On transport equations in thin moving domains

43
On transport equations in thin moving domains Yoshikazu Giga University of Tokyo March 2017

Transcript of On transport equations in thin moving domains

On transport equations in thin moving domains

Yoshikazu Giga University of Tokyo

March 2017

Contents 1. Problems on moving surfaces 2. Derivations of mass transport equations

2.1 Conservation law 2.2 Zero width limit

3. Derivation of diffusion equations 3.1 Energy law 3.2 Zero width limit

4. Derivation of the Euler and the Navier-Stokes equations

2

3

โ€ข Reaction-diffusion on biological cells โ€ข Fluid-flow on biological cell

Boussinesq (1913), L. E. Scriven (1960)

โ€ข Fluid-flow on rotating surface geophysics

1. Problems on moving surfaces

4

ฮ“ ๐‘ก ๐‘กโˆˆ[0,๐‘‡): evolving surface in ๐‘3

(1) How does one derive equations describing phenomena on a moving surface ฮ“ ๐‘ก ?

(2) Is it related to zero-width limit of thin moving domain? ๐ท๐œ€ ๐‘ก = ๐‘ฅ โˆˆ ๐‘3 dist ๐‘ฅ, ฮ“ ๐‘ก < ๐œ€ .

Problems

5

time

๐‘2

ฮ“(๐‘ก)

๐‘ก

6

Thin domain

๐œ€

๐‘›ฮ“

๐ท๐œ€(๐‘ก)

ฮ“(๐‘ก)

7

๐‘›ฮ“ : outer unit normal of ฮ“ ๐‘ก ๐œ‚ = ๐œ‚(๐‘ฆ, ๐‘ก) : density of substance at ๐‘ฆ โˆˆ ฮ“(๐‘ก) ๐‘ฃ = ๐‘ฃ(๐‘ฆ, ๐‘ก) : velocity of substance at ๐‘ฆ โˆˆ ฮ“ ๐‘ก (vector field on ฮ“(๐‘ก) not necessarily tangential)

2. Derivations of mass transport equations

2.1 Conservation law

8

Local mass conservation law

๐‘‰ฮ“ : normal velocity of ฮ“ ๐‘ก in the direction of ๐‘›ฮ“. โ€ข Ansatz: Normal component of ๐‘ฃ equals ๐‘‰ฮ“ (There is no flow leaving from or coming to ฮ“(๐‘ก).)

๐‘‘๐‘‘๐‘ก โˆซ ๐œ‚๐‘ˆ(๐‘ก) ๐‘‘โ„‹2 = 0 for any portion ๐‘ˆ(๐‘ก) of ฮ“(๐‘ก)

(๐‘ˆ(๐‘ก) : relatively open set)

9

Leibniz formula ๐‘‘๐‘‘๐‘ก๏ฟฝ ๐œ‚๐‘ˆ(๐‘ก)

๐‘‘โ„‹2 = ๏ฟฝ (๐œ•โ—๐œ‚ + divฮ“ ๐‘ฃ ๐œ‚)๐‘ˆ(๐‘ก)

๐‘‘โ„‹2

๐œ•โ—๐œ‚ = ๐œ•๐‘ก๐œ‚ + ๐‘ฃ โ‹… ๐›ป ๐œ‚ (material derivative)

divฮ“๐‘ฃ : surface divergence Ansatz implies

๐‘ฃ = ๐‘‰ฮ“ ๐‘› + ๐‘ฃ๐‘‡ . ๐‘ฃ๐‘‡ : tangential velocity (๐‘ฃ๐‘‡ โ‹… ๐‘›ฮ“ = 0)

10

Conservation law

The law

0 =๐‘‘๐‘‘๐‘ก๏ฟฝ ๐œ‚๐‘ˆ(๐‘ก)

๐‘‘โ„‹2

for all ๐‘ˆ(๐‘ก) yields

๐œ•โ—๐œ‚ + divฮ“ ๐‘ฃ ๐œ‚ = 0 on ฮ“(๐‘ก).

11

Calculation of surface divergence

divฮ“๐‘ฃ = divฮ“ ๐‘‰ฮ“ ๐‘› + divฮ“ ๐‘ฃ๐‘‡ = ๐‘‰ฮ“ divฮ“ ๐‘› + ๐›ปฮ“ ๐‘‰ฮ“ โ‹… ๐‘› + divฮ“ ๐‘ฃ๐‘‡

๐ป : mean curvature

โˆด divฮ“ ๐‘ฃ = โˆ’๐ป ๐‘‰ฮ“ + divฮ“ ๐‘ฃ๐‘‡

Note : divฮ“ ๐œ‚ ๐‘ฃ๐‘‡ = ๐›ปฮ“ ๐œ‚ โ‹… ๐‘ฃ๐‘‡ + ๐œ‚ divฮ“ ๐‘ฃ๐‘‡

โˆ’๐ป 0

12

Second expression of conservation law Since ๐œ•โ—๐œ‚ = ๐œ•โˆ˜๐œ‚ + ๐‘ฃ๐‘‡ โ‹… ๐›ป๐œ‚ with ๐œ•โˆ˜๐œ‚ = ๐œ•๐‘ก๐œ‚ + ๐‘‰ฮ“ ๐‘› โ‹… ๐›ป๐œ‚, ๐œ•โ—๐œ‚ + divฮ“ ๐‘ฃ ๐œ‚ = ๐œ•โˆ˜๐œ‚ โˆ’ ๐ป ๐‘‰ฮ“๐œ‚ + divฮ“(๐œ‚๐‘ฃ๐‘‡).

Mass conservation: ๐œ•โˆ˜๐œ‚ โˆ’ ๐ป ๐‘‰ฮ“ ๐œ‚ + divฮ“ ๐œ‚๐‘ฃ๐‘‡ = 0

First two terms depend only on motion of ฮ“(๐‘ก), independent of ๐‘ฃ๐‘‡.

13

Mass conservation

๐œ•โ—๐œ‚ + divฮ“ ๐‘ฃ ๐œ‚ = 0 or

๐œ•โˆ˜๐œ‚ โˆ’ ๐ป ๐‘‰ฮ“ ๐œ‚ + divฮ“ ๐œ‚๐‘ฃ๐‘‡ = 0

divฮ“๐‘ค : surface divergence

divฮ“๐‘ค = ๐›ปฮ“ โ‹… ๐‘ค

๐›ปฮ“ = ๐‘ƒฮ“ ๐›ป

๐‘ƒฮ“ = ๐ผ โˆ’ ๐‘›ฮ“ โŠ— ๐‘›ฮ“ : projection to tangent space of ฮ“(๐‘ก).

14

Mass conservation in a thin domain reads (CL) ๐œŒ๐‘ก + div ๐œŒ ๐‘ข = 0 in ๐ท๐œ€(๐‘ก)

(B) ๐‘ข โ‹… ๐œˆ๐ท๐œ€ = ๐‘‰๐ท๐œ€๐‘ on ๐œ•๐ท๐œ€(๐‘ก).

The substance in ๐ท๐œ€(๐‘ก) moves along the boundary of ๐ท๐œ€(๐‘ก). It does not go into or out of ๐ท๐œ€(๐‘ก).

๐‘‰๐ท๐œ€๐‘ : normal velocity of ๐œ•๐ท๐œ€(๐‘ก) in the

direction of unit outer normal ๐œˆ๐ท of ๐ท๐œ€(๐‘ก)

2.2 Zero width limit

15

Problem ๐œŒ ๐‘ฅ, ๐‘ก = ๐œ‚ ๐œ‹ ๐‘ฅ, ๐‘ก , ๐‘ก + ๐‘‘ ๐‘ฅ, ๐‘ก ๐œ‚1 ๐œ‹ ๐‘ฅ, ๐‘ก , ๐‘ก

+๐‘‚ ๐‘‘2 ๐‘ข ๐‘ฅ, ๐‘ก = ๐‘ฃ ๐œ‹ ๐‘ฅ, ๐‘ก , ๐‘ก + ๐‘‘ ๐‘ฅ, ๐‘ก ๐‘ฃ1 ๐œ‹ ๐‘ฅ, ๐‘ก , ๐‘ก

+๐‘‚ ๐‘‘2 as ๐‘‘ โ†’ 0

๐œ‹ ๐‘ฅ, ๐‘ก : projection to ฮ“(๐‘ก) ๐‘‘ ๐‘ฅ, ๐‘ก : signed distance (๐‘‘ > 0 near space infinity)

๐œ‹ ๐‘ฅ, ๐‘ก = ๐‘ฅ โˆ’ ๐‘‘ ๐‘ฅ, ๐‘ก ๐‘›ฮ“ ๐œ‹, ๐‘ก

If ๐œŒ solves (CL), what equation ๐œ‚ solves?

16

Equation derived from zero width limit

Theorem 1 (T.-H. Miura, C. Liu, Y. G.). Let (๐œŒ,๐‘ข) solve (CL) in ๐ท๐œ€ with (B). Let ๐œ‚, ๐‘ฃ be the first term of the expansion. Then

๐‘ฃ = ๐‘‰ฮ“ ๐‘›ฮ“ + ๐‘ฃ๐‘‡ and ๐œ‚ solves

(CS) ๐œ•โˆ˜๐œ‚ โˆ’ ๐ป ๐‘‰ฮ“ ๐œ‚ + divฮ“ ๐œ‚๐‘ฃ๐‘‡ = 0.

A

Differentiate ๐œŒ ๐‘ฅ, ๐‘ก

= ๐œ‚ ๐œ‹ ๐‘ฅ, ๐‘ก , ๐‘ก + ๐‘‘ ๐‘ฅ, ๐‘ก ๐œ‚1 ๐œ‹ ๐‘ฅ, ๐‘ก , ๐‘ก + ๐‘‚(๐‘‘2) in time.

Note ๐œ•๐‘ก ๐œ‚ ๐œ‹ ๐‘ฅ, ๐‘ก , ๐‘ก = ๐œ•โˆ˜๐œ‚ ๐œ‹ ๐‘ฅ, ๐‘ก , ๐‘ก ,

๐‘‘๐‘ก = โˆ’๐‘‰ฮ“.

We observe ๐œŒ๐‘ก = ๐œ•โˆ˜๐œ‚ ๐œ‹, ๐‘ก โˆ’ ๐‘‰ฮ“ ๐œ‚1 ๐œ‹, ๐‘ก + ๐‘‚ ๐‘‘ .

17

Idea of the proof

๐‘ฅ

ฮ“(๐‘ก)

๐œ‹(๐‘ฅ, ๐‘ก)

18

Idea of the proof (continued) Note that

๐›ป๐œ‹ ๐‘ฅ, ๐‘ก = ๐‘ƒฮ“ ๐œ‹, ๐‘ก + ๐‘‚ ๐‘‘ . One observes that

๐œŒ๐‘ข ๐‘ฅ, ๐‘ก = ๐œ‚๐‘ฃ ๐œ‹, ๐‘ก + ๐‘Š1๐‘‘ + ๐‘‚ ๐‘‘2

with ๐‘Š1 ๐œ‹, ๐‘ก = ๐œ‚๐‘ฃ1 ๐œ‹, ๐‘ก + ๐œ‚1๐‘ฃ ๐œ‹, ๐‘ก

which yields

๐›ป ๐œŒ๐‘ข ๐‘ฅ, ๐‘ก = ๐›ป๐œ‹ ๐‘ฅ, ๐‘ก ๐›ป ๐œ‚๐‘ฃ + ๐›ป๐‘‘โจ‚๐‘Š1 + ๐‘‚ ๐‘‘ = Pฮ“๐›ป ๐œ‚๐‘ฃ ๐‘ฅ, ๐‘ก + ๐‘›ฮ“โจ‚๐‘Š1 + ๐‘‚ ๐‘‘ .

Here ๐‘ข ๐‘ฅ, ๐‘ก = ๐‘ฃ ๐œ‹, ๐‘ก + ๐‘‘ ๐‘ฅ, ๐‘ก ๐‘ฃ1 ๐œ‹, ๐‘ก + ๐‘‚ ๐‘‘2 .

A

19

Idea of the proof (continued) We are now able to conclude

div ๐œŒ๐‘ข ๐‘ฅ, ๐‘ก = divฮ“ ๐œ‚๐‘ฃ + ๐‘›ฮ“ โ‹… ๐‘Š1 + ๐‘‚ ๐‘‘ . Here

divฮ“ ๐œ‚๐‘ฃ = โˆ’๐œ‚ ๐‘‰ฮ“๐ป + divฮ“ ๐œ‚๐‘ฃ๐‘‡ .

Note ๐‘›ฮ“ โ‹… ๐‘Š1 = ๐œ‚1๐‘‰ฮ“ because ๐‘ฃ โ‹… ๐‘›ฮ“ = ๐‘‰ฮ“ , ๐‘ฃ1 โ‹… ๐‘›ฮ“ = 0. Thus ๐œ•๐‘ก๐œŒ + div ๐œŒ๐‘ข = ๐œ•โˆ˜๐œ‚ โˆ’ ๐ป๐œ‚๐‘‰ฮ“ + ๐‘‘๐‘‘๐‘ฃฮ“(๐œ‚๐‘ฃ๐‘‡) ๐œ‹, ๐‘ก + ๐‘‚ ๐‘‘ .

20

๐’ฆ : Kinetic energy โ„ฑ: Free energy

๐›ฟ ๏ฟฝ ๐’ฆ๐‘‡

0๐‘‘๐‘ก = ๏ฟฝ ๏ฟฝ(๐น๐‘– โ‹… ๐›ฟ๐‘ฅ)

๐‘‡

0๐‘‘๐‘ฅ๐‘‘๐‘ก

๐›ฟ ๏ฟฝ โ„ฑ๐‘‡

0๐‘‘๐‘ก = ๏ฟฝ ๏ฟฝ(๐น๐‘ โ‹… ๐›ฟ๐‘ฅ)

๐‘‡

0๐‘‘๐‘ฅ๐‘‘๐‘ก

๐›ฟ : variation with respect to flow map

3. Derivation of diffusion equations 3.1 Energy law

21

Least action principle LAP ๐น๐‘– : inertial force ๐น๐‘ : conservative force

Stationary point of the action integral

๐ด ๐‘ฅ = ๏ฟฝ ๐’ฆ(๐‘ฅ)๐‘‡

0๐‘‘๐‘ก โˆ’ ๏ฟฝ โ„ฑ ๐‘ฅ

๐‘‡

0๐‘‘๐‘ก

๐‘ฅ : Flow map ๐‘‹ โ†ฆ ๐‘ฅ ๐‘ก,๐‘‹ ๐‘‘๐‘‘๐‘‘๐‘ก

= ๐‘ข ๐‘ฅ, ๐‘ก ๐‘ฅ|๐‘ก=0 = ๐‘‹ (๐‘ข : velocity field)

LAP ๐›ฟ๐›ฟ๐›ฟ๐‘‘

= 0 โ‡” ๐น๐‘– โˆ’ ๐น๐‘ = 0

22

Maximum dissipation principle MDP

๐’Ÿ : dissipation energy depending on ๐‘ข = ๏ฟฝฬ‡๏ฟฝ.

๐›ฟ๐’Ÿ = ๐น๐‘‘ โ‹… ๐›ฟ๐‘ข ๐น๐‘‘ : dissipation force

LAP + MDP โˆถโ‡’ ๐น๐‘– โˆ’ ๐น๐‘ = ๐น๐‘‘

23

Diffusion process

๐’ฆ = 0,ใ€€โ„ฑ ๐‘ฅ = ๏ฟฝ ๐œ”(๐œŒ ๐‘ฅ )๐ท(๐‘ก)

๐‘‘๐‘ฅ

๐’Ÿ =12๏ฟฝ ๐œŒ ๐‘ข 2

๐ท(๐‘ก)๐‘‘๐‘ฅ ๐œ” : given

๐œŒ : satisfies the transport eq (CL) ๐œŒ๐‘ก + div ๐œŒ๐‘ข = 0 ๐‘ฅ : ๐ท 0 โ†’ ๐ท(๐‘ก) flow map with velocity ๐‘ข

๐‘ฅ ๐‘‹, 0 = ๐‘‹,ใ€€๐‘‘๐‘ฅ๐‘‘๐‘ก

= ๐‘ข ๐‘ฅ, ๐‘ก

๐‘‹ โˆˆ ๐ท(0)

24

Conservative force

Lemma 1 (T.-H. Miura, C. Liu, Y. G.). Assume that ๐œŒ satisfies (CL). Then

๐น๐‘ =๐›ฟ๐›ฟ๐‘ฅ

โ„ฑ = ๐›ป๐‘(๐œŒ)

with ๐‘ ๐œŒ = ๐œ”โ€ฒ ๐œŒ ๐œŒ โˆ’ ๐œ” ๐œŒ .

Conservative force is the pressure gradient.

25

Diffusion equation

Mass conservation law (CL): ๐œŒ๐‘ก + div ๐œŒ๐‘ข = 0

Darcyโ€™s law: ๐œŒ๐‘ข = โˆ’๐›ป๐‘ ๐‘

Example: ๐œ” ๐œŒ = ๐œŒ log ๐œŒ โ‡’ ๐‘ ๐œŒ = ๐œŒ ๐œŒ๐‘ก โˆ’ ฮ”๐œŒ = 0 (heat equation)

26

Conservation force on a surface

Lemma 2 (MCG). Let (๐œ‚, ๐‘ฃ) solves (CS). Then

๐น๐‘ =๐›ฟโ„ฑ๐›ฟ๐‘ฆ

= ๐›ปฮ“๐‘ ๐œ‚ .

Here

โ„ฑ ๐‘ฆ = ๏ฟฝ ๐œ” ๐œ‚ ๐‘ฆฮ“ ๐‘ก

๐‘‘โ„‹2 ๐‘ฆ .

27

Diffusion equations on a surface

Conservation law (CS) ๐œ•โˆ˜๐œ‚ โˆ’ ๐ป ๐‘‰ฮ“ ๐œ‚ + divฮ“ ๐œ‚๐‘ฃ๐‘‡ = 0

Darcyโ€™s law ๐œ‚๐‘ฃ๐‘‡ = โˆ’๐›ปฮ“๐‘ ๐œ‚

Example: ๐œ” ๐œ‚ = ๐œ‚ log ๐œ‚ โ‡’ ๐‘ ๐œ‚ = ๐œ‚ ๐œ•โˆ˜๐œ‚ โˆ’ ๐ป ๐‘‰ฮ“ ๐œ‚ โˆ’ ฮ”ฮ“๐œ‚ = 0

(different from different equation with convective term Elliot et al.)

28

Consider

(D) ๏ฟฝ ๐œŒ๐‘ก + div ๐œŒ๐‘ข = 0 ๐œŒ๐‘ข = โˆ’๐›ป๐‘ ๐‘ in ๐ท๐œ€(๐‘ก)๐‘ ๐œŒ = ๐œ”โ€ฒ ๐œŒ ๐œŒ โˆ’ ๐œ” ๐œŒ

with (B) ๐‘ข โ‹… ๐œˆฮฉ = ๐‘‰ฮฉ๐‘ on ๐œ•๐ท๐œ€ ๐‘ก .

Expanded pressure ๐‘ ๐œŒ(๐‘ฅ, ๐‘ก) = ๐‘0 ๐œ‹, ๐‘ก +๐‘‘ ๐‘ฅ, ๐‘ก ๐‘1 ๐‘ฅ, ๐‘ก + ๐‘‚(๐‘‘2)

3.2 Zero width limit

29

Equation derived from zero width limit

Theorem 2 (MLG). Let (๐‘,๐‘ข) solves (D) in ๐ท๐œ€(๐‘ก) with (B). Let ๐œ‚, ๐‘ฃ be the first term of the expansion. Then

๐œ•โˆ˜๐œ‚ โˆ’ ๐ป ๐‘‰ฮ“ ๐œ‚ + divฮ“ ๐œ‚๐‘ฃ๐‘‡ = 0 ๐œ‚๐‘ฃ๐‘‡ = โˆ’๐›ปฮ“๐‘0 on ฮ“(t).

30

Energy identity For diffusion equations (D) on ๐ท(t) with (B), we have ๐‘‘๐‘‘๐‘ก๏ฟฝ ๐œ”(๐œŒ)๐ท ๐‘ก

๐‘‘๐‘ฅ

= โˆ’๏ฟฝ ๐œŒ ๐‘ข 2

๐ท ๐‘ก๐‘‘๐‘ฅ โˆ’ ๏ฟฝ ๐‘ ๐œŒ ๐‘‰ฮฉ๐‘

๐œ•๐ท ๐‘ก๐‘‘โ„‹2

i.e. ๐‘‘โ„ฑ๐‘‘๐‘ก

= โˆ’2๐’Ÿ + ๏ฟฝฬ‡๏ฟฝ,

๏ฟฝฬ‡๏ฟฝ = โˆ’๏ฟฝ ๐‘ ๐œŒ ๐‘‰๐ท๐‘๐œ•๐ท ๐‘ก

๐‘‘โ„‹2.

๏ฟฝฬ‡๏ฟฝ: rate of change of work by the eternal environment

31

Energy identity on a surface

๐‘‘๐‘‘๐‘ก๏ฟฝ ๐œ”(๐œ‚)ฮ“ ๐‘ก

๐‘‘โ„‹2

= โˆ’๏ฟฝ ๐œ‚ ๐‘ฃ๐‘‡ 2

ฮ“ ๐‘ก๐‘‘โ„‹2 + ๏ฟฝ ๐‘ ๐œ‚ ๐‘‰ฮ“๐ป

ฮ“ ๐‘ก๐‘‘โ„‹2,

๏ฟฝฬ‡๏ฟฝ = โˆ’๏ฟฝ ๐‘ ๐œ‚ ๐‘‰ฮ“๐ปฮ“ ๐‘ก

๐‘‘โ„‹2.

32

Commutativity integration

by parts

energetic variation

integration by parts

energetic variation

Diffusion equation in ๐ท๐œ€(๐‘ก)

Diffusion equation in ฮ“(๐‘ก)

๐œ€ โ†’ 0

Energy identity in ๐ท๐œ€(๐‘ก)

Energy identity in ฮ“(๐‘ก)

๐œ€ โ†’ 0 (MLG)

33

Rigorous results โ€ข If ฮ“(๐‘ก) does not move, a solution of reaction

diffusion equation in ๐ท๐œ€ tends to a solution of equation on ฮ“ in some rigorous sense in various settings. (J. Hale, G. Raugel, 1992)โ€ฆโ€ฆ

โ€ข However, for moving ฮ“(๐‘ก) , the first convergence result is given by T.-H. Miura (2016, IFB to appear). (heat eq)

โ€ข For existence of a solution for the heat equation on moving surface with convective term (A. Reusken et al.)

34

H. Koba, C. Liu, Y. G. (2016) Incompressible Euler and Navier-Stokes on moving hypersurface: Energetic derivation

H. Koba, Compressible flow

4. Derivation of the Euler and the Navier-Stokes equations

35

Energetic formulation (Euler)

๐’ฆ ๐‘ฅ = ๏ฟฝ๐œ‚ ๐‘ฃ 2

2ฮ“ ๐‘ก๐‘‘๐‘ฅ

๐œ‚ : density divฮ“๐‘ฃ = 0 (incompressibility)

LAPโ‡’ ๐›ฟ ๏ฟฝ ๐’ฆ ๐‘ฅ๐‘‡

0๐‘‘๐‘ก = 0 under divฮ“๐‘ฃ = 0

36

Euler equation on ๐šช(๐’•)

๐œ•โ—๐œ‚ = 0

(I) ๐œ‚๐œ•โ—๐‘ฃ + gradฮ“ ๐œŽ + ๐œŽ๐ป๐‘› = 0 divฮ“๐‘ฃ = 0

(This is overdetermined.)

(II) ๐œ•โ—๐œ‚ = 0 ๐‘ƒฮ“ ๐œ‚๐œ•โ—๐‘ฃ + gradฮ“ ๐œŽ = 0

divฮ“๐‘ฃ = 0

(Variation is taken only in tangential direction.)

37

Dissipative energy

๐’Ÿ = ๐œ‡๏ฟฝ ๐ทฮ“ ๐‘ฃ 2

ฮ“(t)๐‘‘โ„‹2,ใ€€๐œ‡ > 0

๐ทฮ“ ๐‘ฃ = ๐‘ƒฮ“๐ท ๐‘ฃ ๐‘ƒฮ“

๐ท ๐‘ฃ =12

๐œ•๐‘ฃ๐‘–

๐œ•๐‘ฅ๐‘—+๐œ•๐‘ฃ๐‘–

๐œ•๐‘ฅ1

(projected strain rate)

38

Navier-Stokes equations

๐œ•โ—๐œ‚ = 0 (III) ๐œ‚๐œ•โ—๐‘ฃ + gradฮ“ ๐œŽ + ๐œŽ๐ป๐‘› = 2๐œ‡ divฮ“๐ทฮ“ ๐‘ฃ

divฮ“๐‘ฃ = 0 (overdetermined)

๐œ•โ—๐œŒ = 0 (IV) ๐œ‚๐‘ƒฮ“๐œ•โ—๐‘ฃ + gradฮ“ ๐œŽ = 2๐œ‡๐‘ƒฮ“divฮ“๐ทฮ“(๐‘ฃ)

divฮ“๐‘ฃ = 0

39

Relation to other derivation

Incompressible perfect flow

V. I. Arnold (1966) ๐œ‚ = const ๐œ‚๐‘ƒฮ“ ๐œ•โ—๐‘ฃ + gradฮ“ ๐œŽ = 0

for a fixed surface (variational principle on the space of volume preserving diffeormorphism) (Least action principle)

40

M. E. Taylor (1992) Balance of momentum on manifold

D. Bothe, J. Prรผss (2010) Boussinesq-Scriven model

T. Jankuhn, M. A. Olshanskii, A. Reusken Preprint (2017)

Incompressible viscous flow on a fixed surface

41

Zero width limit

๐œ•๐‘ก๐‘ข + ๐‘ข,๐›ป ๐‘ข + ๐›ป๐‘ = ๐œ‡0ฮ”๐‘ข div ๐‘ข = 0 in ๐ท๐œ€(๐‘ก)

Boundary condition (perfect slip)

๐‘ข โ‹… ๐œˆ๐ท = ๐‘‰๐ท๐‘

๐ท ๐‘ข ๐œˆ tan = 0

42

Limit equation

Result (T.-H. Miura)

๐‘ƒฮ“ ๐œ•๐‘ก๐‘ฃ + ๐‘ฃ,๐›ป ๐‘ฃ + ๐›ปฮ“๐‘ž

= 2๐œ‡0๐‘ƒฮ“div(๐‘ƒฮ“๐ท ๐‘ฃ ๐‘ƒฮ“)

This agrees with what KCG derived.

43

Summary We derive equations based on transport

of mass on a moving surface by several methods โ€ข energetic variational principle โ€ข zero width limit of equations on a moving

thin domain