Operation of Large Interconnected PSys by Decision and Ctrl_1980

download Operation of Large Interconnected PSys by Decision and Ctrl_1980

of 9

Transcript of Operation of Large Interconnected PSys by Decision and Ctrl_1980

  • 7/28/2019 Operation of Large Interconnected PSys by Decision and Ctrl_1980

    1/9

    3 7E E E Transactions on Power Apparatus an d S y s t e m s , V o l . PAS-99, N o . 1 Jan./Feb. 1980OPERATION OF THE L A R GE I N TE R CO N NE C TE D POWER SYSTEM

    BY DECISION AND CONTROL

    John Zaborszky Krishna Prasad Keh-Wen Whang

    Department o f S y s t e m s Science and MathematicsW a s hin gt o n Un i ver si t yS t . L o u i s , Missouri 63130

    A BST R A CTA c om pr eh en si ve a pp ro ac h t o th e control of thelarge interconnected power s y s t e m i n c on di ti on s r a n g -in g from normal to disintegrated i s outlined. Thebasic decision i s b et ween normal and abnormal condi-tions o r , more precisely, on t h e degree o f abnormalitywith n or m al i ty r at in g as zero degree abnormality. Theapplicable control algorithms would then b e aimed a tmaintaining normalcy when it i s p r e s e n t or leading t h es y s t e m back to norm alcy wit h t h e least disruption whent h e condition i s abnormal. In a sense one could sayt h a t in De c i s i o n and C o n t r o l o p e r a t i o n a system is a l -

    ways in a r es to r at or y s t a te seeking t h e best way backto normalcy - w h e n it finds n o t h i n g t o restore thes y s t e m i s in a norm al con dition . To lead t he systemback to normalcy f i v e Regimes o f C o n t r o l are d e f i n e dand t h e measures and means used in each are definedand develop ed. N ew ancillary algorithms to use ast o o l s in th ese o p e r a t i o n s h a v e b e en d ev el op ed . A n il-lustration o f a s e q u e n c e of e m e r g e n c y e v e n t s u n d e r D e-cision and * Control Operation i s also included. Ameasure of th e effectiveness of the new techniques is aconsistent tenfold increase of critical clearing t i m e s .This indicates a l a r g e potential sav ing in new trans-mission equipment.

    1 . INTRODUCTIONIn 1 9 7 5 E R D A gave o u t four c o n t r a c t s f o r th e studyo f c o m p u t e r control o f t h e large interconnected powers y s t e m during emergencies with t h e ai m of preservingthe system's integrity as m u c h as possible and a t anyr a t e preventing a total breakdown and blackout. One o fthese c o n t r a c t s came to Washington U n i v e r s i t y and this

    paper p r e s e n t s t h e principal accomplishments o f t h elast three years of r es ea rc h e ff or t in this area in-cluding work outside th e scope of the E R D A contract .I n th e course o f this research, i t soon becamea p p a r e n t that really meaningful results could be ob-tained only in th e c o n t e x t of the entire operation oft h e large interconnected p o w e r system. E xt e ns i ve t hi nk -i n g and research finally boiled d o w n t o an overall in-s i g h t and organization of th e p o w e r s y s t e m operationwhich is referred to as operating w i t h Decision an dControl. T h e f u n d a m e n t a l s o f this type of operation areintroduced in the next Section.Let i t only be n m e n t i o n e dhere th at wi t h the increasing size an d complexity ofth e s y s te m s , i n cr eas i ngl y a ut oma ti c c o m p u t e r controlleda ct io n b ec om es necessary, especially a t th e f a s t end ofth e e v e n t s where t he time scale is a few cycles or sec-onds a nd even w h e n i t i s a f e w m in utes. I n f a c t , t hefastest Control Regime in emergencies, on the few cy-cles level, was always a u t o m a t i c s i n c e it was e n t r u s t e dThis r e s e a r c h was supported in part by the EnergyResearch a n d Development A d m i n i s t r a t i o n u n d e r C o n t r a c t#EX76-C-01-2073, a n d in part by th e Department o f E n e r -gy under Contract #ET-78-D-01-3090.F 79 68 9-1 A paper reconmended and approved by the IEEEPower System Engineering Committee of t h e IEEE PowerEn gin eer i n g S o ci ety fo r presentation a t t h e IEEE P E SS u m m e r Meeting, Vancouver, British Columbia, r C a n a d a ,J ul y, 1 5 - 2 0 , 1979. Manuscript subDmitted February 1 ,1 9 7 9 ; m a d e a v a i l a b l e fo r printing May 1 7 , 1 9 7 9 .

    t o t h e selective protection r e l a y s . These i n t o d a y ' sterminology are s p e c i a l purpose microcomputers - origi-nally e l e c t r o m e c h a n i c a l , l a t e r p a r t i a l l y electronic a n di n c r e a ' s i n g l y s o l i d s t a t e . The d e s i r a b l e development f o rt h e future seems t o b e t o w a r d s e x p a n d i n g t h i s automaticrange t o longer time p e r i o d s a n d, t o more c o m p l e x t a s k so f p r es er v in g s y st em w id e V ia b il i ty an d S t a b i l i t y . Theeventual system r e s t o r a t i o n , h o w e v e r , will always havet o remain t h e responsibility o f t h e operator a i d e d b yt h e computer in s u p p l y i n g d a t a a n d o p t i m i z e d solutionst h r o u g h a m u l t i p l i c i t y o f a n c i l l a r y a l g o r i t h m s likestate e s t i m a t i o n , l o a d f l o w s , security e v a l u a t i o n s ,A G C , e t c .For e x p a n d i n g automatic operations into a w i d erange o f emergency c o n t r o l , i t becomes necessary t od e v e l o p a number of n ew a n c il l a r y t e ch ni q ue s. One s u c hf u n d a m e n t a l new t o o l i s the " O b s e r v a t i o n Decoupled( L o c a l E q u i l i b r i u m ) State S p a c e " . T h i s new s ta te s pa cewa s shown t o be e q u i v a l e n t t o t h e conventional statespace but u n l i k e t h e l a t t e r it s c o m p o n e n t s ca n b el o c a l l y estimated in a small fraction o f t h e time i tt a k e s to estimate t h e conventional state c o m p o n e n t s [ 4 ] .Fast l o c a l c o n t r o l action utilizing t h e new state spacewa s s h o w n t o be c a p a b l e o f e f f e c t i v e l y stabilizing t h esystem in e m e r g e n c i e s , at l e a s t t e m p o r a r i l y . A n addi-t i o n a l new a n c i l l a r y t e c h n i q u e which is r e p o r t e d in acompanion paper [ 5 ] makes i t possible t o e v a l u a t e ' t h esystem V i a b i l i t y i n m i l l i s e c o n d s . Another n ew tech-nique allows th e e s t i m a t i o n , based on t h e ObservationD e c o u p l e d ( L o c a l E q u i l i b r i u m ) State S p a c e , o f lastingc h a n g e s in bus i n j e c t i o n s while t h e system i s in atransient s t a t e . T h i s a n d another new t e c h n i q u e f o rs e l e c t i n g c o n t r o l measures t o Viabilize t h e system t e l a -p o r a r i l y within a few s e c o n d s ar e p r e s e n t e d in d e t a i li n [ 4 ] .

    2 . OPERATION OF TH E LARGE INTERCONNECTEDPOWER SYSTEM BY D EC IS IO N A ND CONTROLFunctions, p a r t i c u l a r l y computer control andsystemoperating f u n c t i o n s , on t h e l a r g e interconnected powersystem f a l l into two broad c a t e g o r i e s .

    2 . 1 . H o u s e k e e p i n g o r A n c i l l a r y ProcessesThese i n c l u d e c o m p u t a t i o n a l , a l g o r i t h m i c a n d o t h e rt o o l s a n d solutions which b a s ic a l l y p ro vi de a ux il ia ryi n f o r m a t i o n and o p e r a t i n g d a t a . T h u s , t h e y would serve

    sometimes as t h e basis o f decisions or t h e y may estab-l i s h future o p e r a t i n g c o n d i t i o n s , b u t t h e y are no t real-l y part o f t h e on l i n e operation. Some c us to ma ry p ro -cesses o f t h i s t y p e are1 . Load f l o w2 . State estimation3 . System security evaluation4 . Economic d i s p a t c h5 . Unit conmitment6 . Optimal l o a d f l o w a n d Optimal dynamic l o a d f l o w7 . Load f o r e c a s t i n g8 . Load managementA d d i t i o n a l processes were i n t r o d u c e d as a r e s u l t o Lt h e r esea rc h a c ti vit i es p r e s e n t e d here. These a r e9 . Computation o f Area L o a d Excess ( A L E ) [ 6 ] ,1 0 . Computation o f Economic Target Curves f o r Unit0 0 1 8 - 9 5 1 0 / 8 0 / 0 1 0 0 - 0 0 3 7 $ 0 0 . 7 5 1 9 8 0 IEEE

  • 7/28/2019 Operation of Large Interconnected PSys by Decision and Ctrl_1980

    2/9

    3 8Controls [ 6 ]1 1 . Computation o f Coordinated Unit Control t of o l l o w t h e t ar ge t c ur ve s [ 6 ]1 2 . Computation of t h e Observation Decoupled ( L o -c a l E q u i l i b r i u m ) State Vector [ 4 ]1 3 . Computation o f local load imbalance from th eObservation Decoupled ( L o c a l E q u i l i b r i u m )State [ 4 ]

    1 4 . Computation o f Sectional or Area power i m b a l -ance [ 4 ]1 5 . Fast contingency evaluation by Concentric Re-laxation [ 4 ] , [ 5 ]2 . 2 . Operating Processes. Degrees o f A b n o r m a l i t y

    Given a l a r g e comprehensive power system operat-i n g with t h e ai d o f such advanced devices as multiter-minal DC n e t w o r k s , microwave c o m m u n i c a t i o n s , m i c r o ,m i n i , and macro computer e s t a b l i s h m e n t s , al l u nd er t h ea u t h o r i t y o f a Control Center with satellite LocalControl Centers, a Decision a n d Control a p p r o a c h e m e r -ges as t h e natural way to a p p r o a c h system o p e r a t i o n .T he D e ci s io n Phase o f t h e process consists o f acontinuous s u r v e i l a n c e , m o n i t o r i n g and d e c i s i o n o n t h ec o n d i t i o n o f t h e system and a l s o t h e decisions o n s e-l e c t i n g th e best R e g i m e o f a c t i o n s , s p e c i f i c a l l y , c o n -t r o l actions in order to m o v e t h e system towards i t snormal c o n d i t i o n .T he C on tr ol Phase t h e n p r o c e e d s with t h e a l g o -rithms comprising t h e Control Regime s e l e c t e d d u r i n gt h e Decision Phase a n d carries ou t t h e control actionwhich are commanded b y t h e a l g o r i t h m s .S o m e t h i n g o f t h i s nature, i n f a c t , i s i m p l i c i t int h e f a m o u s D y L i a c c o d i a g r a m [ 1 ] ( F i g u r e 1 ) and itsmodified v e r s i o n s , t h e m o s t re cen t a n d p e r t i n e n t o fw h i c h i s t h e Fink-Carlsen d i a g r a m [ 2 ] shown in F i g u r e2 a n d ev en in c u r r e n t o p e r a ti n g p r ac t ic e s. It needst o be f o l l o w e d m o r e c o n s c i o u s l y in t h e f u t u r e in t h econtext o f much m o r e advanced devices an d a l g o r i t h m s .

    Figure 1

    A s expressed here Decision a n d Control then b e-com es th e b as ic f or ma t o f t h e system operation. A newdecision on s ys te m c on di ti on s a n d applicable algo-rithms i s made at every time s t e p and t h e next commands t e p of t h e currently applicable c on tr ol a l go r it h m i scarried ou t at every time s t e p .The basic Decision i s between normal and abnormalconditions o r , more p re ci se ly , o n t h e Degree o f Abnor-mality with Normality rating a s Zero Degree Abnormal-i t y . T h e applicable control a lg or it hm s w ou l d then beaimed at maintaining normalcy wh en i t i s present orleading t h e system back t o normalcy through a leastobjectionable path when t h e condition i s abnormal. Ina sense one could sa y that i n Decision a nd C on tr olOperation a system i s always in a Restoratory condi-tion s e e k i n g t h e best way back t o normalcy - when i tfinds nothing t o restore t h e system i s in a normalc o n d i t i o n . The word abnormal i s used t o avoid seman-tic arguments over th e meaning of emergency. F or in-s t a n c e , one c o u l d argue whether losing a line or agenerator when adequate reserves a re p r es en t is , or i sn o t , an emergency. I t clearly i s a n a bn or m al c on di -t i o n , h o w e v e r . Abnormal c o n d i t i o n s simply mean thate v e r y t h i n g i s not a s expected. There are m an y degreesand many time scales o f abnormality which can beclassed as f o l l o w s :2 . 2 . 1 . Degree # 0 . Normal Operating Conditions.Conditions are normal when t h e y are a s expected - allequipment working which was supposed t o w o r k , l o a d s ,f u e l supplies, water and weather c on di ti on s w it hi n t h ee x p e c t e d ranges. T he p ri nc ip al applicable algorithmsare

    1 . Monitoring and Estimation o f the load andgeneration2 . S ta ti c S ta te Estimation3 . Monitoring o f th e s y s t e m l oa d in g c on d it io nsa n d Security4 . E c o n o m i c Dispatch or O pti mal L oad F lo w5 . Unit Commitment6 . Automatic Generation Control7 . Load M a n a g e m e n t2 . 2 . 2 . Degree # 1 . Normal O p e r a t i n g Conditions

    with Structural D e f e c t . Conditions a r e n o r m a l . Thesystem i s Secure a nd V ia bl e except t h a t its s t r u c t u r ehas been altered b y a n earlier e v e n t from what wa s ex-p e c t e d - a l i n e i s m i s s i n g , f o r e x a m p l e .The p r i n c i p a l o p e r a t i n g a l g o r i t h m s are as in D e-gree # 0 b u t , in a d d i t i o n , future consequences o f t h es t r u c t u r a l c h a n g e m u s t be evaluated a n d , i f necessary,r e m e d i e d . F or i n s t a n c e , t h e structural c h a n g e mayforeshadow S e c u r i t y or V i a b i l i t y problems d u r i n g ana p p r o a c h i n g p e a k .2 . 2 . 3 . Degree # 2 . S e c u r i t y Defect or AlertState. Conditions are still normal and t h e system i sViable but t h e s e c u r i t y margin is smaller than d e s i r e d .A p p l i c a b l e a l g o r i t h m s would include t h o s e f o rDegree # 0 b ut overruled in some instances in order t orestore s e c u r i t y , s p e c i f i c a l l y in t h e area o f EconomicD i s p a t c h a n d Load Management which may then be re-p l a c e d b y s p ec i al a l g or i th m s s u c h as1 . R e a d j u s t m e n t s o f t h e network l o a d f l o w s b yt h e u se o f t h e DC network

    2 . Modified t i e line s c h e d u l e s , modified loadd i s p a t c h , e t c .3 . Bringing on new generation or other equip-mentO f course, i f e f f e c t i v e control in crisis condi-tions i s available many situations w hi ch w ou ld b e i n -secure without such control would become secure. Thisi s part o f t h e f i n a n c i a l benefit r e s u l t i n g f r o m in-s t a l l i n g s u c h c o n t r o l .2 . 2 . 4 . Degree # 3 . S t a b i l i t y Crisis. The systemi s in a momentary d y n a m i c s t a t e , n o r m a l l y caused b y af a u l t , which i s s u f f i c i e n t l y violent t o e n d a n g e r t h ei n t e g r i t y o f t h e s y s t e m .. F i g u r e 2

  • 7/28/2019 Operation of Large Interconnected PSys by Decision and Ctrl_1980

    3/9

    DE CISI O N P H A S ES E L E C T I O N O F ACTION O ND E G R E E O F AB N O R M AL I TY CONTROL REGIM E

    I START AT E A C HS A M P L E TIMET a b l e 1 . S t r u c t u r e of the O p e r a t i o n with D e c i s i o n a n d C o n t r o l .

    N O R M A L f I \lNORMAL WITH ' TSTRUCTURAL , | rD E F E C T , , I

    S E C U R I T Y DE F E CT 'iI t e 1 o L id l

    S T A B I L I T Y C R I S I S

    F i g u r e 3 . S o m e Fictitious Case H i s t o r i e s .

    C O N T R O L P H A S ES E L E C T I O N OFCONTROL M EA NS CONTROL AC TI O N

    3 9

    ( S E E TABLE 2 )

    DEGREE # 0NORM A L

    NO

    DEGREE # 1 R EG # 0STRUCTURAL Y E SD E F E C T ?

    N O 7DEGREE # 2 R EG # 0SECURITY Y E SDEF ECT ?

    N O R E G # 1NO

    DEGREE # 3 RE G # 2S T A R I L T Y Y E S NCRISIS? N O t YE S RG#~ ~ ~ ~ ~ ~ ~ R E GO /GREG 3 _

    N ODEGREE # 4 YE SVIABILITY Y E S RE G # 4CRISIS? N O t i YE S RE G # 5N O R E G #3

    N O Y E S, D E G R E E #5 RE G # 4I I N T E G R I T Y Y E S I)CRISIS? NO I YE S-_ _ R E D 05

    REGIME # 01 .NORMAL OPERATION2.NORMAL WITH M INORR E S TO R ATI O N

    REGIM E #1SELECTIVE P R O T E C T I O N ,S TAB I L I ZI N GSINGLE M A C H I N EF IRST SWING( 2 5 C Y C L E S ) - '

    REGIM E # 2 _PRELIMINARYSTABILIZING _M ULT I M A C H IN E o (M ULT I S W I N G _(1 2 CYCLES-3 S E C O N D S )C)REGIM E # 3 zPRELIMINARYVIABILIZING 0 ' , I(0.5- 60 S E C O N D S ) V_---_ _ _ _ _ uiA N D _STABILIZING a Z( O 5 - 3 S E C O N D S ) v * 0

    R E G I M E #4 C ) xV I A B I L I Z I N G- 60 MINUTES

    REGIME # 5RESTORATION

    K

    RE G # O

    I L i

  • 7/28/2019 Operation of Large Interconnected PSys by Decision and Ctrl_1980

    4/9

    REGIME

    #l

    REGIME

    AZ

    REGIME

    AD

    REGIME

    M4

    REGIME

    MO

    REGIME,

    TOELIMINATE

    FAULTED

    EQUIPMENTAND

    TO

    TOHOLD

    SYSTEMSYNCHRONIZED

    IN

    TEMPORkARY

    TO

    RESTORE

    PRELIMINARY

    VAIBILITY

    TORYESTORE

    INTERMEDIATETIME

    RANGE

    RESTORATIONOFNORMAL

    OPERATION

    ITS

    ROLE,

    PREVENT

    INSTABILITY

    OF

    ONE

    SPECIFIC

    STABILITY

    VIABILITY

    MACNINEWITM

    ANEARBY

    FAULT

    CLASSIFICATION

    STABILITY

    CRISIS

    STABILITY

    CRISIS

    VIABILITYCRISIS

    VIABILITY

    CRISIS

    RESTORATION

    STATE

    COMMON

    NAMES

    SELECTIVE

    PROTECTION

    YULTI

    MACNINE

    INSTABILITY

    RESTORATION

    STATE

    SINGLE

    MACNINE

    INSTABILITY

    YULTI

    SUING

    iNOTABILITY

    FIRST

    SUING

    INSTABILITY

    PHENOMENON

    A

    PIECE

    SF

    EQUIPMENT

    IS

    FAULTED

    AFTER

    A

    FAVLT

    TAB

    SYSTEMWIDE

    OSCILLA-

    TAE

    BALANCE

    OFGENERATION,

    LOADAND

    GENERATION,

    LOADAND

    TRANSMISSION

    ARE

    TNECRISIS

    IS

    OVER,

    TUE

    SYSTEM

    IS

    NUT

    0.

    ANILE

    A

    MACNINE

    IS

    TEMPORARILY

    PRE-

    TIONS

    SPREAD

    SO

    VIOLENT

    THAUT

    BREAKUP

    TRANSMISSION

    FAILS

    ONTUE

    SYSTEM,

    ON

    OUTOF

    BALANCE

    ON

    THE

    SYSTEM,

    ON

    AN

    AREA

    IN

    IMMEDIATE

    DANGER

    OF

    FURTHER

    BREAEUP

    VENTED

    FROMTRANSMITTING

    POWER

    TO

    THE

    INTO

    SEGMENTS

    OR

    ISLANDSTHREATENS

    AN

    AREA,

    OR

    ON

    A

    SEGMENTOFAN

    AREA

    ON

    ON

    A

    SEGMENT

    OFANAREARESULTING

    IN

    BUT

    SOME

    LOADSMAY

    BE

    DISCONNECTED

    AND

    SYSTEM

    BY

    TUE

    FAULT,

    IT

    SPEEDS

    VP

    RESULTING,_IN

    POWER

    FLOWS

    EXCEEDING

    CURRENTAND

    VOLTAGECONDI1TIONS

    AHICH

    THE

    SYSTEMMAY

    BE

    OPERATING

    IN

    UNCON-

    'SUFFICIENTLY

    TO

    LOSE

    SYNCHRONISM

    PERMISSIBLE

    LIMITS

    FOR

    CANNOT

    BEALLUNEDTO

    PERSIST

    NECTED

    ISLANDS.

    AOLTAGEAND

    FREQUENCY

    A.

    STABILITY

    RAY

    BE

    OFF

    B.

    LOADABILITY

    (10

    MINUTES)

    TO

    AN

    EXTENTWHICM

    REQUIRES

    FAST

    REMEDIES.

    SUCHCONDITIONSMAYORMAY

    NOTRESULT

    FROMA

    FAULT

    CONSEQUENCES

    SUCCESS:

    REMOVAL

    OFEQUIPMENTWILL

    PUT

    SUCCESS:

    SYSTEM

    IS

    PREUENTEDFROM

    BREAK-

    SUCCESS:

    MINIMIZE

    EXTENTAND

    UNDESIR-

    SUCCESS:

    MINIMIZEEXTENT,

    UNDESIRABILITY

    SUCCESS:

    SYSTEM

    GOES

    RACETONORMAL

    THE

    SYSTEM

    INTOABNORMALITY

    OPUNTIL

    IT

    CAN

    SETTLE

    BACETO

    ABILITY

    OFSYSTEM

    DISRUPTION

    AND

    DURATION

    OF

    SYSTEMDIG-

    OPERATION

    DEGREE

    Al1

    THROUGH

    0

    DEPENDING

    NORMAL

    IF

    IT

    IS

    VIABLEORUNTIL

    FAILURE:

    PROBABLY

    ARBITRLARY

    ISLANDING

    RUPTION

    FAILURE:

    SYSTEM

    GOESBACKTOABNRA-

    ON

    THE

    CIRCUMSTANCES

    A

    VIABILIZATION

    IN

    REGIME

    AD

    ANDAT

    LEAST

    PARTIAL

    BLACEOUT

    FAILURE:

    PROBABLY

    ARBITRARY

    ISLANDING

    A

    FAILURE:

    DEFECT

    OR

    CRISIS

    SPREADS

    CAN

    COMMENCE

    ANDAT

    LEAST

    PARTIAL

    BLACEOUT

    E

    FAILURE:

    ISLANDING

    ACTIVE

    TIME

    YANGE

    3

    -

    25

    CYCLES

    I2

    CYCLES

    -

    3

    SECONDS

    A.

    0.0

    -

    S

    SEC.

    -FORLACE

    OF

    STABILITY

    B.

    0.0

    -

    GO

    SEC.-FOR

    LACEOF

    LOAD-

    -

    60MINUTES

    0.5

    -

    SEVERAL

    'HOURS

    ABILITY

    TTAL

    TIME

    SPAN

    25.CYCLES

    0

    -

    S

    SECONDS

    A

    -

    IS

    MINUTES

    HOUR

    ORMORE

    SEVERALYOURS

    CONTROLAGENT

    LOCAL

    SPECIAL

    PURPOSE

    MICRO-COMPUTERS

    LOCALMINI

    COMPUTER

    FORTHE

    UNITOR

    CONTROL

    CENTER

    COMPUTER

    CONTROL

    CENTER

    COMPUTER

    THE

    SYSTEMOP'ERATOR

    AIDED

    BY

    THE

    CONTROL

    IN

    CHARGE

    INCLUDING

    SELECTIVE

    PROTECTION

    RELAYS

    STATION

    CENTEYCOMPUTER

    5CHOICE

    OF

    CONTROL

    ISELECTIVE

    RELAYING

    TO

    REMOVE

    FAULTY

    ESTIMATE

    LOCAL

    EQUILIBRIUM

    STATE

    COM-

    ICOLLECTION,

    FROM

    LOCAL

    STATIONS,

    OF

    TOOLSAND

    POSSIBLE

    CHOICES

    ARE

    THE

    SAME

    THE

    OPERATOR

    FINDS

    SOURCES

    OFPOWER

    MEASURES

    EQUIPMENT

    ONLY

    AND

    ONLY

    IF

    FAULTED

    MOMENTS

    AND

    COMMAND

    LOCAL

    NORM

    REDUCING,

    IMBALANCE

    INFORRLATION

    BASEDONLO-

    AS

    IN

    REGIME

    AD

    BUTTHEME

    IS

    TIME

    TO

    HELP

    FROMNEIGHBORING

    SYSTEMS,

    COLD

    PERMANENTLY

    (STRUCTURALCONTROL)

    AIMING

    OR"OPTIMAL"

    CONTROL

    PULSES

    CA

    Q

    T

    E

    E

    T

    S

    STARTS,

    INTERRUPTED

    MAINTENANCE

    ETC.

    2.

    ESTIMATE

    EXCESS

    TRANSIENT

    ENERGY

    OF

    0

    .

    CHOOSE

    LEAST

    UNDESIRABLE

    METHOD

    TO

    RUNALGORITHMS

    WHICHNEED

    A

    FEWMINUTES.

    RESTORATION

    OF

    LOADSAND

    RESYNCHRONIZA-

    MACHINE

    ROTORAND

    REMOVE

    IT

    BY

    CON-

    YESTORE

    PRELIMIN4ARY

    BALANCE

    ALSO

    LOADSON

    SOME

    EQUIPMENT

    MUST

    BE

    TI01S

    OP

    SEPERATED

    SEGMENTSAS

    SOONAS

    MANDING

    ENERGY

    PULSES

    (DYNAMIC

    CON-

    0.

    CHOOSE

    TOOLS

    AND

    LOCATIONS

    OF

    TOOLS

    REDUCED

    FROM

    TME

    0

    -

    10

    MINUTE

    OVERLOADS

    POSSIBLE.

    RETURN

    TO

    ECONOMIC

    DISPATCH

    TROL)

    4.

    CHOOSE

    QUANTITATIYE

    COMMANDS

    PERMITTED

    IN

    REGIME

    A3

    TO

    MOOROVER-

    ANDNORMAL

    AUTOMATIC

    GEISERATION

    CONTROL

    LOADS

    PRINCIPAL

    CONTROL

    SOME

    TOOLS

    SOME

    TOOLS

    SOME

    TOOLS

    IN

    ORDER

    OFUNDESIRABILITY.

    SAMEUS

    IN

    REGIME

    AS

    BUT

    MOORDOVER-

    ALLAVAILABLE

    RESOURCES

    SF

    TUE

    PONER

    TOOLS

    I)

    SELECTIVE

    NETWORK

    PROTECTION

    EQUIP-

    I)

    BRAKING

    RESISTOR,

    0)

    LOAD

    SKIPPING,

    I)

    FREQUENCY

    REDUCTION

    (AGC).

    2)

    USE

    LOADS

    ONLY

    SYSTEM,

    TELEPMONE

    MENT,

    01

    BRAKING

    RESISTOR,

    3)

    SNUNTAND

    3)

    SERIES

    OR

    SNUNT

    CAPACITOR

    SWITCHNGA,

    OF

    GENERATOR

    RESERVES

    (NUT

    AND

    COLD)

    OR

    SERIES

    CAPACITOR

    SWITCHING,

    4)

    FAST

    4)

    NUDE

    LINE

    CONTROL,

    U)

    FAST

    VALVING

    FAST

    GENERATOR

    RUNBACK,

    0)

    EARLY

    RETURN

    VALVING

    OF

    EQUIPMENT

    FROM

    MAINTENANCE,

    A)

    TIE

    LINE

    RESERVE

    HELP,

    A)

    USING

    SNORtT

    TIME

    (U

    -

    10

    MINUTES)

    OVERLOAD

    CAPACITY

    OF

    EQUIPMENT,

    A)

    VOLTAGE

    REDUCTION,

    7)

    LOADDROPPING,

    0)

    ISLANDING.

    AVAILABILITY,

    SPEED,

    AND

    DISRUPTIONS

    ARE

    FACTORS

    IN

    CHOICE

    MEASUREMENTS

    VOLTAGEANDCURRENT

    MEASUREMENT,

    AND

    CONVENTIONAL

    MEASUREMENTSOF

    VOLTAGE,

    CONVENTIONAL.MEASUREMENTS

    OF

    VOLTAGE.

    CONVENTIONAL

    MEASUREMENTS

    OF

    VOL7AGE,

    CONVENTIONAL

    SYSTEM

    INSTRUMENTATION

    ACCELEROMETER

    OR

    FREQUENCY

    MEASUREMENT

    CURRENT

    AND

    POWER

    CURRENT,

    AND

    POWER

    CURRENT,

    AND

    POWER

    C

    N

    N

    E

    P

    IS

    N

    N

    B

    E

    R

    C

    T

    BE

    C

    ANDTELEMETERINGPROTECTION

    ~CENTER

    OF,

    THE

    CONTROL

    CENTER

    SF

    THE

    STATUS

    OP

    MAIN

    THE

    CONTROL

    CENTERSF

    THE

    STATUS

    OFMAIN

    I.

    LOCAL

    EQUILIBRIUM

    STATE

    OR

    LOAD

    TRANSMISSION

    BREAKERS

    AND

    GENERATORS.

    TRANSMISSION

    AREAKERS

    AND

    GENERATORS.

    I

    CONVENTIONAL

    TELEMETERING

    TO

    THE

    CENTER

    C

    ELEMETERING

    TOTHE

    CENTER

    2.

    STATUSOF

    MAINTRANSMISSION

    OF

    UOLTAGE

    AND

    PONER

    VALVES

    FOR

    STATE

    OF

    VOLTAGE

    AND

    POWER

    VALVES

    FOR

    STATE

    BREAKERS

    AND

    GENERATORS

    (BUT

    NOT

    ESTIMATION

    ESTIMATION.

    OF

    SUBTRANSMISSION

    OR

    LOADS)

    SCONOMIC

    DISPATCH

    INACTIVE

    INACTIVE

    INACTIVE

    INACTIVE

    RESTORED

    4AUTOMATIC

    GENERATION

    INACTIVE

    INACTIVE

    ACTIVE.

    WILL

    TEND

    TO

    ALLEVIATE

    LOAD

    ACTIVE

    RETURNS

    TONORMALOPERATION

    CONTROL

    EXCESS

    BYFREQUENCY

    ADJUSTMENT

    OF

    THE

    SYSTEM

    ON

    LINE

    STATE

    INACTIVE

    INACTIVE.

    SUPERSEZ..U

    BO

    LOCAL

    EVUILIB-

    INACTIVE:SUPERSEDED

    BY

    LOCAL

    EQUILI-

    REACTIVATED

    ACTIVE

    ESTIMATION

    AIUM

    STATE

    ESTIMATION

    AT

    THE

    INOIVIDUAL

    BRIUM

    STATE

    ESTIMATION

    AT

    THE

    INDIVI-

    VUSSES

    DUAL

    BUSSES

    Table2.

    TheControlRegimes.

  • 7/28/2019 Operation of Large Interconnected PSys by Decision and Ctrl_1980

    5/9

    4 1Principal a l g o r i t h m i c features can b e1 . L oc al s tr uc tu ra l control or protective r e-laying t o eliminate f a u l t y c o n p o n e n t s andl o c a l control action ( R e gi me # 1 ) * to pre-serve s t a b i l i t y o f a n individual g e n e r a t o r .2 . Stability augmentation u t i l i z i n g t h e DC net-w o r k , b r ak i ng r e s is t o r s , load s k i p p i n g , etc.( R e g i m e # 2 ) .3 . Load D r o p p i n g or m a j o r Structural S u r g e r y to

    separate t h e system in t h e least o b j e c t i o n -a b l e , manner when i n t e g r i t y c a n n o t b e main-t a i n e d ( R e g i m e # 3 ) .Note t h a t 3 . p u s h e s t h e system into a n I n t e g r i t yCrisis ( e xp l a in ed b el o w) .2 . 2 . 5 . D e a r e e # 4 . V i a b i l i t y C r i s i s . The systemin i t s p r e s e n t c o n d i t i o n i s i n c a p a b l e o o p e r a t i n g c o n -t i n u o u s l y o r o f s e t t l i n g back to normal o p e r a t i o n be-cause t h e l o a d s , t h e available g e n e r a t i o n , a n d t h ea v a i l a b l e transmission c a p a b i l i t y a r e n o t i n balance.This condition c a n result f r o m a fault a n d i s thenfrequently preceded b y a Stability Crisis. N o q n v i ablec o n d i t i o n s can a l s o , h o w e v e r , come on q u i e t l y ; f o r in-s t n a c e , m a j o r g e n e r a t i o n or other e q u i p m e n t d o e s n o tb e co m e a v ai l ab l e when i t i s s c h e d u l e d t o come o n linef o r a p e a k .P r i n c i p a l a l g o r i t h m i c f ea tu re s i nc lu d e i n a r o u g ho r d e r o f i n c r e a s i n g u n d e s i r a b i l i t y ( R e g i m e # 3 ) :1 . Frequency reduction o f t h e AGC t y p e2 . U se o f s p i n n i n g reserves or cold reserves3 . S p e c i a l m e a s u r e s such as f a s t turbine r u n -b a c k4 . H e l p from n e i g h b o r i n g a r e a s5 . Drawing o n time-limited overload c a p a b i l i t yo f t h e e q u i r m e n t6 . S p e c i a l m e a s u r e s such as voltage reduction7 . First stage structural control such a s ad -d i n g n ew g e n e r a t i o n or r et ur ni ng e q u ip me ntf ro m m a i nt e na n ce or load d r o p p i n g ( f o r min-utes or h o u r s )

    8 . S e c o n d stage structural c o n t r o l - I s l a n d i n gNote t h a t 7 . or 8 . m o v e s t h e system into a n I n t e g -rity C r i s i s .2 . 2 . 6 . Degree # 5 . - I n t e g r i t y Crisis or " I n Ex-t r e m i s " C o n d i t i o n . Th e i n t e g r i t y o f t h e system i sv i o l a t e d ; f o r i n s t a n c e , load wa s d r o p p e d or t h e systemi s i s l a n d e d .P r in c i p a l a l go r it h mi c measures i n c l u d e :

    1 . Restoration o f t h e V i a b i l i t y o f t h e indivi-dual i s l a n d s as i n D e g r e e # 42 . Reconnection o f t h e islands3 . Restoration o f l o a d s , etc.

    3 . SOME FICTITIOUS C ASE HISTORIESTo elucidate t h e o p e r a t i n g process visualized agroup o f q u a l i t a t i v e case histories are shown in Figure3 . Broken lines indicate i m p o s e d events, a n d s o l i dlines represent control a l g o r i t h m i c o p e r a t i o n s .Case D A short circuit o c c u r s o n a transmissionline which m o m e n t a r i l y e n d a n g e r s th e s t a b i l i t y ( D e g r e e# 3 ) but t h e selective p r o te c t i o n r e la ys and circuitbreakers c l e a r t h e f a u l t ( R e g i m e # 1 ) a n d s u c c e s s f u l l yreclose t h e l i n e . Back t o n or ma l a lm os t i n s t a n t l y .Case 9 S a m e as in C a s e Db u t with a f a i l e d r e-c l o s i n g a n d ultimate loss of t h e l i n e . R e g i m e 1 # 2 i s s u c -c e s s f u l in r e t a i n i n g system s t a b i l i t y but t h e l o s s o ft h e line l e a v e s t h e s y s t e m with a S e c u r i t y Defect( D e g r e e # 2 ) until t h e DC system i s used to s h i i f ts u f f i c i e n t load to r e s t o r e s e c u r i t y a l t h o u g h t h e str uc-t ure i s still altered from normal ( D e g r e e # 1 ) .C a s e ( Q Same initial events b u t t h e r e c l o s i n gf a i l s a n d s o d o e f f o r t s f o r s t ab i li t y a u g m e n t a t i o n i nR e g i m e # 2 . The s y s t e m b r e a k s u p , f a l l s into an Inte-

    (Regime # 5 ) b u t h a s i n s u f f i c i e n t security (Degree # 2 )u ntil C ontrol i s used to shift loads t o e l i m i n a t e d e-f ic ie nt s ec ur it y. F in al ly , t h e faulty line is restoredto operation and everything goes b a c k to normal ( D e -gree # 0 ) .Case Same initial e v e n t a t peak load wit h afailed breaker an d s ub sequ en t b ac ku p clearing. T h i sc r e a t e s a Stability Crisis (Degree # 3 ) whi c h is s u c c e s s -fully handled by th e E mer gen cy C ont ro l (Regime #2).The s y s t e m integrity i s m o me n ta r il y p r es er v ed ( n o loadsare l o s t , no islanding) and t h e s y s t e m remains viablealthough insecure u n t i l later a h ea v il y l oa de d tie froma neighboring s y s t e m i s lost in an independent i n c i d e n t .T hi s l ea ve s the s y s t e m t e mp o ra r il y n o nv i ab l e (Degree#4)with n o t e no ug h g en er at io n to cover the loads. Inte-g ri ty C ri si s ( l o a d dropping or breakup) i s prevented b yEmergency Control - Regime # 2 subsequently refined b yRegime # 3 using a judicious combination o f spinning re-serves, short time overloads, shifting o f loads b y theDC network, and voltage red u ction until t h e waning o fthe peak load ( i t was decided to wait this o u t ratherthan try to bring in new g eneration) and t h e gradualr e t u r n to normal i f n o t quite fully secure o p e r a t i o n(Degree # 2 ) . At this point, another fault on a t r a n s -mission line c r e a t e s a new Stability C ri si s ( De gr ee # 3 )with a subsequent breakup o f t h e s y s t e m wi th loss o fload (Degree # 5 ) .C a s e D G e n e r a t i o n s c h e d u l e d to come on linej u s t before th e peak rise becomes unavailable u n e x p e c t -e d l y . Th is c r e a t e s the development of a Viability Cri-sis (Degree # 4 ) as the loa d rises withou t, however,causing any s ta bi li ty p ro bl em s. Load dropping i sa v o i d e d by Emergency C o n t r o l in Regime # 3 , th at i s , byusing reserves a n d voltage r e d u c t i o n as well as in-creased tie line help until a fault on a neighboringarea c u t s down on the availability of the tie line helpin the face of still i nc re as in g p ea k load. Th is d a n -geroulsly o v e r l o a d s the generators w h i c h f o r c e s loaddropping an d thus a c c e p t a n c e of an Integrity Crisis( D e g r e e # 5 ) in o r d e r to a v o i d shutting o ff the g e n e r a -t i o n . Eventually the l o a d s are gradually r e c o n n e c t e das more g en er at io n b ec om es a va il ab le an d the loa d b e -gins to drop taking th e s y s t e m b a c k t ow ar ds n or ma l op-e r a t i o n (Degree # 0 ) .In these examples as i n the literature StabilityCrises play a dom inant role. I n p ractice p r ob ab lyCaseG is more typical of the e v e n t s th an the othercases because m o s t s ystem s are n o t susceptible toStability Crises. In this co untr y , the W e s t e r n Systemsare p r o n e to Stability Crises mostly.

    4 . STRUCTURE O F D E C I S I O N A N D CONTROL; REGIMESOF C ONTROL A L G O R I T H M SA f t e r t h i s b r i e f i n t r o d u c t i o n a n d i l l u s t r a t i o n o fth e D e c i s i o n a n d C o n t r o l Operation i d e a s , some d e t a i l sof t h e s t r u c t u r e of t h i s operation are now i n order.T h i s s t r u c t u r e is s k e t c h e d i n T a b l e 1 . Th e o p e r a -t i o n i s d i v i d e d i n t o a Decision Phase a n d a C o n t r o lPh ase. E a c h in t u r n s u b d i v i d e s into a S el ec t io n T as kan d an A c t i o n Task.I n t he D e c i s i o n Phase, f i r s t s e l e c t i o n is p e r -formed a m o n g s ix Degrees of A b n o r m a l i t y w h i c h were a l-ready described. Two of these Degrees are described

    as D e fe c t s (Structural a n d Security respectively).T h e s e require c o rr e ct i ve a c ti o n b u t n o t a " s c r a m b l e tocorrect" since they d o n o t lead to f ur th er d et er io ra -t i o n of th e s it uat io n wi th ou t a dd it ion al adverseoccurences. Three Degrees are described as Crises(Stability, Viability and Integrity). These requirei m m e d i a t e action because, in the absence o f i t t h esi tu ati on wi ll degenerate, possibly into an ultimatetotal blackout. Th e urgency and th e n a t u r e of thiscontr ol a ct io n depends on th e Degree o f Abnormalityan d furth er specifics wi thin each Degree. Dependingon this judgement the Decision Phase in its A c t i o nTas k assigns the s i t u a t i o n to one of the six Regimes

    g r i t y Crisis ( D e g r e e # 5 ) a n d i s later r e s y n c h r o n i z e d* The s i x r e g i m e s o f control w i l l b e described i ndetail i n Section 4 .

  • 7/28/2019 Operation of Large Interconnected PSys by Decision and Ctrl_1980

    6/9

    4 2o f Control fo r handling.Each Regime o f Control i s c o m p r i s e d o f a set o fa p p l i c a b l e control t o o l s and a l g o r i t h m s which providea choice o f measures a n d means d e a l i n g with a s e t o fc ir cu ms ta nc es r equ i ri ng r e m e d i e s within a given timef r a m e ( T a b l e 2 ) .The Selection T a s k o f t h e Control Phase ( T a b l e 2 )will pick t h e b est route t o remedy t h e problem basedo n t h e available choices o f t o o l s , t he ir l oc at io n, andt h e i r d i s r u p t i v e consequences o n s er vi ce . Optimalityi n Regime # 1 - 4 i s mainly i n terms o f minimal disrup-tion a n d particularly in t h e f a s t Regimes l i k e Regime# 1 or 2 i t will have t o be f o u n d from l imi ted i n fo r ma -t i o n a n d t h e co nt rol wi ll h av e t o b e p er fo rm ed locally.The A c t i o n Task i s finally initiated t o carry ou t t h ec o n t r o l .4 . 1 . Regime # 0 : This i s not shown in Table 2and consists o f t h e normal op erating p rocedu res sucha s A G C , E c on o mi c D i sp a tc h , S ta te E s ti m at io n, e t c . a swere l i s t e d i n S e c t i o n 2 . 2 . 1 . A d d i t i o n a l l y , i n t h ecase o f Structural o f S e c u r i t y D e f e c t special d e c i s i o na l g o r i t h m s are r e q u i r e d t o establish t h e need f o r rem-e d y i n g t h e s e d e f e c t s and t h e way o f remedying t h e m .Time i s usually not p ressing here and s o relativelye l a b o r a t e algorithms may b e p e r m i s s i b l e [ 6 ] .

    4 . 2 . Regime # 1 : I t controls t h e strictly localaspects o f a s i tu a ti o n w h er e a f a u l t ma y occu r on someequipment. T h i s e qu i p me nt m u st then be selectivelyr e m o v e d by t h e s el ec ti ve p ro tec ti on relays which ar es p e c i a l purpose computers ( c l a s s i c a l l y electromechani-c a l , i n c r e a s i n g l y m i c r o p r o c e s s o r s ) s o t h a t only t h ef a u l t y equipment i s r e m o v e d and - in case o f transmis-sion l i n e s - r e t e s t e d i n about 2 0 c y c l e s b y r e c l o s i n g .While a s h o r t curcuit essentially shuts o f f power f l o wby r e d u c i n g t h e voltage t o nearly z e r o , a l o c a l gen-erator may s p e e d u p enough t o pull out o f synchronismu n l e s s c h e c k e d by t a k i n g out a quick pulse o f energyf r o m i t s rotor by some means such as a d a m p i n g resis-t o r . T h i s operation i s controlled s t r i c t l y l o c a l l y b ya microprocessor much i n t h e nature o f s e l e c t i v e pro-tection r e l a y i n g a n d shares R e g i m e # 1 with t he l at te r.4 . 3 . R e g im e # 2: This c o n t r o l s a system w i d e .problem on a very short time scale o f a f e w s e c o n d s( l e s s t h a n 3 s e c o n d s ) . T h i s arises when a d i s t u r b a n c ep uts t h e sy stem into a violent d y n a m i c state whicht h r e a t e n s t o break i t i n t o segments ( M u l t i m a c h i n e orMultiswing I n s t a b i l i t y ) . The time s c a l e d o e s notpermit c e n t r a l l y c o o r d i n a t e d a c t i o n . Each unit mustac t alone u n d e r t h e control o f i t s own minicomputerbu t t h e c o l l e c t i v e action m u s t e f f e c t i v e l y s t a b i l i z et h e s y s t e m . These c o n t r a d i c t o r y r e q u i r e m e n t s can b er e c o n c i l e d , a s will be s h o w n , b y u s i n g a n ew states p a c e , Observation D e c o u p l e d S t a t e S p a c e , introducedb y t h e a u t h o r s . I t i s important t o n o t e , however,t h a t a l t h o u g h m e a s u r e s in R e g i m e # 2 preserve the sys-tem transient s t a b i l i t y i n t h e sense t h a t t h e y preventou r o f s t e p c o n d i t i o n s on t h e system, t h i s i s accom -p l i s h e d with s h o r t range d a m p i n g d e v i c e s like b r a k i n gr e s i s t o r s . S o t h i s R e g i m e cannot b e maintained i n -d e f i n i t e l y ; i t must e n d in a very f e w s e c o n d s . I fat t h a t t i m e , t h e system i s not viable f o r eithers t a b i l i t y or overload reasons then i t would s t i l ld i s i n t e g r a t e i f remedial measures are not t a k e n . Thef e w s e c o n d s g a i n e d in R e g i m e # 2 m u s t then be used tog e t r e a d y f o r a c t i v a t i n g t h e remedial m e a s u r e s o fRegime # 3 .4 . 4 . R e g i m e # 3 : This i s d e s i g n e d to d e a l with asystem which i s s e v e r e l y nonviable ei ther b ec au se o fi n s t a b i l i t y or because o f o v e r l o a d . Since t h e c o n d i -tion i s s e v e r e ( a s a l w a y s in i n s t a b i l i t y based V i a b i l i t yC r i s e s ) f a s t action i s n e e d e d within a f e w s ec on d s ( f o ri n s t a b i l i t y ) or a t most h a l f a minute ( f o r severe o v e r -l o a d ) . T h e action m u s t b e c e n t r a l but i t will have t obe b a s e d on f a s t c o n t i n g e n c y evaluation u s i n g l i m i t e di n f o rm a t i o n r e g a r di n g t h e imbalances. N ew a n c i l l a r yt e c h n i q u e s f o r these w e r e d e v e l o p e d i n t h e co urse o f

    t h i s project a n d are recorded in a c om p an io n p ap er [ 5 ] .T he se t ec hn iqu es which ar e based on t h e ObservationDecoupled State Concept make i t possible t o t a k e ac-tion in Regime # 3 which will make t h e system viableprovisionally although there may still p ersist over-loads which cannot be allowed f o r more than 5 t o 10min.4 . 5 . Regime # 4 : During th e 5 -1 0 mi nu tes g ai nedin Regime # 3 , an operating condition s hou ld b e devel-o p e d which assures Viability f o r an hour or m or e u nt ilf u l l r e st o ra t io n b e co m es p o ss i bl e. I n a l e s s severeViability Crisis, Regime # 4 can b e d ir ec tl y addressedw it h ou t p r ec ed i ng i t with Regime # 3 . In either c a s e ,in Regime # 4 , on th e time scale o f 5 - 1 0 m in ut es , S ta ti cState Estimation can b e r e s t o r e d , Load F lows an d othera lg or it hm s r equ ir in g a few minutes can be performeda n d s o an o v er al l s ol u ti on ca n b e re ac he d w it h c onf i-dence w hi ch w il l make t h e system viable fo r t h e desiredduration o f an hour or more. I t i s a l s o possible t oselect those measures which are l e a s t undesirable,t h a t i s , least d i s r u p t i n g ; f o r i n s t a n c e , bringing inpower from t h e neighbors or starting gas turbines i sl e s s d i s r u p t i n g t h a n load d r o p p i n g o r i s l a n d i n g . Inf a c t , i t should be possible f o r instance t o put backi n Regime # 4 some o f t h e customer loads which wered r o p p e d in a p r e c e d i n g Regime # 3 because f a s t actionwas r e q u i r e d i n t h e l a t t e r . On t h e other h a n d , someequipment l o a d s may need t o be reduced f u r t h e r becausel o a d s which can b e tolerated f o r a f ew m in u te s may notbe a c c e p t a b l e f o r an h o u r .4 . 6 . R e g i m e # 5 : F i n a l l y comes an eventual r e c o n -struction l e a d i n g back t o normal c o n d i t i o n . This wouldb est b e carried o ut by t h e operator aided b y th e Con-t r o l Center computer, both d r a w i n g on all th e reserveso f t h e system.The structure sketched in Table 1 i s mea n t to bes c a n n e d a t every t i m e s a m p l e p o i n t d u r i n g t h e o p e r a t i o n .For i n s t a n c e , a t t h e t i m e s a m p l e indicated a s t 1 inFigure 3 f o r Case Q th e D ec is io n a nd Control scan mayrun a s shown in Table 1 b y t h e dashed l i n e leading t oR e g i m e # 3 a n d t h e output c on tr ol o rd er m ay c on si st o fo r d e r s t o ru n back certain generators f a s t . Some timea f t e r such preliminary restoration o f Viability, a tanother t i m e s a m p l e , sa y t 2 , t h e Decision Phase may optf o r Regime # 4 resulting i n an " o p t i m a l " s y st em v i ab l ef o r a n hour or s o until f u l l restoration t o normalcybecomes p o s s i b l e i n Regime # 5 .

    5 . DEMONSTRATION OF PERFORMANCE BYA SIMULATED CASE HISTORY; AN EXAMPLESeveral years o f research work i s represented byt h e D ec is io n a nd Control type system o p e r a t i o n s u m m a -r i z e d in t h i s paper. Muc h detailed work i n s o l u t i o n s ,n ew i n s i g h t s , new concepts a n d n ew c o m p u t a t i o n a l or al-g o r i t h m i c t o o l s were d e v e l o p e d in t h e course o f t h i sr e s e a r c h . Some o f t he se r es u l ts were previously pub-l is h ed , p a rt ic u l a r l y those r e l a t i n g t o t h e ObservationD e c o u p l e d State S p a c e . Other d e t a i l s will be giveni n c o m i n g p u b l i c a t i o n s [ 4 ] , [ 6 ] , a n d i n a companion

    paper [ 5 ] . With r e f e r e n c e t o T a b l e 1 , detailed re-s u l t s are n o w a v a i l a b l e f o r Control R e g i m e s # 0 , # 1 , # 2# 3 , a n d - # 4 . Because o f t h e sheer bulk o f th e researchr e s u l t s i t i s i m p o s s i b l e t o cover them even s k e t c h i l yin one paper. All that i s p o s s i b l e here i s t o illus-trate b y s i m u l a t i o n , o n a r e l a t i v e l y s i m p l e emergency,t h e sequence o f e v e n t s which t a k e s p l a c e in Decisiona nd C o n t r ol Type O p e r a t i o n .The system k n o w n a s t h e IEEE 1 1 8 bu s test system[ 4 ] a n d shown in F i g u r e 4 will be used f o r t h i sd e m o n s t r a t i o n . S i n c e , h o w e v e r , t h e IEEE 1 1 8 b u s sys-t e m , which d e r i v e s from the network o f a l a r g e Mid-w e s t e r n U t i l i t y as i t was some years a g o , i s not su s-c e p t i b l e to either S t a b i l i t y o r V i a b i l i t y C r i s i s ,( o n c e a t o r n a d o t o o k ou t several lines onthis systemwith n o serious d i s r u p t i o n o f s e r v i c e ) , i t i s n e c e s -s a r y to m o d i f y t h e system t o illustrate a S t a b i l i t y

  • 7/28/2019 Operation of Large Interconnected PSys by Decision and Ctrl_1980

    7/9

    4 3

    I M P E D A N C E S ( p . u . )0 . 1 9 + j O . 6 20 . 3 + j o . 9 8 80 . 1 4 + j O . 5L O A D ( M V A )3 6 + j 2 76 + j 92 4 + j 1 01 5 + j 1 237+j224 + j 22 0 + j 1 0O + j O3 0 0 + j 9 3O + j OO + j O

    B U S GENERA T ION ( M W )10 4501 2 8 52 5 5 3 4

    Figure 4 . T h e M o d i f i e d IEEE Systemand Viability C r i s i s . Specifically, slort 1.neo andtransformers were consolidated f o r computational pur- 1 4 0 -poses and impedances of lines 15-33,19-34 a d d Z 3 - 2 4 weremodified as shown in Figure 4 . Also shown in Figure 4 1 0 5i s t h e modified l o a d s , and generation on t h e l e f t sideof the dotted line. O t h e r base case line, g e n e r a t o r , 70 10and load data areavailable in [4 ] among other sources.With th e modified line i m p e d a n c e s , t h e seg ment of t h es y s t e m to th e left of the dotted line becomes an A r e aconnected to th e larger s y s t e m on t h e right by a se tof f ou r r at he r weak ti e lines. In f a c t , th e transient Q os t a b i l i t y o f t h i s combination i s s o m a r g i n a l t h a t onewould b e u n l i k e l y t o o p e r a t e such a s y s t e m i n t h est ate of art. -One point of t h e following illustration 0 . oi s that operating such s y s t e m s becomes possible byusing Decision and Control t e c h n i q u e s . This woulda m o u n t to great savings in installations of new equip- Figure 5 . W v i t h cm e n t . t he system brea k EN o w the f o ll o wi n g c o nt i ngenc y is assumed:1 . A total 3 phase short circuit occurs a tb us 1 7 .

    2 . Regime #1 controls initially consist of se-lective network protection which springs into actionautomatically a nd locally to isolate the faulted equip-m e n t . However, a c u r c u i t breaker fails to function andt h e b ack up clearing takes a total of 12 c y c l e s . Alsoline 1 7 -38 and the t ot al load o f A P= 3 0 0 MW a t b u s 17 arelost during this operation. Th e stability augmentationpart of Regime # 1 does n o t come into operation sincebus 17 contains no generator.U p to this point everything i s c o n v e n t i o n a l inthis partitular contingency. If no further actionswere t a k e n t h e n as the time history o f b u s phase an-gles plotted in Figure 5 s h o w s , the system would b eviolently unstable and would break into two islands -aclassic case of m u l t i ma c hi n e m u l t i w i n g instability.In contrast Figure 6 shows what happens i f Deci-sio n and Control operation runs its course as follows:3 . Through all the Regimes ( # 0 - 5 ) computation ofthe Observation Decoupled State 6 proceeds at a fixedsampling r a t e on s p e c i a l , dedicated microprocessors

    7 0

    3 5

    -v< 5

    - 7 0 -

    TIME ( S E C O N D S )

    only Conventional Selective P r o t e c t i o ns u p i n t o two i s l a n d s .

    0. 6 i. 2 1. 8TIME ( S E C O N D S )

    Ftgsoe 6 . W i t h f u l l D e c i s i o n an d C o n t r o l Operation se-quence t h e s y s t e m Stability a nd V i ab i li t y is r e s t o r e d .

    L I N E1 5 - 3 31 9 - 3 42 3 - 2 4B U Sl234671 51 61 71 81 9

  • 7/28/2019 Operation of Large Interconnected PSys by Decision and Ctrl_1980

    8/9

    ( a b o u t 5-10 milliseconds per computation on IB M 3 6 0 / 6 5 ) .The output is near zero everywhere f o r 6 d u r i n g normalo p er a ti on b u t a t the instant o f t h e fault nonzero valuesor no solutions are obtained a t some busses because ofvoltage collapse. Th e same m i c r o p r o c e s s o r s also com-p u t e ( i n a b o u t 1 0 m i l l i s e c o n d s on the I B M 3 6 0 / 6 5 ) f r o mthe O b s er v at i on D e co u p le d State data any sudden c h a n g e s ,A P , in the load balance a t t h e local b us ( S e e [ 4 ] ) .

    4 . Information on 6 and/or A P and on t h e actiono f t h e selective protection in Regime # 1 i s flashed tot h e Decision Phase in th e Control Center w h i c h at thenext sample t i m e n o t e s that an Abnormality is in p r o -gress in the vicinity o f bu s 1 7 and g i v e s alarm to theo p e r a t o r . No action i s , however, taken by the o p e r a -tor. The De c i s i o n Phase orders Regime # 2 into a c t i o n( T a b l e 1 ) by doing nothing R f e g i m e # 2 i s local andautomatic.

    TIME ( S E C O N D S )t i g u r c - 9 . W i t l h only local s t a a i l i t y augmentation ini ' e g i m e # 2 th e system s t a b i l i t y i s momentarily preserv-e d even w h e n t h e f a u l t is cleared after 30 cycles.

    35

    0

    - 3 5T I M E ' ( S E C O N D S )

    -7 0

    F i g u r e 7 . V i i ; oil;7 Local S t a b i l i t - T - A u i - : nt. on i i iRegime # 2 t h e s y s t e m Stability i s momentarily p r e s e r v -e d b u i t t h e s y s t e m is n o t Viable.

    .0 0.6 1.2 1.8 2 . 4TIME ( S E C O N D S )

    Figure 8 . ' I i t h only c o n v e n t i o n a l selective ar-otectiona ct in g w it hi n 3 cycles the system breaks u p into twoi s l a n d s .5 . Regime # 2 waits till 0.2 s ec on ds a ft er theo n s e t of the fault that i s l on g en ou gh t o let Regime# 1 take care of the post fault switching and clearingof the fa ult (Figure 6 ) . A t th at time it comes intoaction ( T a b l e 1 ) using braking resistors a n d sh ort t i m eload skipping a t the v a r i o u s busses. T h e commandingof these control tools is strictly local using a normreducing c o n t r o l l a w [ 4 ] . The Regime #2 c o n t r o l byitself is effective in stabilizing the system tempo-rarily as illustrated b y Fig ure 7 . In fact the effec-tiveness of this c on tro l in stabilizing t h e system i struly r e m a r k a b l e . Figure 8 s ho ws the course o f t h i se m e r g e n c y when no Regime # 2 c o n t r o l is u s e d b u t t h efault is cleared in 3 cycles. Th e system is still v i o -lently unsta ble. O n the o th er h an d Figure 9 s hows t ha tRegime # 2 c o n t r o l s r ea di ly k e ep t he s ys te m t og eth ereven when the fault persists for 30 c y c l e s . T h i s r e p r e -sents a m o r e t h a n 1 0 times increase o f t h e c r i t i c a lclearing time. T h i s is a d r a m a t i c i l l u s t r a t i o n o f t h eeffectiveness o f Regime #2 c o n t r o l s w h i c h are t h e re-sult of th is project.

    o 0. 6 1. 2 1 . 8 2. 4TIME ( S E C O N D S ).igure 1 0 . h i l h e n L oc al S ta bi li ty A u gm en t at i on in R eg i me1 2 i s turned off and n o t followed by Regime # 3 , insta-bility recurs.It can b e further o bs er ve d, h ow ev er , i n Figure 1 0that t h e s y s t e m will r e t u r n to instability i f theRegime # 2 control i s turned off -in this case it i sturned off a t 1 . 5 seconds. The point i s that Regime # 2m u s t e ve nt ua ll y b e turned o f f because t h e resistorsheat u p . S o , it i s important that appropriate measuresbe t a k e n in this case b e f o r e turning off the resistors.T hi s c al ls for Regime # 3 c o n t r o l . H o w i s then t h e de-cision reached to t u r n to Regime # 3 , t h i s latter beingcentrally rather than locally c o n t r o l l e d ?A reliable value for A P at b u s 17 of a b o u t 3 0 0 1 4 Wbecomes a va il ab l e a bo ut 0 . 5 to 0 . 7 5 seconds after t h eo n s e t of the f a u l t . ( O f course, t h e experimenter knowsit i s 300MW lost b ut t h e D ec i si o n P ha se o nl y f in ds outa t t h i s point). A t t h i s point th e Decision Phase per-forms a t t h e next sample ( s e e dashed line in T a b le 1 )th e C o nc e nt r ic R e la xa t io n Algorithm [ 5 ] around b u s 1 7 .This i s estimated to take about 0 . 1 - 02 s ec ond s inthe C on tr ol C en te r com p uter . The conclusion i s reachedfrom this computation that the p o s t fault steady s t a t etorque angles on the lines of the dashed line c u t s e t inFigure 4 range 60-70 degrees i f no change i s made on theaffected a r e a . (This pa r ti c ula r c o mput at i o n i s pre-sented in detail in a companion p a p e r [ 5 ] ) . This istaken b y the Decision Phase as e v i d e n c e of a ViabilityCrisis on a cc ou nt of instability s i n c e it is clear that

    even a sm all transient c a n n o t s e t t l e o u t at t h e s e largetorque angles. I m m e d i a t e V i a b i l i z a t i o n i s called fo ron the affected area and the Degree # 4 D e ci si on b lo ckin Table 1 p u t s the Control Regime #3 in charge asshown by the dashed l i n e . T hi s c ho ic e only takes afew microseconds. N o t e th at th e existence of a weakc u t s e t wou ld b e k n o wn and so this c u t s e t would betested as a m a t t e r of routine.5 . Regime #3 scans t h s available control meanson th e area to the left of th e dashed c u t s e t in F i g u r e4 since vi a b i l i z a t i o n clearly requires action on t h i ssegment given the j us t c om pu te d large s t e a d y statetorque angles without such action. It finds t ha t f a s t

    4 4

    0"vs

    4

  • 7/28/2019 Operation of Large Interconnected PSys by Decision and Ctrl_1980

    9/9

    4 5

    2. 1T I M E ( SEC O N D S )

    Figure 1 1 . Regime 1 3 alone would make t h e r y s t e m Via-ble but i t cannot restore S t a b i l i t y .generator runback o f 1 5 0 M W each i s available at units# 1 0 and # 2 5 . T h i s measure i s c h o s e n b y t h e controlalgorithm [ 4 ] since t h e o n l y l e s s objectionable mea-s u r e , f r e q u e n c y reduction ( T a b l e 2 ) , i s no t e f f e c t i v ein a Viability Crisis c a u s e d b y i n s t a b i l i t y . Thet o r q u e a n g l e s with runback o n t h e d a s h e d cutset arec h e c k e d b y Concentric Relaxation [ 5 ] again a n d aref o u n d t o b e in t h e range 8 0 t o 1 4 0 ( a n o t h e r 0 . 1 - 0 . 2s e c o n d s ) . This i s q u i t e s a t i s f a c t o r i l y s t a b l e . Con-s e q u e n t l y runback o f 1 5 0 M W each on u n i t s # 1 0 a n d # 2 5 i sordered and carried out a t 2 s e c o n d s a s shown i n Figure6 with clearly very s a t i s f a c t o r y r e s u l t s . I n contrastFigures 1 0 and 1 1 show that n e i t h e r o f Regime # 2 o r# 3 alone i s effective in s t a b i l i z i n g t h e s y s t e m .6 . U s i n g a combination o f Regimes # 2 a n d # 3 asin Figure 6 t h e s y st em r em ai ns s ta bl e a nd viable butf u r t h e r a d j u s t m e n t s are needed i n a matter o f minutessince f a s t runback l e a v e s th e units in a conditionwhich i s o n l y t e m p o r a r i l y a d m i s s i b l e . T h u s R e g i m e # 4will b e initiated and i t will o r d e r some action liket h e n o r m a l i z i n g o f t h e unit # 1 0 a n d # 2 5 generation att h e i r reduced l e v e l or somewhat h i g h e r - d r a w i n g somea d d i t i o n a l power t h r o u g h t h e t i e s . A GC will need t o b er e a d j u s t e d t o d o t h e l a t t e r .

    7 . Restoration - Regime # 5 will se e t o t h e recon-nection o f t h e l o s t load and a r i s e back t o normal o ft h e g e n e r a t i o n after t h e f a u l t e d e q u i p m e n t i s checkedout or p o s s i b l y b y p a s s e d .Regime # 4 a n d Regime # 5 a l g o r i t h m s have not yetbeen d e v e l o p e d . This remains f o r f u r t h e r r e s e a r c h .6 . CONCLUSIONS

    The p r e c e d i n g case history i l l u s t r a t e d just on er e l a t i v e l y uncomplicated emergency situation where asystem which would not b e p ra ct ic al w it h state o f a r toperating t e c h n i q u e s i s maintained s t a b l e an d operatingby t h e use o f t h e Decision and Control O p e r a t i o n . Ad -option o f a f u l l y developed operating practice alongt h e s e l i n e s would e x t e n d decisively t h e operating rangeand u n d i s r u p t e d t i m e s o f t h e large i n t e r c o n n e c t e d powers y s t e m . T h i s , o f c o u r s e , would r e s u l t in major s a v i n g sby r e d u c i n g t h e cost o f equipment especially expansioncost o f t r a n s m i s s i o n . There s o u l d be o f f s e t t i n g c o s tin t e l e c o m m u n i c a t i o n and c o n t r o l equipment but i t i sc o n j e c t u r e d t h a t t h e added e xp e ns e w o ul d be dwarfed byt h e s a v i n g s .

    7 . APPENDIXDEFINITIONS O F A F EW T E R H S

    S t a b i l i t y Crisis i s an ongoing d y n a m i c conditiono f t h e system which will lead t o system breakup unlessemergency measures are t a k e n .System Security i s t h e ability o f t h e system t oremain Viable i f stricken by any o f a s e t o f preselectedpotential d i s t u r b a n c e s ( e . g . : First c o n t i n g e n c i e s ) .

    S e cu r it y D e fe ct i s t h e condition o f t h e systemwhen t h e system i s not Viable f o r some contingencieswithin t h e set o f p r e s e l e c t e d potential d i s t u r b a n c e sused to define S e c u r i t y .System Viability i s t h e ability of t h e systemt o operate i n a given condition without t h e l o s s o fl o a d or stability and with t h e f r e q u e n c y , t h e v o l t a g e s ,t h e currents, etc. r em ai ni ng wi th in tolerances whichare p e r m i s s i b l e f o r a given t i m e period. The system i st h e n viable i n t h i s g i v e n condition f o r t h i s given t i m ep e r i o d .Viability Crisis i s an ongoing condition wheret h e t i m e p e r i o d o f Viability i s s o short ( i n c l u d i n gz e r o ) t h at i t requires emergency action t o lengthen i ts u f f i c i e n t l y f o r continued system operation. Typicalranges:0 - 0 . 1 seconds range-usually connected with sta-b i l i t y or torque a n g l e p r o b l e m s ( R e g i m e # 3 )1 minute range-usually connected with thermal overl o a d or undervoltage ( R e g i m e # 3 )1 0 minute r a n g e - u s u a l l y connected withoverload o r undervoltage ( R e g i m e # 3 ) t h e r m a lSystem Integrity i s a condition of the system

    where all load s are supplied according t o their demandand a l l parts o f th e system are e n e r g i z e d and inter-connected as s c h e d u l e d .Integrity Crisis i s a condition where system In-t e g r i t y i s l o s t in some respect f o r i n s t a n c e , loadshave been d r o p p e d , some parts of the system are deen-ergized or t h e system i s islanded into disconnectedsegments.Note: Loss o f individual pieces o f equipment sucha s a generator, a transmission l i n e , etc. i s considereda Structural Defect ( p o s s i b l y combined with a higherlevel of Abnormality - a Viability or I n t e g r i t y C r i s i s ,fo r i n s t a n c e ) b ut not per se as I n t e g r i t y C r i s i s .Structural Control consists of structural changes( s w i t c h i n g o f l i n e s , g e n e r a t o r s , i s l a n d i n g ) ordered byt h e control computer and aimed at a l t e r i n g th ebehaviour o r t h e Viability o f t h e s y s t e m . Two levels1 . Local or First S t a g e Structural Control:Structural Changes carried out l o c a l l y based onl o ca l i nf o rm a ti o n. E . g . th e f u n c t i o n i n g o f selec-tive protection or load s k i p p i n g .2 . Second S t a g e Structural C o n t r o l : StructuralChanges ordered b y the Control Center C o m p u t e r .E . g . : Intentional i s l a n d i n g

    8 . REFERENCES1 . T . E . Dy L i a c c o , " T h e Adaptive R e l i a b i l i t y ControlS y s t e m " , IEEE Transactions on P A S , May 1 9 6 7 , p p .5 1 7 - 5 3 1 .2 . - L . H . Fink a n d K . C a r l s e n , " O p e r a t i n g under Stressand S t r a i n " , IEEE S p e c t r u m , March 1 9 7 8 , p p . 4 8 - 5 3 .3 . J . Z a b o r s z k y , A . K . S u b r a m a n i a n , T . J . Tarn and K . M .L u , "A New State S p a c e f o r E m e r g e n c y C o n t r o l i n

    th e Interconnected Power S y s t e m " , IEEE Transac-tions on Automatic C o n t r o l , A u g u s t 1 9 7 7 , p p . 5 0 5 -5 1 7 .4 . J . Z a b o r s z k y , K . W . Whang and K . V . P r a s a d , "Moni-t o r i n g , Evaluation a n d Control o f Power SystemE m e r g e n c i e s " , Report N o . SSM 7 9 0 7 , Department ofS y s t e m s Science and M a t h e m a t i c s , W a s h i n g t o n Uni-v e r s i t y , S t . L o u i s , M i s so u r i, 6 3 1 3 0 .5 . J . Z a b o r s z k y , K . W . W h a n g a n d K . V . P r a s a d , " F a s tC o n t i n g e n c y Evaluation U s i n g Concentric Relaxa-t i o n " , Companion p a p e r .6 . J . Z a b o r s z k y , H . M u k a i , a n d J . S i n g h , " C o n t r o l o fPower System in t h e Normal S t a t e " , Report N o . SSM7 9 0 2 , D e p a r t m e n t o f S y s t e m s Science a n d Mathemat-i c s , W a s h i n g t o n U n i v e r s i t y , S t . L o u i s , MO 6 3 1 3 0