OM-II, Chapter 2(Slides) AIM

41
© Nigel Slack, Stuart Chambers & Robert John ston, 2004 What are the advantages of holding inventory? What are the disadvantages? Inventory Management

Transcript of OM-II, Chapter 2(Slides) AIM

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 1/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

• What are the advantages of holding

inventory?

• What are the disadvantages?

Inventory Management

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 2/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Day-to-day Inventory Decision

• To maintain the appropriate level of 

inventory, operations managers are involved

in 2 major types of decision:

1. Volume decision: How much to order?

2. Timing decisions: When to order?

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 3/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

The order quantity decision

Stock-holdingcosts

Orderingcosts

How much

to order?

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 4/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

The economic order quantity

Order quantity (Q)

Inventory Ordering Costs

Inventory carrying costs 

Total costs

EOQ

Costs(

$)

Cost Curves: Graphical relationship between various costs

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 5/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Economic Order Quantity: Optimising Tradeoffs

Ordering More Frequently Ordering Less Frequently

• Higher Ordering Costs • Lower Ordering Costs

• Smaller Average Inventory • Larger Average Inventory

Need to Calculate:

CO = fixed cost of placing an order 

CH = holding cost per item per unit of time (e.g. a year)

Aim is to minimise ordering and holding costs

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 6/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 7/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 8/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

D. Economic Order Quantity

(EOQ) Model• Developed by F.W. Harris, 1913

• Answers two key questions

 – when to order 

 – how much to order 

• Independent demand, continuous review

system

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 9/41

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 10/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Inventory Cycle

Time

InventoryLevel

OrderQuantity

ReorderPoint

Q

RP

Lead-timeLT

   }  

Slope

-D

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 11/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Reorder Point

• Inventory level should reach 0 at end of each

order cycle

• RP equals demand during lead-time (DDLT)

RP = DDLT = D x LT

D = demand

LT = lead-timeD & LT must be in same time units

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 12/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Computing Optimal Order Quantity

• Compute total material cost, TMC

• TMC is a function of order quantity, Q

Ordering costs, co[D/Q]Holding costs, c

h[Q/2]

Variable item costs, pD

TMC = co[D/Q] + c

h[Q/2] + pD

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 13/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Total Stocking Cost

•  pD is constant, no quantity discounts

• TSC = ordering + holding

= co[D/Q] + ch[Q/2]

• Find Q to minimize TSC

EOQ= 2ocDhc

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 14/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Calculate EOQ (Q*)

Where: D = Total Annual usage

 CO = fixed cost of placing an order  

CH = unit cost of the item x Carrying cost rate per year 

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 15/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 16/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Fastcomp Example

 p = $80

co= $1000

i = 12% per year 

D = 10,000 chips per month

LT = 1.5 months

RP = 10,000 units/month x 1.5 months = 15,000 units

ch

= p x i = $80 x 0.12/year = $9.60/unit-year 

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 17/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

T S C(5 0 0 0) =$ 1 0 0 0

o r d e r

x

1 2 0, 0 0 0 u n its

y e a r

5 0 0 0 u n i t so r d e r

+$9.60

u n i t− y e a r

x

5 0 0 0 u n i t s

o r d e r

2

= $ 2 4 , 0 0 0+ $ 2 4 , 0 0 0= $ 4 8, 0 0 0/ y e a r

T S C(1 0 0 0 0) =$ 1 0 0 0

o r d e rx

1 2 0, 0 0 0 u n i ts

y e a r1 0 0 0 0 u n i t s

o r d e r

+$9.60

u n i t− y e a rx

1 0 0 0 0 u n i t so r d e r

2

= $ 1 2 , 0 0 0+ $ 4 8 , 0 0 0= $ 6 0, 0 0 0/ y e a r

E O Q=2 (1 2, 0 0 0u n i t s/ y e a r) ( $1 0 0 0/ o r d e r)

$ 9 . 6 0 / u n i t− y e a r

= 5, 0 0 0u n i t s/ o r d e r

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 18/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Validity Of Assumptions

• Model is quite robust

• Quantity discounts, demand/LT uncertainty,

no stockout assumptions easily relaxed

• Constant demand & holding cost can be

violated somewhat with minor cost penalty

• Total cost function flat near optimum• c

o& c

herrors tend to cancel out

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 19/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

E. EOQ Model With Quantity

Discounts• Quantity discounts offered to encourage

volume purchasing

• RP is not affected by quantity discounts

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 20/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Revised Cost Model

total material cost/year=

ordering cost + holding cost + item cost

Price is function of Q, p(Q)Holding cost , c

h(Q) = p(Q) x i

Select Q to minimize

TMC = co[D/Q] + [ch(Q)][Q/2] + p(Q)D

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 21/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Quantity Discount Structure

# Units Purchased Price/Unit

0 < Q < Q1 p1

Q1 ≤ Q < Q2 p2

Q2 ≤ Q < Q3 p3

Q3 ≤ Q p4

where p1 > p2 > p3 > p4

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 22/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Characteristics Of Cost Functions

• Between any two price-break quantities,

annual item cost is constant because price is

constant within that range

• Annual holding cost function is not straight.

• Between any two price-break qty function

is linear. At price-break qty

(a) total holding cost drops discontinuously

(b) slope of holding cost function decreases

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 23/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Costs With Quantity Discount

Q1 Q2 Q3

Cost

Total MaterialCost

Item Cost

Holding cost

Ordering Cost

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 24/41

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 25/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Quantity Discount Example

Order quantity Price

0-99 $40.00

100-249 $39.60

250-499 $39.00

500+ $38.00

Ordering cost = co = $100

Holding cost rate = 18%

Annual demand= 10 units/wk x 52 wks/yr = 520

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 26/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

1. Start at $38 ch = 38x.18 = 6.84

inconsistent with $38 price

2. Select $39 ch = 39x.18 = 7.02

inconsistent with $39 price

 Now use $39.60 ch = 39.60x 18 =7.128

consistent with $39.60 price

3. Compute TMC for 121, 250 & 500 units

TMC121 = 100x(520/121)+7.128x(121/2)+39.60x520

= $21,452.99TMC250 = $21,36.54 TMC500 = $21,574.00

250 is optimal order quantity

Q̂= 2x100x520 /6.84 =123

Q̂=

2x100x520 /7.02=

122

Q̂= 2x100x520 /7.128 =121

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 27/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

F. Economic Production Lot-Size Model

• Items are consumed as they are produced

• Demand rate = D

• Production rate = P, P>D• Inventory builds at rate P-D

• Cost of producing Q units = co+ pQ

• TSC = setup costs/year + holding costs/year 

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 28/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Production Lot Size Inventory

Pattern

.

Time

Imax= (P-D)Q/P

Slope-D

   I

  n  v  e  n   t  o  r  y   L  e  v

  e   l

SlopeP-D

Q/P

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 29/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

ELS Calculations

• Average inventory = (Imax

+ Imin

)/2

• Imax

= (P-D)(Q/P)

• Average inventory = (P-D)(Q/2P)• TSC = c

oD/Q + c

h(P-D)(Q/2P)

ELS =Q*= [2coD/ch][P/(P−D)]

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 30/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

ELS Example

Demand = 1,000,000/month

co= $800 p = $2.00 i = 0.24 c

h= 2.00x.24=$0.48/unit-year 

Production capacity = 100,000/day = 3,000,000/month

E L S= [ 2 ( 8 0 0) (1 , 0 0 0, 0 0 0) / 0 . 0 4] [3 , 0 0 0, 0 0 0 / 2 , 0 0 0, 0 0 0]

= 2 4 4, 9 4 9

R u nW a v e

R u no t h e rp r o d u c t s

0 2 . 4 5 7 . 3 99 . 8 4

R u nW a v e

R u no t h e rp r o d u c t s

T i m e ( d a

T i m i n g o f s o a p r u n

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 31/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

G. Safety Stock Policies

• Demand & LT are random

• If DDLT exceeds RP stockouts result

• Use safety stock to reduce risk of stockouts

• Safety stock (SS) = reorder point (RP) - average demandduring leadtime

DDL T( )

RP = D D L T +SS = D xL T + SS

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 32/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Inventory Pattern With Random

Demand & Lead Time

Time

RP

Invent

oryLe

vel

Leadtime

Out of stock 

Leadtime

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 33/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

The order timing decision

Orderingtoo early

When to

order?

Orderingtoo late

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 34/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Types of Inventory Management Systems

(IMS)

1. Reorder point systems

 –  time between orders varies

 –  constant order quantity

1. Periodic review systems

 –  time between orders fixed

 –  order quantity varies

1. Material requirements planning (MRP)

 –  dependent demand items

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 35/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Reorder Point System

• In reorder point system an inventory level

is specified at which a replenishment

order for a fixed quantity of the inventory

item is to be placed.

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 36/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

A Reorder Point System

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 37/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Stock Control Exercise

• Pete noted that stocks were exactly at the maximumstock level of 30,000 units

• It takes 8 days between placing a reorder with the

supplier and the stock actually arriving (i.e. the leadtime is 8 days)

• If stocks must not fall below 12,000 units and if 1000stocks are used each day

 –  What must Pete set his re-order level at?

 –  How much must he reorder?

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 38/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Periodic Review System

• In periodic review system the inventory

level is reviewed periodically and at each

review a reorder may be placed to bring the

level up to a desired quantity.• Reorder quantity 

= maximum level – on-hand inventory – on-order 

quantity (Q) + demand over lead time 

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 39/41

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 40/41

© Nigel Slack, Stuart Chambers & Robert John ston, 2004

Priorities for Inventory Management:

The ABC Concept

• A. High-value items

 –  The 15-20% of items that account for 75-80% of annual inventory

value

• B. Medium-value items

 –  The 30-40% of items that account for15% of annual inventory value

• C. Low-value items

 –  The 40-50% of items that account for 10-15% of annual inventory

value

The ABC classification system is based on the annual dollar purchases

of an inventoried item

8/8/2019 OM-II, Chapter 2(Slides) AIM

http://slidepdf.com/reader/full/om-ii-chapter-2slides-aim 41/41