On one-homogeneous solutions to elliptic systems in two dimensions

4
C. R. Acad. Sci. Paris, Ser. I 335 (2002) 39–42 Équations aux dérivées partielles/Partial Differential Equations On one-homogeneous solutions to elliptic systems in two dimensions Daniel Phillips Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA Received 11 April 2002; accepted 17 April 2002 Note presented by John M. Ball. Abstract In this Note we consider a class of nonlinear second order elliptic systems in divergence form and two independent variables. We prove that all Lipschitz continuous one- homogeneous weak solutions are linear. To cite this article: D. Phillips, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 39–42. 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS Sur les solutions un-homogènes des systèmes elliptiques en dimension deux Résumé Dans cette Note, nous considérons une classe de systèmes d’équations elliptiques non linéaires du second ordre sous forme divergence à deux variables indépendantes. Nous prouvons que toutes les solutions faibles un-homogènes et Lipschitz continues sont linéaires. Pour citer cet article : D. Phillips, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 39–42. 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS Let M N×2 denote the space of real N × 2 matrices and let A C 1 (M N×2 ; M N×2 ), A = A α i , 1 α N, 1 i 2. We consider the following elliptic system in divergence form x i A α i (DU ) = 0 for 1 α N, (1) where U : x R 2 R N . To say that the system is elliptic means that A satisfies the condition P β j A α i (Pi ζ j η α η β > 0 for all P M N×2 , ζ R 2 , η R N , ζ = 0, η = 0. (2) We consider weak solutions that are one-homogeneous, that is, U (t x) = t U (x) for all t 0, x R 2 . E-mail address: [email protected] (D. Phillips). 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés S1631-073X(02)02418-4/FLA 39

Transcript of On one-homogeneous solutions to elliptic systems in two dimensions

Page 1: On one-homogeneous solutions to elliptic systems in two dimensions

C. R. Acad. Sci. Paris, Ser. I 335 (2002) 39–42

Équations aux dérivées partielles/Partial Differential Equations

On one-homogeneous solutions to elliptic systemsin two dimensionsDaniel PhillipsDepartment of Mathematics, Purdue University, West Lafayette, IN 47907, USA

Received 11 April 2002; accepted 17 April 2002

Note presented by John M. Ball.

Abstract In this Note we consider a class of nonlinear second order elliptic systems in divergenceform and two independent variables. We prove that all Lipschitz continuous one-homogeneous weak solutions are linear.To cite this article: D. Phillips, C. R. Acad. Sci.Paris, Ser. I 335 (2002) 39–42. 2002 Académie des sciences/Éditions scientifiques etmédicales Elsevier SAS

Sur les solutions un-homogènes des systèmes elliptiques en dimensiondeux

Résumé Dans cette Note, nous considérons une classe de systèmes d’équations elliptiques nonlinéaires du second ordre sous forme divergence à deux variables indépendantes. Nousprouvons que toutes les solutions faibles un-homogènes et Lipschitz continues sontlinéaires.Pour citer cet article : D. Phillips, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 39–42. 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Let MN×2 denote the space of realN × 2 matrices and letA ∈ C1(MN×2;MN×2),

A = [Aα

i

], 1� α � N, 1� i � 2.

We consider the following elliptic system in divergence form

∂xiAαi (DU) = 0 for 1� α � N, (1)

whereU : x ∈ R2 → R

N. To say that the system iselliptic means thatA satisfies the condition

∂P

β

j

Aαi (P)ζ iζ j ηαηβ > 0 for all P ∈ MN×2, ζ ∈ R

2, η ∈ RN, ζ �= 0, η �= 0. (2)

We consider weak solutions that areone-homogeneous, that is,

U(tx) = tU(x) for all t � 0,x ∈ R2.

E-mail address: [email protected] (D. Phillips).

2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservésS1631-073X(02)02418-4/FLA 39

Page 2: On one-homogeneous solutions to elliptic systems in two dimensions

D. Phillips / C. R. Acad. Sci. Paris, Ser. I 335 (2002) 39–42

Expressingx in polar coordinates we see thatU is Lipschitz continuous and one-homogeneous if and onlyif

U = rg(θ) whereg ∈ C0,1(S

1;RN

).

We prove the following.

THEOREM. – Let U be a Lipschitz continuous one-homogeneous weak solution to the system (1). Then Uis linear, i.e., U = rg(θ) where g = c cosθ + d sinθ for some c and d ∈ R

N .

Our calculation is motivated by the question of regularity for weak solutions to elliptic variationalproblems in two independent variables. Assuming the more stringent hypothesis ofstrong ellipticity,

∂P

β

j

Aαi (P)πi

απjβ > 0 for all P ∈ MN×2,π ∈ M2×N, π �= 0.

C.B. Morrey proved that Lipschitz continuous weak solutions to (1) are continuously differentiable, see [2].It is not known however if there exist nondifferentiable weak solutions to (1), (2). Our result is that such asingular solution could not be one-homogeneous.

For the case ofn independent variables,n � 3, examples of nondifferentiable weak solutions to stronglyelliptic systems do exist. See [1,3], and [4]. All of these examples are various one-homogeneous functions.

Proof. – Set

er = (cosθ,sinθ)t and eθ = (−sinθ,cosθ)t .

Consider a weak solutionU where

U = rg(θ), g ∈ C0,1(S

1;RN

).

Then

DU = g ⊗ er + g′ ⊗ eθ .

We see∂rDU = 0 for r > 0. Now (1) is equivalent to

∂r

(rA(DU)er

) + ∂θ

(A(DU)eθ

) = 0.

Since∂rDU = 0 this reduces to the weak ordinary differential equation

Aer + (Aeθ )′ = 0 onS

1, (3)

whereA = A(g⊗er +g′ ⊗eθ ). This implies thatAeθ has a continuous representative. SinceA(P ) andg(θ)

are continuous, we see that ifg′ does not have a continuous representative then there exista andb ∈ RN ,

a �= b, andθ0 so that forθ = θ0 we have

A1 ≡ A(g(θ0) ⊗ er (θ0) + a ⊗ eθ (θ0)

)eθ (θ0)

= A(g(θ0) ⊗ er (θ0) + b ⊗ eθ (θ0)

)eθ (θ0) ≡ A2.

Using (2) this leads to

0= (a − b) · (A1 − A2)

=∫ 1

0∂P

β

j

Aαi

(L(t)

)(a − b)α(a − b)β(eθ )

i (eθ )j dt > 0,

40

Page 3: On one-homogeneous solutions to elliptic systems in two dimensions

To cite this article: D. Phillips, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 39–42

where

L(t) = g(θ0) ⊗ er (θ0) + (b + t (a − b)

) ⊗ eθ (θ0).

Thus we haveg ∈ C1.We now prove thatg′′ exists. From (3) we get

A(θ) = A(g(θ) ⊗ er (θ) + g′(θ) ⊗ eθ (θ)

)eθ (θ) ∈ C1.

Fix θ . Set

A(θ) = A(g(θ) ⊗ er (θ) + g′(θ ) ⊗ eθ (θ)

)eθ (θ).

SinceA andg are C1 if follows thatA(θ) ∈ C1 as well. We write

A(θ) − A(θ)

θ − θ= A(θ) − A(θ)

θ − θ− A(θ) − A(θ )

θ − θ. (4)

SinceA(θ) ∈ C1 the first term on the right side has a limit asθ → θ . Furthermore sinceA(θ ) = A(θ ) thesecond term on the right also has a limit. Next we see

A(θ) − A(θ)

θ − θ= N ·

[g′(θ) − g′(θ)

θ − θ

], (5)

where

Nαβ(θ) =(∫ 1

0∂P

β

j

Aαi

(L(t)

)dt

)(eθ (θ)

)i(eθ (θ))j

with

L(t) = g(θ) ⊗ er (θ) + (g′(θ ) + t

(g′(θ) − g′(θ )

)) ⊗ eθ (θ).

Note thatN(θ) is continuous and that

Nαβ(θ) = ∂P

β

j

Aαi

(g(θ) ⊗ er (θ) + g′(θ ) ⊗ eθ (θ)

)(eθ (θ)

)i(eθ (θ ))j

.

It follows from (2) thatN−1(θ) exists. From this, (4), and (5) we see thatg′′(θ ) exists.Carrying out the differentiation in (3) gives

∂P

β

j

Aαi (g ⊗ er + g′ ⊗ eθ )(eθ )

i(eθ )j (g + g′′)β = 0

for 1 � α � N . From (2) we seeg + g′′ = 0 onS1. This implies thatg = c cosθ + d sinθ for somec and

d ∈ RN . ✷

Acknowledgements. This material is based upon work supported by the National Science Foundation under GrantNo. 9971713.

References

[1] W. Hao, S. Leonardi, J. Necas, An example of an irregular solution to a nonlinear Euler–Lagrange elliptic systemwith real analytic coefficients, Ann. Scuola Norm. Sup. Pisa. 23 (1) (1996) 57–67.

41

Page 4: On one-homogeneous solutions to elliptic systems in two dimensions

D. Phillips / C. R. Acad. Sci. Paris, Ser. I 335 (2002) 39–42

[2] C.B. Morrey Jr., Existence and differentiability theorems for the solutions of variational problems for multipleintegrals, Bull. Amer. Math. Soc. 46 (1940) 439–458.

[3] J. Necas, Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions ofregularity, in: Theory of Nonlinear Operators, Abh. Akad. der Wissen. der DDR, 1977.

[4] V. Šverák, X. Yan, A singular minimizer to a strongly convex functional in three dimensions, Calc. Var. PartialDifferential Equations 10 (3) (2000) 213–221.

42