On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit...

27
Birdy Technology On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #1 / 27 On-board Orbit Determination for a Deep-Space CubeSat Boris Segret LESIA-ESEP, PSL / Paris Observatory, France D.A.A, N.C.K.U., Taiwan : Tristan Mallet, Jordan Vannitsen, Jiun-Jih Miau LESIA, PSL / Paris Observatory : Gary Quinsac IMCCE, PSL / Paris Observatory : Daniel Hestroffer, Florent Deleflie

Transcript of On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit...

Page 1: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #1 / 27

On-board Orbit Determination for a

Deep-Space CubeSat

Boris SegretLESIA-ESEP, PSL / Paris Observatory, France

D.A.A, N.C.K.U., Taiwan : Tristan Mallet, Jordan Vannitsen, Jiun-Jih MiauLESIA, PSL / Paris Observatory : Gary Quinsac

IMCCE, PSL / Paris Observatory : Daniel Hestroffer, Florent Deleflie

Page 2: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #2 / 27

Orbit Determination in Birdy Technology

(courtesy LPPT, European consortium for Liquid micro-Pulsed Plasma Thruster, FP7 funded, TRL 3 in 2015)

(trajectory inspired by Dennis Tito for 2018)

(ESA's AIM mission to Didymos in 2022)

(Quinsac et al., 2016)

Page 3: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #3 / 27

1st Context: Birdy in Deep-Space CruiseStudy Case = Earth-Mars-Earth free return trajectory

● Mission Preparation● Deployment after IOI● Earth-to-Mars● Mars Flyby : First Datalink● Mars-to-Earth = Earth-to-Mars● End of Mission : Final Datalink

Science mode:

for instance autonomous Space Weather Probe

(trajectory inspired by Dennis Tito for 2018)

2

2

10

1

0

3

3

4

45

5

Page 4: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #4 / 27

2nd Context: Birdy in “Flying-legs”Study case = released in situ by Mothercraft

Ground Segment:

– Propagator with Models-in-the-loop

– Next Flying-legs to Mothercraft

Flight Segment

– TCM: set new V~1m/s (1 day)

– Science mode (1 day ~80km)

• Echo/Doppler (multiple S/C)

• Imaging surface features

• Optical astrometry

– Navigation mode (OD+OC)

– S-band TT&C to Mothercraft

Models © ESA (Galvez/Carnelli)

2

0

1

3

4

5

21

4

5

3

2

0

Page 5: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #5 / 27

Trajectory Solver / Ground Segment :– Reference Trajectory stored on-board

– Expected directions of “foreground objects”

Location determination / Flight Segment– Star Tracker (ADS) + Object Tracker (ODS)

– Accuracy needed ? Accuracy reached ?

Orbit Determination: Accuracy ?

Models-in-the-loop– gravitational

– non-gravitational

– expected

(A.Porquet, IMCCE, 2014)

Page 6: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #6 / 27

Trajectory Solver / Ground Segment :– Reference Trajectory stored on-board

– Expected directions of “foreground objects”

Location determination / Flight Segment– Star Tracker (ADS) + Object Tracker (ODS)

– Accuracy needed ? Accuracy reached ?

Orbit Determination: Accuracy ?

Models-in-the-loop– gravitational

– non-gravitational

– expected

(A.Porquet, IMCCE, 2014)

Page 7: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #7 / 27

[1 0 0 0 0 0 0 0 0 0 0 0 CC i ,1 0 0 0 0 0 00 1 0 0 0 0 0 0 0 0 0 0 CS i ,1 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 S i ,1 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 0 0 0 CC i ,2 0 0 0 0 00 0 0 0 1 0 0 0 0 0 0 0 0 CS i ,2 0 0 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0 S i ,2 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 0 0 CC i ,3 0 0 0 00 0 0 0 0 0 0 1 0 0 0 0 0 0 CS i ,3 0 0 0 00 0 0 0 0 0 0 0 1 0 0 0 0 0 S i ,3 0 0 0 00 0 0 0 0 0 0 0 0 1 0 0 0 0 0 CC i ,4 0 0 00 0 0 0 0 0 0 0 0 0 1 0 0 0 0 CS i ,4 0 0 00 0 0 0 0 0 0 0 0 0 0 1 0 0 0 S i ,4 0 0 01 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 dt 2 0 00 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 dt 2 00 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 dt 20 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 dt 3 0 00 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 dt 3 00 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 dt j30 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 dt 4 0 00 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 dt 4 00 0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 dt 4

] ∗ [δ x1

δ y1

δ z1

δ x2

δ y2

δ z2

δ x3

δ y3

δ z3

δ x4

δ y4

δ z4

dri ,1dri ,2dri ,3dri ,4V x

V y

V z

] − [CSCS i ,1CCSS i ,1C i ,1

CSCS i ,2CCSS i ,2C i ,2

CSCS i ,3CCSS i ,3C i ,3

CSCS i ,4CCSS i ,4C i ,4

000000000

] = 0

Simplified Approach

Assumption:

Constant Velocityduring N=4 measurements

=> 19 unknowns=> 21 equations

1st simulation on Earth-Mars in 10/2015 without optical errors, validations in 03/2016

M∗X−C = 0χ

2( X ) = ‖ M∗X−C ‖ 2

⇒ min ( X | χ 2(X ) ) ?

(T.Mallet, DAA/NCKU, 2015)

Page 8: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #8 / 27

Method for Monte-Carlo simulationsMultidimensional Minimizing:(a) “Steepest Descent” algorithm

preferred for on-board software

not implemented yet

(b) or “Random search on a grid”may be an alternative, not implemented yet

(c) or MATLAB / OCTAVE “INV([C])”likely not for on-board software

implemented here for MC simulations

(a) steepest descent along ∇ χ 2( X )

(b) random search while evaluating ∇ χ 2( X )

(c) new 19x19 linear system

∇ χ 2( X ) = 0⇔ [C ] . X=Y ⇔ X=[C ]

−1 . Y

X=(δ(xyz)i=1. .4

δ r j=1..4

(V x

V y

V z) )

M∗X−C = 0χ

2( X ) = ‖ M∗X−C ‖ 2

⇒ min ( X | χ 2(X ) ) ?

“i” measurementsi=1..4 for 19 unknowns

“j” foreground bodies4 from N foreground bodies

Page 9: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #9 / 27

Earth-to-Mars “E2M”: initial results...If +1m/s is applied on Y-axis at jettisoning wrt Reference Trajectory “T0”➔ do we correctly reconstruct the expected shift wrt T0?Monte-Carlo series to estimate the mean reconstructed value <X>=f(σin)

accuracy measurementσin << 1 arcsec

Page 10: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #10 / 27

Earth-to-Mars “E2M”: … and limitsIf +1m/s is applied on Y-axis at jettisoning wrt Reference Trajectory “T0”➔ do we correctly reconstruct the expected shift wrt T0?Monte-Carlo series to estimate the mean reconstructed value <X>=f(σin)

accuracy measurementσin = 1 arcsec

Page 11: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #11 / 27

Earth-to-Mars “E2M”: … and limitsIf +1m/s is applied on Y-axis at jettisoning wrt Reference Trajectory “T0”➔ do we correctly reconstruct the expected shift wrt T0?Monte-Carlo series to estimate the mean reconstructed value <X>=f(σin)

accuracy measurementσin = 15 arcsec

Page 12: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #12 / 27

Elementary dynamic model “Y+1kY”

actual trajectory

reference trajectory

1000 km

XY

Z

1

2

3

1 AU

30 km/s

1 AU

0.1 AU

42 AU

Rectilinear tr

ajectory of CubeSat a

t 30km/s along 3 AU

with 4 fic

tional “f

oreground Bodies”

“Y+1kY”

Page 13: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #13 / 27

Elementary dynamic model “Y+1kY”

actual trajectory

reference trajectory

1000 km

XY

Z

1

2

3

1 AU

30 km/s

1 AU

0.1 AU

42 AU

Rectilinear trajectory of CubeSat at 30km/s along 3 AUwith 4 fictional “foreground Bodies”

Page 14: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #14 / 27

“Y+1kY” dispersions even at small σin

XY

The actual shift is small and constant (1000km) => assumption of “small shift” is not involved (Taylor dev.at 1st order)Numeric degeneracy is likely involved, due to small angular variations with large distances (begin & end).

σin = 0 (!)

Page 15: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #15 / 27

“Y+1kY” dispersions even at small σin

XY

σin = 10-5 arcsec (!)

σout on dY *and* dVy, dVx!σout larger at large distances, on dV as well

Page 16: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #16 / 27

“Y+1kY” dispersions even at small σin

XY

σin = 10-3 arcsec (!)

σout on dY *and* dVy, dVx!σout larger at large distances, on dV as well

Page 17: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #17 / 27

“Y+1kY” dispersions even at small σin

XY

σin = 0.1 arcsec

σout on dY and dVy, dVx!σout larger at large distances, on dV as well

Page 18: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #18 / 27

Realistic model “E2M” with small σin

“E2M”

(black curve) Cruise of C

ubeSat from Earth

to M

ars in 2018

●2 re

alistic trajectory propagatio

ns

Ref.Trajectory “T 0”

+1m/s on Y-axis at jettis

onning wrt “T 0”

●4 non-coplanar “f

oreground Bodies”

σin = 0.1 arcsecand

σin = 1 arcsec

Page 19: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #19 / 27

“E2M” dispersions at small σin+1m/s on Y: the actual shift wrt T0 is larger over time => assumption of “small shift” not valid in late scenario@ σin = 0.1 arcsec => Mean value ~10km accurate (wrt a few 1000s km expected) in transverse or longitudinal directions

σin = 0.1 arcsec

Page 20: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #20 / 27

“E2M” dispersions at small σin+1m/s on Y: the actual shift wrt T0 is larger over time => assumption of “small shift” not valid in late scenario@ σin = 1 arcsec => Mean value ~100km accurate (wrt a few 1000s km expected) in transverse or longitudinal directions

σin = 1 arcsec

Page 21: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #21 / 27

“E2M”: <δx,δy,δz> at small σin

σin = 0.1 arcsec => σout ~300 m (X,Z) .. 500 m (Y)

better results in the middle of the cruise?

Page 22: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #22 / 27

“E2M”: <δx,δy,δz> at small σin

σin = 1 arcsec => σout > 2km (Y) .. 4km (X,Z) !!!

Mean value could be acceptablebut it cannot be trusted due to σout

Page 23: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #23 / 27

“E2M”: <δr>foreground bodies at small σin

σout few 100s of km

σin = 0.1 arcsec=> σout ~500 m

distance shifts are moderate, then increase

Page 24: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #24 / 27

“E2M”: <δr>foreground bodies at small σin

σout ~250 km (3000 km / 2nd body)

σin = 1 arcsec=> σout ~500 m

distance shifts are moderate, then increase

Page 25: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #25 / 27

“E2M”: <δVx,δVy> at small σinσin = 0.1 arcsec => σout > 2 .. 5 m/s

σin = 1 arcsec => σout > 20 .. 50 m/s (!!)

Velocities vary during On-board OD:at least 1° in directionand +/- 0.1 m/s in intensities

Page 26: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #26 / 27

Temporary assessments● Lessons from “Y+1kY” fictional model

➢ Some dispersion with 0 σin → Numeric degeneracy (INV function)➢ σout vs. σin is very sensitive, optical accuracy is the 1st driver➢ “close” foreground bodies is the 2nd driver for the overall accuracy➢ Shifts 102..103km vs. 10-5..10-6km/s → dimensionless approach

● Lessons from “E2M” realistic model➢ The sensitivity seems to be well explained through “Y+1kY”➢ Periods in the cruise seem more favorable to run the on-board OD➢ Uniform velocity during OD is not any realistic assumption➢ (direction of the Sun was not considered)

Page 27: On-board Orbit Determination for a Deep-Space CubeSat · 2016. 5. 26. · On-board Orbit Determination for a Deep-Space CubeSat Segret @ iCubeSat 2016, Oxford, #4 / 27 2nd Context:

Birdy TechnologyOn-board Orbit Determination for a Deep-Space CubeSat

Segret @ iCubeSat 2016, Oxford, #27 / 27

Conclusion: We've got a roadmap!● Study about On-board Orbit Determination is still in

progress : need to improve by 2-3 orders of magnitude➢ on-board “Steepest descent” algorithm➢ non-uniform velocity, N=5 measurements needed➢ select the N “best” observables

● The required accuracy depends on the “TCM” potential

● A software-bench is functional to quantify the error propagation

● Need to adapt and assess in the “asteroid” context

● Anticipate an Extended Kalman Filter:Ⱶ The right physical model? (sampled, analytical,...)Ⱶ Set-up of the noise co-variance matrices?

(process noise, measurement noise)

BIRDY Technology is also a student project: More than 54 students have participated from 2014 in France and in Taiwan

Involved Institutions: 1.Association Planete Mars, 2.Mars Society Switzerland, 3.Observatoire de Paris, 4.Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique, 5.Laboratoire Atmospheres, Milieux, Observations Spatiales, 6.Centre National de la Recherche Scientifique, 7.Institut de Mecanique Celeste et de Calcul des Ephemerides, 8.National Cheng Kung University, 9.LabEx Exploration Spatiale des Environnements Planetaires, 10.Centre d'Etudiant pour la Recherche et l’Exploration Spatiale, 11.Research University Paris Sciences Lettres, 12.Pierre and Marie Curie University, 13.Universite Lille 1 Sciences et Technologies, 14.Institut Polytechnique des Sciences Avancees, 15.Ecole d'Ingenierie des Sciences Aerospatiales, 16.Consortium Liquid Micro Pulsed Plasma Thruster, 17.KopooS Consulting Ind., 18.Ecole Centrale Lille, 19.Joint Institute for VLBI in Europe , 20.Ecole Centrale-Supelec

Involved actors (chronological order, number in brackets = institution)

Students to date (05/2016) : J.Vannitsen(8), A.Ansart(15,8), Q.Tahan(15,8), M.Agnan(10,8), J.Velardo(10,3), A.Deligny(10,3), G.Quinsac(11,10,3), A.Porquet(10,3,7), A.Lassissi(10,3), N.Gerbal(15), O.Sleimi(14,8), S.Durand(10,3,4), R.Klajzyngier(18), J.Diby(18,10,3), T.Mallet(18,8), J.Foissaud(18), L.Orsatto(18), E.Colin(18), N.Heim(18), J.Lin(8,10,3), A.Tsai(8), A.Chen(8), J.Tsai(8), T.Chang(8), D.Boisseau(15,8), A.Sibué(11), J.Evens(11), A.Schnitzer(10,3), S.Thibault(10,3), H.Poincelin(10.3), S.Delaire(20), I.Berber(20), T.Charoy(20), A.Nirello(20), A.Sabir(20), M.Bougadouha(20), F.Le-coz(20), M.Gonzalez(20), M.Romero-Lopez(20), D.Gonzalez(20), I.Ouattara(8), K.Chun(8), F.Rizzitelli(8), E.Fournier-Bidoz(20), S.Wohlgemuth(20), F.Orstadius(20), C.Shen(18), J.Franel(18), T.Guidez(18), S.Sueur(18), A.v.Wesemael(18), B.Kalidas(18), R.Sabrekov(18), N.Traore(10,3,4).

Supervisors, experts and sponsors : B.Segret (4,9,3,1), B.Mosser (4,10,11), K.Wang (8), J.C.Juang (8), J.J.Miau (8), C.Koppel (16,17), J.Daniel (1), Y.Desplanques (18), D.LePicart (18), P.Boutin (20), F.Deleflie (7,3,6,12,13), M.Cabane (5,12), M.Dudeck (12), K.L.Klein (4), N.Vilmer (4), R.Heidmann (1), P.Brisson (1,2), D.Coscia (5), G.Cimo (19).