power circuits include the Probe Assembly, Umbilical Cable and Junction Box, and Source Sampler Console connections.

    Amphenol Outlet on Source Sampler Console

    Check the Amphenol outlet with a voltmeter or check light by connecting the leads to the different terminals (see Electrical Schematic in Appendix B). When connected acrossheater lines, voltmeter or check light should respond correspondingly. Solid-state temperature controller circuits should be tested with a resistant load, such as test lamp or heater.

    Umbilical Cable Check the electrical lines of the Umbilical Cable for continuity using an ohmmeter or battery-light system. If there is no continuity in any of the lines, check the Amphenol connectors. If this not the problem, replace the cord.

    Connect the Umbilical Cable to the Source Sampler Console. Check the Umbilical Cable outlet with a voltmeter by connecting the leads to a combination of the four pins: Pin A is 110/220 VAC for auxiliary power, Pin B is common neutral, Pin C is 110/220 VAC for filter heat, and Pin D is 110/220 VAC for probe heat. Voltmeter should respond properly when Amphenol is wired correctly and appropriate switches are thrown. Check ground continuity wire with an ohmmeter between Amphenol body and electrical plug ground pin. Ohmmeter should read less than 1 ohm.

    Junction Box Check the electrical heater receptacles with a check light for continuity.

    Probe Assembly Tube Heater

    Inspect electrical connections to the tube heater and power cord for visible shorts or burned spots in the high-temperature insulation. Connect power cord into suitable power source and monitor temperature. Probe should become warm to touch over its entire length in a few minutes. If probe does not heat, check power source for proper voltage and loose connections in plug. Shorts are indicated by partial heating in rear section of probe. Breaks in heating element and connections can be checked with an ohmmeter or a battery-light system. Replace probe tube heater, if necessary.

    Sample (Vacuum) Line on Umbilical Cable

    Check the quick-connects and vacuum line on the Umbilical Cable as follows:

    Quick-Connects Wipe vacuum line and pitot line quick-connects clean before attaching to Source Sampler Console. Mating quick-connects should be joined together when not in use to prevent damage and dirt. A drop of penetrating oil on each keeps them in good working condition.

    Vacuum Line Test vacuum line for leaks by plugging inlet with a 6.35-mm (�-inch) quick-connect plug and connect line to Source Sampler Console. Conduct leak-check by pulling vacuum. If leakage is noted, check all connections first and then, if necessary, inspect the tubing (look for crimps). If cause is not readily identified, slightly pressurize the line and check for leaks using soapy water.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    42

    Timer

    SETUP

    Figure 3-7 MC-T Timer Setup

    Reset button (RST) is on the front of the unit. All timers are set by Apex Instruments to HMS (Hours, Minutes, Seconds). Timers can be set to customer’s specifications.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    43

    Appendix A

    Electrical and Plumbing Diagrams

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    44

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    45

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    46

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    47

    Appendix B

    Calibration Data Sheets

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    48

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    49

    Appendix C

    Applicable Method Procedures

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    50

    Leak-Check Procedures of Non-Isokinetic Sampling Trains

    A. Procedure A

    1. If sampling train does not have a vacuum gauge, temporarily place a vacuum gauge at or near the probe inlet. Otherwise, use Source Sampler Console’s existing vacuum gauge.

    2. Plug the probe inlet (or other specified point), and pull a vacuum of 255 mm Hg (10 in. Hg).

    3. The vacuum must remain stable for 30 seconds.

    4. Carefully release the probe inlet plug before turning off the pump.

    B. Procedure B

    1. If sampling train does not have a vacuum gauge, temporarily place a vacuum gauge at or near the probe inlet. Otherwise, use Source Sampler Console’s existing vacuum gauge.

    2. Plug the probe inlet (or other specified point), and pull a vacuum of 255 mm Hg.

    3. Note the time rate of change of the DGM dial (must be 2% of average sampling rate).

    4. Carefully release the probe inlet plug before turning off the pump.

    C. Procedure C

    1. If sampling train does not have a vacuum gauge, temporarily place a vacuum gauge at or near the probe inlet. Otherwise, use Source Sampler Console’s existing vacuum gauge. Temporarily attach a rotameter (0 to 40 cc/min) or a 50-cc soap bubble meter to the DGM outlet.

    2. Plug the probe inlet (or other specified point), and pull a vacuum of 255 mm Hg.

    3. Note reading of rotameter or bubble meter (must be 2% of average sampling rate).

    4. Carefully release the probe inlet plug before turning off the pump.

    D. Procedure D

    1. For components after the pump, apply a slight positive pressure.

    2. Apply a surfactant liquid (for example, detergent in water) at each joint, and check for gas bubbles.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    51

    EPA Method 4 Moisture Approximation

    The sampling procedure for US EPA Method 4 approximation method is as follows:

    A. Pre-Test Preparations

    1. Calibrate the metering system (see Calibration Procedure in Chapter 3)

    2. Prepare the sampling train as follows:

    a. Add 5-mL of water in each midget impinger.

    b. Assemble the sampling train as shown in the method Figure, with a drying tube to protect the Source Sampler Console.

    e. Adjust probe heater to a temperature sufficient to prevent water condensation.

    f. Place crushed ice and water around the impingers.

    B. Sampling

    1. Optional: Leak-check the sampling train (see Appendix C).

    2. Record the initial DGM reading and barometric pressure.

    3. Position the tip of the probe in the stack, and start the pump.

    4. Adjust the sample flow (pressure meter) to a constant rate of about 2 L/min until the dry gas meter registers about 31-L or until visible liquid droplets are carried over from the first impinger to the second.

    5. Take readings (DGM, temperatures at DGM and impinger exit, flow rate meter, vacuum) at least every 5 minutes.

    6. At the conclusion of the run, turn off the pump, remove the probe from the stack, and record the final DGM reading.

    7. Mandatory: Leak-check the sampling train (see Appendix C).

    C. Sample Recovery

    1. After sampling, combine the contents of the two impingers, and measure the volume to the nearest 0.5-mL. Alternative: Weigh each midget impinger (after wiping off liquid from the outside surfaces) to the nearest 0.5-g (must have initial weights also).

    2. Calculate the moisture content.

    D. Alternatives

    Use drying tubes, wet bulb-dry bulb techniques, condensation techniques, stoichiometric calculations, previous experience, etc.

    E. Post-Test Calibrations

    1. Conduct post-test calibration checks of metering systems and temperature gauges according to the Calibration Procedures in Chapter 3.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    52

    EPA Method 6 for Sulfur Dioxide

    The sampling procedure for US EPA Method 6 is as follows:

    A. Pre-Test Preparations

    1. Calibrate the metering system (see Calibration Procedure in Chapter 3)

    2. Determine the number and location of sampling points and sampling time.

    3. Prepare the sampling train as follows:

    a. Add 15-mL of 80% isopropanol into the midget bubbler.

    b. Add 15-mL of 3% H2O2 into the next two midget impingers.

    c. Leave the final midget impinger dry.

    d. Assemble the sampling train as shown in the Figure below, with a drying tube to protect the Source Sampler Console.

    e. Adjust probe heater to a temperature sufficient to prevent water condensation.

    f. Place crushed ice and water around the impingers.

    B. Sampling

    1. Optional: Leak-check the sampling train (see Appendix C).

    2. Record the initial DGM reading and barometric pressure.

    3. Position the tip of the probe at the first sampling point, connect the probe to the bubbler, and start the pump.

    4. Adjust the sample flow (pressure meter) to a constant rate of about 1.0 L/min. Maintain this constant rate (10%) during the entire sampling run.

    5. Traverse, if applicable. Take readings (DGM, temperatures at DGM and impinger exit, flow rate meter, vacuum) at least every 5 minutes.

    6. Add more ice during the run to keep the temperature of gases leaving the exit impinger at 20C.

    7. At the conclusion of the run, turn off the pump, remove the probe from the stack, and record the final DGM reading.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    53

    8. Mandatory: Leak-check the sampling train (see Appendix C).

    C. Sample Recovery

    1. Drain the ice bath, and purge the remaining part of the train by drawing clean ambient air through the train for 15 min at the sampling rate. Pass air through a charcoal filter or through an extra midget impinger with 15-mL H2O2 or use ambient air without purification.

    2. Disconnect the impingers after purging. Discard the contents of the midget bubbler (80% isopropanol). Note: Saving this portion until after analysis may be helpful in explaining anomalies.

    3. Pour the contents of the midget impingers into a polyethylene sample container for shipment.

    4. Rinse the three midget impingers and connecting U-tubes with DI water, and add the washings to the same sample container.

    5. Seal and identify/label the sample container. Mark the fluid level.

    D. Alternatives

    1. If SO3 is expected to be insignificant, the midget bubbler containing 80% isopropanol may be deleted from the sampling train.

    2. If an approximate SO3 concentration is desired, the midget bubbler contents may be recovered in a separate polyethylene sample container.

    E. Post-Test Calibrations

    1. Conduct post-test calibration checks of metering systems and temperature gauges according to the Calibration Procedures in Chapter 3.

    F. Elimination of Ammonia Interference

    1. When ammonia is suspected to be an interference, use the above procedure with the following modifications:

    a. Use a high-efficiency in-stack filter (glass fiber) that is un-reactive to SO2, for example Whatman 934AH.

    b. Maintain the probe at 274C.c. Do not discard the isopropanol solution in the midget bubbler (Step C2), but quantitatively recover the solution into container with solutions from midget impingers (Step C3).

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    54

    EPA Method 11 for Hydrogen Sulfide in Fuel Gas Streams

    The sampling procedure for US EPA Method 11 is as follows:

    A. Pre-Test Preparations

    1. Calibrate the metering system (see Calibration Procedure in Chapter 3)

    2. Prepare the sampling train as follows:

    a. Add 15-mL of 3% H2O2 solution into the first midget impinger.

    b. Leave the second midget impinger dry.

    c. Add 15-mL of CdSO4 solution into the third, fourth and fifth midget impingers.

    d. Assemble the sampling train as shown in the Figure in the method, with a drying tube to protect the Source Sampler Console.

    e. Place crushed ice and water around the impingers.

    B. Sampling

    1. Optional: Leak-check the sampling train as follows:

    a. Connect the rubber bulb and manometer to the first impinger, as shown in method Figure. Close the petcock on the DGM outlet.

    b. Pressurize the train to 254 mm H2O (10 in. H2O) with the bulb, and close off the tubing connected to the rubber bulb.

    c. Time the pressure drop (must be 10-mm drop in pressure in 1-min)

    2. Purge the connecting line between the sampling valve and the first impinger as follows:

    a. Disconnect the line from the first impinger, and open the sampling valve.

    b. Allow process gas to flow through the line for 1 to 2 min. Close the sampling valve, and reconnect the line to the impinger train.

    3. Open the petcock on the DGM outlet. Record the initial DGM reading and barometric pressure.

    4. Open the sampling valve, and then adjust the valve to obtain about 1.0 L/min (pressure meter). Maintain this constant rate (10%) during the entire sampling run.

    5. Sample for at least 10-min. Take readings (DGM, temperatures at DGM and impinger exit, flow rate meter) at least every 5 minutes.

    6. Add more ice during the run to keep the temperature of gases leaving the exit impinger at 20C.

    7. At the conclusion of the run, close the sampling valve, and record the final DGM reading.

    8. Mandatory: Leak-check the sampling train (see Step A2).

    C. Sample Recovery

    1. Disconnect the impinger train from the sampling line, and connect the charcoal tube and the pump, as shown in method Figure.

    2. Purge the train at 1 L/min with clean ambient air for 15-min.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    55

    3. After purging, cap the open ends, and remove the impinger train to a clean, well-lighted area that is away from sources of heat or direct sunlight.

    4. Discard the contents of the H2O2 midget impinger.

    5. Carefully transfer the contents of the third, fourth, and fifth midget Impingers into a 500-mL iodine flask.

    6. Rinse the three midget impingers and connecting U-tubes with DI water, and add the washings into the iodine flask.

    7. For a blank, add 45-mL CdSO4 absorbing solution to an iodine flask.

    8. Because analysis must immediately follow sample recovery, conduct the iodometric titration described in the method procedure.

    D. Post-Test Calibrations

    1. Conduct post-test calibration checks of metering systems and temperature gauges according to the Calibration Procedures in Chapter 3.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    56

    EPA Method 15A for Total Reduced Sulfur Compounds from Sulfur

    Recovery Plants in Refineries

    The sampling procedure for US EPA Method 15A is as follows:

    A. Pre-Test Preparations

    1. Calibrate the metering system (see Calibration Procedure in Chapter 3)

    2. Prepare the sampling train as follows:

    a. Add 15-mL of 80% isopropanol into the midget bubbler.

    b. Add 20-mL of 3% H2O2 into the next two midget impingers.

    c. Leave the final midget impinger dry.

    d. Assemble the sampling train as shown in the method Figure, with a drying tube to protect the Source Sampler Console.

    e. Set the oxidation furnace at 1100 50C.f. Adjust probe and filter heaters to a temperature sufficient to prevent water condensation.

    g. Place crushed ice and water around the impingers.

    B. Sampling

    1. Optional: Leak-check the sampling train (see Appendix C).

    2. Optional: Conduct two 30-min system performance checks in the field according to Section D.

    3. Adjust the pressure on the second stage of the regulator on the combustion air cylinder to 10 psig and the combustion air flow rate to 0.50 L/min ( 10%). See method Figure.

    4. Record the initial DGM reading and barometric pressure.

    5. Inject combustion air into the sampling train, start the sample pump, and open the stack sample gas valve. Do all these operations within 30-sec to avoid pressurizing the sampling train.

    6. Adjust the sample flow (pressure meter) to a constant rate of about 2.0 L/min. Maintain this constant rate (10%) during the entire sampling run of 1-hr for three sampling runs total (3-hr).

    7. Take readings (DGM, temperatures at DGM and impinger exit, flow rate meter, vacuum) at least every 5 minutes. Monitor and record the combustion air manometer at regular intervals, also.

    8. Add more ice during the run to keep the temperature of gases leaving the exit impinger at 20C.

    9. At the conclusion of the run, turn off the sample pump and combustion air simultaneously (within 30-sec of each other), turn off the sample gas valve, and record the final DGM reading.

  • M E T H O D 6 S O U R C E S A M P L E R

    Apex Instruments, Inc. | Phone: 919.557.7300 | Fax: 919.557.7110 | Web: www.apexinst.com | e-mail: [email protected]

    57

    10. Mandatory: Leak-check the sampling train (see Appendix C).

    C. Sample Recovery

    1. Drain the ice bath. Disconnect the impingers. Discard the contents of the midget bubbler (80% isopropanol). Note: Saving this portion until after analysis may be helpful in explaining anomalies.

    2. Pour the contents of the midget impingers into a polyethylene sample container for shipment.

    3. Rinse the three midget impingers and connecting U-tubes with DI water, and add thewashings to the same sample container.

    4. Seal and identify/label the sample container. Mark the fluid level.

    5. Optional: Rinse and brush the probe and replace the filter before the next run.

    6. Mandatory: Conduct a performance system check after each 3-hr run or after three 1-hr samples. See Section D.

    D. System Performance Check

    1. Adjust the flow rates to generate COS concentration in the range of the stack gas or within 20% of the applicable emission standard at a total flow rate of at least 2.5 L/min. See method Figure, if dilution is required.

    2. Calibrate the flow rate from both sources with a soap bubble flow meter.

    3. Collect 30-min samples, and analyze in the normal manner. Collect the samples through the probe of the sampling train using a manifold or some other suitable device. Do not replace the particulate filter and do not clean the probe before this performan