On the regularity of spatial convolution kernels for...

32
Prof. Thomas Bewley UCSD Flow Control & Coordinated Robotics Labs [email protected] http://flowcontrol.ucsd.edu http://robotics.ucsd.edu On the regularity of spatial convolution kernels for linear feedback control & estimation of perturbations to nearly-parallel flows

Transcript of On the regularity of spatial convolution kernels for...

Page 1: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

Prof. Thomas Bewley UCSD Flow Control & Coordinated Robotics Labs

[email protected]

http://flowcontrol.ucsd.edu http://robotics.ucsd.edu

On the regularity of spatial convolution kernels for linear feedback control & estimation of perturbations to nearly-parallel flows

Page 2: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant
Page 3: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

Methods  developed  extend  immediately  to  boundary-­‐layer  flows  

Page 4: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

Benchmark PDE system: channel flow

State equation (Navier-Stokes): Eq = N(q, f) q=

!

u(x,y,z, t)p(x,y,z, t)

"

, f=Px

E =

!

I 0

0 0

"

, N(q, f) =

!

−(u ·∇)u−∇p+ν∆u+ iPx

∇ ·u

"

⇒ 3D system requires discretization on O(106) to O(107) gridpoints.

Linearization (Orr-Sommerfeld/Squire): E ˙q′ = Aq′ , q′=

#

v′{kx,kz}(y, t)

ω′{kx,kz}

(y, t)

$

E =

!

∆ 0

0 I

"

, A=

!

∆(∆/Re)− i kxU ∆+ i kxU ′′ 0

−i kzU ′ ∆/Re− i kxU

"

, E−1A=

!

L 0

C S

"

⇒ Linearization about mean flow U decouples each {kx,kz} mode.

• Boundary control: φ(x,z, t) (blowing/suction ⇒ u =−φn on walls).

• Distributed disturbance forcing: ψ(x,y,z, t) added to RHS of PDE.

• Measurements: y(x,z, t) (skin friction and pressure on walls).

Page 5: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

Real  and  imaginary  parts  of  the  ω  component  of  the  least-­‐stable  eigenvectors  (solid),  and    real  and  imaginary  parts  of  the  corresponding  v  components  (dashed)

First  25  evecs  of  Orr-­‐Sommerfeld/Squire  at  {kx,kz}  =  {1,0},  ReB  =  1429[B,  Progress  in  Aerospace  Sciences,  2001]

Page 6: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

Real  part  of  the  ω  component  of  the  least-­‐stable  eigenvectors  (solid),  and                          200  Dmes  the  imaginary  part  of  the  corresponding  v  components  (dashed).

First  25  evecs  of  Orr-­‐Sommerfeld/Squire  at  {kx,kz}  =  {0,2},  ReB  =  1429[B,  Progress  in  Aerospace  Sciences,  2001]

Page 7: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

DefiniOon  of  2-­‐norm  of  transfer  funcOon

x′(t) = Ax(t)+Bw(t)

z(t) =Cx(t)+Dw(t)⇒

Z(s) = T (s)W(s),

T (s) =C(sI −A)−1B+D.

∥T (s)∥22 !

1

! ∞

−∞

!

!T (iω)!

!

2

Fdω =

1

! ∞

−∞trace

"

TH(iω)T (iω)

#

=1

! ∞

−∞∑i

σ2i

"

T (iω)#

dω,

• The square of the transfer function 2-norm is the total energy of the

output z(t) of the system when the input w(t) contains a sequence of

unit impulses in each component.

• The square of the transfer function 2-norm is also the expected mean

energy of the output, E{zH(t)z(t)}, when the system is excited with a

zero mean white random process w(t) with unit spectral density.

Page 8: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

DefiniOon  of  infinity-­‐norm  of  transfer  funcOon

x′(t) = Ax(t)+Bw(t)

z(t) =Cx(t)+Dw(t)⇒

Z(s) = T (s)W(s),

T (s) =C(sI −A)−1B+D.

∥T (s)∥∞! sup

0≤ω<∞

∥T (iω)∥i2 = sup0≤ω<∞

σmax

!

T (iω)"

,

• In the frequency domain, the transfer function ∞-norm is the maximum

over all frequencies of the gain of the corresponding Bode plot.

• In the time domain, the infinity norm quantifies the response of the

system to the “most disturbing” input w, that is,

∥T (s)∥∞= max

w(t )=0

∥z(t)∥2

∥w(t)∥2= max

∥w(t)∥2=1∥z(t)∥2 .

Page 9: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

Isosurfaces  of  transfer  fn  norms  of  ReB  =  1429  Orr-­‐Sommerfeld/Squire

{kx,kz}  =  {0,2} {kx,kz}  =  {1,0}−20 −15 −10 −5 0

x 10−3

−5

0

5x 10−3

2  norm

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0 2x 10−3

−5

0

5x 10−3

Frobenius  norm

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2  norm−0.5 −0.4 −0.3 −0.2 −0.1 0 0.10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frobenius  norm

[B,  Progress  in  Aerospace  Sciences,  2001]

Page 10: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

Isosurfaces  of  transfer  fn  2  norms

{kx,kz}  =  {0,2} {kx,kz}  =  {1,0}

[B,  Progress  in  Aerospace  Sciences,  2001]

Page 11: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

A brief introduction to control theory

The transfer fn 2-norm and infinity norm measure physically relevant quantities. H_2 control minimizes the transfer function 2-norm. H_inf control minimizes the transfer function infinity norm.

Model predictive control (MPC) minimizes a relevant cost function via iterative state and adjoint analysis and gradient-based optimization.

In the following 4 pages, we briefly introduce MPC, H_2, and H_inf state-feedback control theory.

An introduction to estimation theory was given in my previous talk at IPAM (recording available at IPAM website).

Page 12: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant
Page 13: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

(Background: 1/4)

Adjoint analysis for gradient-based optimization

State equation:

Eq = N(q, f,φ,ψ) on 0 < t < T

q = q0 at t = 0

with: q = state, f = external force, φ = control, ψ = disturbance.

Perturbation equation:

!

Lq′ = Bφφ′+Bψψ′ on 0 < t < T

q′ = 0 at t = 0

"

⇒Small perturbations φ′ to control φ &small perturbations ψ′ to disturbance ψcause small perturbation q′ to state q.

Lq′ !#

E ddt −A

$

q′ is the linearization of the state eqn about the trajectory q(φ,ψ).

Cost function (minimize w.r.t. φ and maximize w.r.t. ψ):

J =1

2

! T

0(q∗Qq+ ℓ2φ∗φ−γ2ψ∗ψ)dt ⇒ J ′ =

! T

0(q∗Qq′+ ℓ2φ∗φ′−γ2ψ∗ψ′)dt.

Page 14: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

(Background: 2/4)

Statement of adjoint identity. Define inner product ⟨r,q′⟩=! T

0 r∗q′dt. Then:

⟨r,Lq′⟩= ⟨L∗r,q′⟩+b

with: r = adjoint, L∗r =!

−E∗ ddt−A∗

"

r, b = r∗Eq′###t=T

− r∗Eq′###t=0

.

Definition of adjoint equation. Adjoint field easy to compute, though A = A(q).$

L∗r = Qq on 0 < t < T

r = 0 at t = T

%

⇔−E∗r = A∗r+Qq on 0 < t < T

r = 0 at t = T

Extraction of gradients. Combining equations, we have:

⟨r,Bφφ′+Bψψ′⟩= ⟨Qq,q′⟩ ⇒" T

0q∗Qq′dt =

" T

0r∗(Bφφ′+Bψψ′)dt.

J ′ =" T

0

&!

B∗φr+ ℓ2φ

"∗φ′+

!

B∗ψr− γ2ψ

"∗ψ′'

dt !

" T

0

()DJ

*∗

φ′+

)DJ

*∗

ψ′+

dt

As φ′ and ψ′ are arbitrary, the gradient is:DJ

Dφ= B∗

φr+ ℓ2φ,DJ

Dψ= B∗

ψr− γ2ψ .

Page 15: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

(Background: 3/4)

Riccati analysis for coordinated feedback control

Characterization of saddle point. The control φ which minimizes Jand the disturbance ψ which maximizes J are given by

DJ

Dφ= 0,

DJ

Dψ= 0 ⇒ φ =−

1

ℓ2B∗

φr, ψ =1

γ2B∗

ψr.

Combined matrix form. Combining the perturbation and adjoint eqnsat the saddle point determined above, assuming E = I, gives:

˙!

q′

r

"

=

#

A −1ℓ2BφB∗

φ+1γ2BψB∗

ψ

−Q −A∗

$!

q′

r

"

control and disturbance at saddle point% &' (

Perturbation equation →

Adjoint equation →

Solution Ansatz. Relate perturbation q′ = q′(t) and adjoint r = r(t):

r = Xq′ , where X = X(t).

Page 16: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

(Background: 4/4)

Riccati equation. Inserting solution ansatz into the combined matrixform to eliminate r and combining rows to eliminate q′ gives:

!

−X = A∗X +XA+X"

1

γ2 BψB∗ψ− 1

ℓ2BφB∗

φ

#

X +Q$

q′.

As this equation is valid for all q′, it follows that:

−X = A∗X +XA+X"

1γ2 BψB∗

ψ− 1ℓ2

BφB∗φ

#

X +Q .

Due to the terminal conditions on r, we must have X = 0 at t = T .

Note solutions of this matrix equation satisfy X∗ = X .

Note also that, by the characterization of the saddle point, we have

ψ =1

γ2B∗

ψr and φ = Kq′ where K =−1

ℓ2B∗

φX .

This is the finite-horizon H∞ control solution, and may be solved forlinear time-varying (LTV) systems or marched to steady state.

Page 17: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

500 1000 1500 2000 25000 30000.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Increasing T

T =5

Turbulent flow (average)

time (viscous units)

T =1.5

Laminar flow

T =10

T =25

T =

drag

(nor

mal

ized

)

50,100+

+

+

+

+

+

RelaminarizaOon  of  fully-­‐developed  ReB  =  1429  channel-­‐flow  turbulence  via  adjoint-­‐based  MPC  [B,  Moin,  &  Temam,  JFM  2001]

500 1000 1500 2000 25000 3000

0

1

+

T =5

time (viscous units)

T =1.5

turb

ulen

t kin

etic

ene

rgy

(log

scal

e)

T =10

T =25

T =50

+

+T =100

Increasing T

+

+

+

+

Page 18: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

Simplification of feedback control problem via Fourier transform

3D O.S./Squire control/estimation problems solved in Fourier space, where decoupling simplifies to several 1D problems. [B & Liu, JFM, 1998]

Result inverse transformed to physical space, yields localized convolution kernels. [related work: Bamieh, Paganini, & Dahleh, TAC, 2002]

Procedure highly sensitive to nuances of numerical discretization.Spurious eigenvalues must be addressed. [Huang & Sloan 1993, JCP 111]

Page 19: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

Kernels  relaOng  v  &  ω  fluctuaOons  to  blowing/sucOon  control  ɸ

Visualized  are  the  posiDve  (green)  and  negaDve  (yellow)  iso-­‐surfaces  with  iso-­‐values  of  ±  5%  of  the  maximum  amplitude  for  each  kernel  illustrated.

[Hogberg,  B,  Henningson,  JFM  2003a]

v ω

Page 20: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

v

−20

−15

−10

−5

−2.5 −2 −1.5 −1 −0.5 0 0.5−1

−0.8

−0.6

−0.4

−30

−20

−10

0

10

20

30

40

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8−1

−0.9

−0.8

−0.7

ω

−5000

0

5000

10000

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−2000

0

2000

4000

6000

8000

10000

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25−1

−0.95

−0.9

−0.85

−0.8

[Hogberg,  B,  Henningson,  JFM  2003a]Kernels  relaOng  v  &  ω  fluctuaOons  to  blowing/sucOon  control  ɸ

Page 21: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

RelaminarizaOon  of  fully-­‐developed  turbulence  via  linear  feedback

RelaminarizaDon  of  fully-­‐developed  channel-­‐flow  turbulence  at  ReB  =  1429.

0 1000 2000 3000 40000.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 40000

0.5

1

1.5

2

2.5

3

3.5

Drag

t = 60

TurbulentKinetic Energy

[Hogberg,  B,  Henningson,  JFM  2003b]

Page 22: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

Visualized  are  the  posiDve  (dark)  and  negaDve  (light)  iso-­‐surfaces  with  iso-­‐values  of  ±  5%  of  the  maximum  amplitude  for  each  kernel  illustrated.

Kernels  relaOng  τx,  τz,  &  p  measurements  to  v,  ω  forcing  of  esOmator

ω

[Hoepffner,  Chevalier,  B,  Henningson,  JFM  2005]

τx τz p

v

Page 23: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant
Page 24: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

!"#"$%&'()*"+ ),-(","$%'%).$ ./ /""+0'#1

!"#$%&'$()*+*##*%*),-

*.),*)/% &(#,)-/( )&+$ {!, "} /(+0

-$(-/% '$*-,%$'$()-/( )&+$ {!, "} /(+0

!"#$%&'() *+,-&#$%.-*$#( #"/*(0-$1&"02(-1&/$1&"0 "3 -1$1( $4"5( 1&%( {!, "},#"/*61$1&"0 "3 #"017"% "0 1&%( {!, "}

!"#"$%&'()*"+ (.2)# #)&#3)%&"-()#'%"+ .$ "'#4 %)("

⇐⇒ ⇐⇒

1/'',(&.*)&/( 2&)3 ($&435/%&(4 )&+$- *5/,)($*%50 -$(-/% '$*-,%$'$()- *(6 -)*)$ $-)&'*)$-

ImplementaOon[B,  PAS,  2001]

Page 25: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

EvoluOon  of  small  disturbance  to  state  (le\)  and  esOmate  (right)

t = 0

PosiDve  (light)  and  negaDve  (dark)  iso-­‐surfaces  of  the  streamwise  component  of  velocity.  Iso-­‐values  at  ±  10%  of  the  maximum  streamwise  velocity  of  the  flow  during  interval  shown.  

[Hoepffner,  Chevalier,  B,  Henningson,  JFM  2005]Flow Estimator

Page 26: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

EvoluOon  of  small  disturbance  to  state  (le\)  and  esOmate  (right)

t = 0t = 20

PosiDve  (light)  and  negaDve  (dark)  iso-­‐surfaces  of  the  streamwise  component  of  velocity.  Iso-­‐values  at  ±  10%  of  the  maximum  streamwise  velocity  of  the  flow  during  interval  shown.  

[Hoepffner,  Chevalier,  B,  Henningson,  JFM  2005]Flow Estimator

Page 27: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

EvoluOon  of  small  disturbance  to  state  (le\)  and  esOmate  (right)

t = 0t = 20

PosiDve  (light)  and  negaDve  (dark)  iso-­‐surfaces  of  the  streamwise  component  of  velocity.  Iso-­‐values  at  ±  10%  of  the  maximum  streamwise  velocity  of  the  flow  during  interval  shown.  

t = 60

[Hoepffner,  Chevalier,  B,  Henningson,  JFM  2005]Flow Estimator

Page 28: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

Properties of feedback convolution kernels

Kernels are independent of the box size in which they were computed, so long as the computational box is sufficiently large.

-> Nonphysical assumption of spatial periodicity is relaxed.

Kernels are well-resolved with grid resolutions appropriate for the simulation of the physical system of interest. -> Grid independent.

Kernels eventually decay exponentially, and may be truncated to any desired degree of precision.

-> Truncated kernels are spatially compact with finite support. Implementable!

Kernel structure is physically tenable, but not imposed a priori:-> Control convolution kernels angle away from the actuator upstream.-> Estimation convolution kernels extend well downstream of sensor.

Page 29: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

Open questions

Appropriate regularization in cost function for control problem, and disturbance modeling in estimation problem, are essential to obtain meaningful results (i.e., smooth enough to obtain “convergence upon grid refinement”)!

Q: How much “smoothing” is needed? What is its precise effect?

Page 30: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

Taking J as linear combination of TKE and 2-norm of control failed to achieve convergence upon grid refinement (nonsmooth kernel, strong high-frequency components - not even in L2?)

Taking J as linear combination of TKE and 2-norm of time-derivative of control succeeded in achieving convergence upon grid refinement (smooth kernel, nicely decaying high-frequency components).

Why?? Trace theorem is one hint.

By the NSE, one time derivative = two space derivatives. So, is taking J as linear combination of TKE and 2-norm of gradient of velocity field sufficent??

Achieving convergence in controller

Page 31: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

Taking Q=I, model of covariance doesn’t converge upon grid refinement to some smooth function. Hoepffner, Chevalier, B, & Henningson thus proposed taking Q as a discretization of some smooth yet ad hoc diagonally-dominant shape functions, with ad hoc weighting between various {kx,kz}.

Achieving convergence in estimator (transitional flow)

Page 32: On the regularity of spatial convolution kernels for ...helper.ipam.ucla.edu/publications/mt2014/mt2014_12344.pdf · The transfer fn 2-norm and infinity norm measure physically relevant

Taking full NSE as LNSE+f, compute the statistics of f from a turbulent database. Use those covariance statistics Q to compute feedback kernels for the estimator.

Achieving convergence in estimator (turbulent flow)

{kx,kz}  =  {1,3} {kx,kz}  =  {3,1.5} {kx,kz}  =  {0,1.5} {kx,kz}  =  {4,4.5}