Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI...

23
Open questions on NLIN and the prospects of its mitigation M. Shtaif and M. Feder TAU Nonlinear Interference Noise

Transcript of Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI...

Page 1: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

Open questions on NLIN and the prospects of its mitigation

M. Shtaif and M. FederTAU

Nonlinear Interference Noise

Page 2: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

L’Aquila University

Bell Labs

Meir FederMark Shtaif

Omri Geller

Ori Golani

Ronen Dar

Antonio Mecozzi

Cristian Antonelli

Tel Aviv University

Page 3: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

Outline

• Introduce the issue

• BER performance estimation

• Shaping codes for nonlinearity mitigation

Page 4: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

Nonlinear distortionsASE Noise

Total noise

Nonlinear interference noise (NLIN)

Under the assumptions ofAdditivity, Gaussianity, Circularity, Whiteness

BER

Page 5: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

Nonlinear distortionsASE Noise

Total noise

Nonlinear interference noise (NLIN)

0 500 1000 15000

0.2

0.4

0.6

0.8

1

Phas

e-no

ise a

utoc

orre

latio

n

Delay [symbols]

Temporal correlations

?Under the assumptions of

Additivity, Gaussianity, Circularity, Whiteness

BER

Page 6: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

Modeling the BER performance 

Ori Golani

Page 7: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

COI COI

IC

IC

IC

IC

IC

IC

IC

IC

+

ASE

+

NLIN

AWGN modelTx

Tx

Tx

Tx

Rx

Rx

Rx

Rx

Tx Rx

Page 8: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

Tx RxCOI COI

IC

IC

IC

IC

IC

IC

IC

IC

Tx

Tx

Tx

Tx

Rx

Rx

Rx

RxInter 

channel NLIN 

Generator

+

+

ASE

COI Data

The effect of receiver DSP on NLINIs included !

A virtual lab for BER assessment

Page 9: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

Δ ASE

Correlationsand PPRN

Δ + Δ + Δ …

Not random ~whitecircular

MF DSP

COI Receiver

A/D,Received field

Time varying ISI

NLIN

Page 10: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

Time varying ISI

, ,, ,

⟨ |

2X2 MatrixISI

Page 11: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

MF DSP

COI Transmitter COI Receiver

A/D

Virtual Lab 

split step propagation

+

Δ | ⟩

NLIN Generator

Δ …

AWGNGenerated as Gaussian Matrices with the correct 2nd order statistics

Page 12: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

5 X 100 km system, Standard SMF,32 Gbaud, 16 QAM, 50 GHz channel spacing

Numerical validationComparing the results of the virtual lab with 

those of split‐step simulations

Page 13: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

Symbol delay

Symbol delay

The ACF of 

The ACF of 

Symbol delay

The ACF of 

0

1

2

0

1

2

0

1

2

Split‐step vs. Virtual LabA few Examples Autocorr. functions of several coefficients.With 11 WDM channels

Page 14: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

Input power dBm

Bit‐error‐rate

``Stupid” receiver

Validation in BER assessment

-5 0 5

10-3

10-2

Input power dBm

Bit‐error‐rate

``smart” RLS receiver

AWGN

ISIModel

-5 0 5

10-3

10-2

AWGNModel

Page 15: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

Input power dBm Input power dBm

Bit‐error‐rate

Bit‐error‐rate

``Stupid” receiver ``smart” RLS receiver

Validation in BER assessment

-10 -5 0

10-3

10-2

-10 -5 0

10-3

10-2

AWGNmodel

ISIModel

Page 16: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

Bit‐error‐rate

``smart” RLS receiver

Number of WDM channels

Application: BER in a fully loaded system

Page 17: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

Other applications

• Analysis (e.g. capacity estimation)

• Performance prediction for routing decisions

• Parameter optimization

• Testing new DSP algorithms, codes etc.

Page 18: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

Shaping for the Nonlinear Channel

Omri Geller

Page 19: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

Shaping Principles

• Uniform QAM modulation is not the optimal input distribution for the channel

• In linear channels with additive white Gaussian noise, the Gaussian input distribution is optimal:• The gain in using Gaussian vs. Uniform distribution can be 

upto 1.53dB (corresponding to a mutual‐information gain of ½ log  ⁄ )

• In the optical, non‐linear channel the input distribution affects the amount of NLIN. Theoretically, the choice of input distribution (over uniform QAM) can lead to even higher gain!

Page 20: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

Theoretical Shaping Gain

Where                           and                                are lower bound on the corresponding MI’s 

Results:

(Gaussian, Uniformand uniform over a2N‐dim ball)

Page 21: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

Practical Shaping

• Start with a large QAM constellation of some dimension and size.

• Keep the points that fit the desired distribution:• In the linear channels, keep the points with the minimal 

energy, to get a high dimensional ball shaped constellation

• In the optical channel, we propose the following algorithm:• Start with a 256 QAM constellation at some dimension N• Keep half the points that resides within a “shell” (or ring) 

constellation. Apply the “shell mapping shaping algorithm”• Motivation: minimal variance of the constellation energy 

reduces the non‐linear noise. Yet, it still has good properties against the additive noise.

• Experiments that try to reduce the polarization effect of the NLIN caused poorer gains due to resulting minimal distance

Page 22: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

Practical Shaping (Results)98G‐Baud system.     N‐Block size (2N complex dimension due to polarization)Red –Shell mapping with best ringBlack – The theoretical minimum energy mapping (ball)Blue – Shell mapping for minimum energy (ball)

Page 23: Open questions on NLIN and the prospects of its mitigation€¦ · F J 6 ; MF DSP + = Ü á á COI Transmitter COI Receiver A/D Virtual Lab split step propagation + Δ á \ T Q L

Practical Shaping (Results)32G‐Baud system.     N‐Block size (2N complex dimension due to polarization)Red –Shell mapping with best ringBlack – The theoretical minimum energy mapping (ball)Blue – Shell mapping for minimum energy (ball)