OFDM (Orthogonal Frequency Division Multiplexing )

23
OFDM Juan Camilo Sacanamboy

description

-Concepts -Basic idea -FDM: The "mother" of OFDM -OFDM -Applications

Transcript of OFDM (Orthogonal Frequency Division Multiplexing )

Page 1: OFDM (Orthogonal Frequency Division Multiplexing )

OFDM Juan Camilo Sacanamboy

Page 2: OFDM (Orthogonal Frequency Division Multiplexing )

Content

1. Concepts 2.  Basic idea 3.  FDM: The “mother” of OFDM 4. OFDM 5.  Applications

Page 3: OFDM (Orthogonal Frequency Division Multiplexing )

Concepts (1)

Modulation

Carrier signal

Modulation is the process of conveying a message signal (modulating signal) inside another signal (carrier signal) that can be physically transmitted.

Waveform that is modulated with an input signal for the purpose of conveying information. Reference: Link

Page 4: OFDM (Orthogonal Frequency Division Multiplexing )

Concepts (2)

Broadband Wide bandwidth of a transmission medium. Ability to transport multiple signals and multiple traffic types simultaneously.

Page 5: OFDM (Orthogonal Frequency Division Multiplexing )

Concepts (3)

Subcarrier

It is an already-modulated s i g n a l , w h i c h i s t h e n modulated into another signal of higher frequency and bandwidth.

Frequency range in a given bandwidth

Reference: Link

Page 6: OFDM (Orthogonal Frequency Division Multiplexing )

Concepts (4)

Orthogonality

Reference: Link

The peak of one subcarrier coincides with the null of an adjacent subcarrier.

Page 7: OFDM (Orthogonal Frequency Division Multiplexing )

Concepts (5)

Intersymbol Interference

Reference: Link

Page 8: OFDM (Orthogonal Frequency Division Multiplexing )

Concepts (6)

Selective Fading

Reference: Link

Is a radio propagation anomaly caused by partial cancellation of a radio signal by itself – the signal arrives at the receiver by two different paths, and at least one of the path is changing (lengthening or shortening).

Page 9: OFDM (Orthogonal Frequency Division Multiplexing )

Basic idea

•  Orthogonal Frequency Division Multiplexing •  Multicarrier broadband modulation technique for

transmitting large amounts of digital data.

Page 10: OFDM (Orthogonal Frequency Division Multiplexing )

FDM: The “mother” of OFDM •  Frequency Division Multiplexing •  Signals from multiple transmitters are transmitted

simultaneously over multiple frequencies. •  Each subcarrier is modulated separately by different data

stream and a guard band is placed between subcarriers to avoid signal overlap.

Reference: Link

Page 11: OFDM (Orthogonal Frequency Division Multiplexing )

OFDM (1) •  Like FDM, OFDM uses multiple subcarriers BUT:

o  There are closely spaces to each other without causing interference, removing guard bands.

o  Its possible because subcarriers are orthogonal.

Reference: Link

Page 12: OFDM (Orthogonal Frequency Division Multiplexing )

OFDM (2)

Basic OFDM System •  A very high rate data stream is divided into multiple parallel

low rate data streams. •  Each smaller data stream is then mapped to individual data

subcarrier and modulated using some sorts of PSK or QAM. i.e. BPSK, QPSK, 16-QAM, 64-QAM.

Page 13: OFDM (Orthogonal Frequency Division Multiplexing )

OFDM (3) Basic OFDM System

Basic OFDM System (Hanzo, Webb, & Keller, 2000)

Page 14: OFDM (Orthogonal Frequency Division Multiplexing )

OFDM (4) Characteristics •  High Spectral Efficiency: OFDM needs less bandwidth than FDM

to carry the same amount of information. •  Resilience: More resilient in NLOS environment than FDM. •  Fault Tolerance: It can efficiently overcome interference and

frequency-selective fading caused by multipath because ecualizing is done on a subset of subcarriers instead of a single broader carrier.

•  Supress effect of ISI (Inter Symbol Interference): Longer symbol period of the parallel OFDM subcarriers than a single carrier system.

Page 15: OFDM (Orthogonal Frequency Division Multiplexing )

OFDM (5)

Disadvantage The main disadvantage of the OFDM system is the complexity of implement N modulators at the transmitter and N demodulators at the receiver. Solution: This problem can be reduced using the discrete Fourier transform (DFT), implemented as a fast Fourier transform (FFT).

Page 16: OFDM (Orthogonal Frequency Division Multiplexing )

OFDM (6)

QAM-OFDM The basic system has N sub-bands, each separated from its neighbour by a guard band. The available spectrum can be used much more efficiently if the spectra of the individual sub-bands are allowed to overlap.

Detailed OFDM System (Hanzo, Webb, & Keller, 2000)

Serial to parallel convertor

Page 17: OFDM (Orthogonal Frequency Division Multiplexing )

OFDM (7) Detailed OFDM System •  The input serial data stream is rearranged into a sequence { 𝑑↓𝑛 } of N QAM symbol at baseband.

•  At the 𝑛th symbol instant, the QAM symbol is represented by th symbol instant, the QAM symbol is represented by an in-phase component 𝑎(𝑛) and a quadrature component 𝑏(𝑛). ▫  𝑑(𝑛)=𝑎(𝑛)+𝑗𝑏(𝑛)

•  A block of N QAM symbols are applied to a serial-to-parallel convertor and the resulting in-phase symbols are applied to N pairs of balanced modulators.

Page 18: OFDM (Orthogonal Frequency Division Multiplexing )

OFDM (8)

Detailed OFD System •  The quadrature components 𝑎(𝑛) and 𝑏(𝑛)

modulate the carriers cos(𝑤↓𝑛 𝑡)and sin( 𝑤↓𝑛 𝑡) respectively.

•  The modulated carriers 𝑎(𝑛) cos( 𝑤↓𝑛  𝑡)  and 𝑏(𝑛)sin( 𝑤↓𝑛 𝑡) when added together constitute a QAM signal. The 𝑛th QAM signal is given by: th QAM signal is given by: ▫  𝑋↓𝑛 =𝑎(𝑛)cos(𝑤↓𝑛 𝑡) +𝑏(𝑛)sin( 𝑤↓𝑛 𝑡)

Page 19: OFDM (Orthogonal Frequency Division Multiplexing )

OFDM (9)

FDM/QAM signal 𝐷(𝑡)=  ∑𝑛=0↑𝑁−1▒𝑋↓𝑛 (𝑡) 

Page 20: OFDM (Orthogonal Frequency Division Multiplexing )

OFDM (10)

Modulation by Discrete Fourier Transform •  Large number of sub-channels modems •  Taking the DFT of the original block of N QAM symbols and

then transmitting the DFT coefficients serially is exactly equivalent to the operations required by the OFDM transmitter of a Detailed OFDM System.

•  Simplifications can be achieved if the bank of sub-cannel modulators/demodulators is implemented using (IFFT/FFT).

Page 21: OFDM (Orthogonal Frequency Division Multiplexing )

OFDM (11)

Reference: Link

FFT and IFFT are linear transformations on signals. One is the reverse of the other one. It doesn’t matter the order if apply IFFT in the transmitter or in the receiver because IFFT and FFT are inverse. The question becomes why use IFFT in the transmitter. That’s because signals need to be modulated by N-QAM of the ortogonal subcarriers. Mathematically, the process can be represented by IFFT.

Page 22: OFDM (Orthogonal Frequency Division Multiplexing )

Applications

• ADSL • HomePlug AV • WiMedia UWB • Wifi (801.11 a/g/ac) • WiMax

Page 23: OFDM (Orthogonal Frequency Division Multiplexing )

References

• Conniq. (s.f.). Introduction to FDM, OFDM, OFDMA, SOFDMA.

• Hanzo, L., & Keller, T. OFDM and MC-CDMA. • Hanzo, L., Webb, W., & Keller, T. (2000).

Single- and Multi-carrier Quadrature Amplitude Modulation : principles and applications for personal communications, WLANs and broadcasting.