Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC...

21
Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306 (2009); PRC 80, 034321 (2009); PRC 82, 014317 (2010). PRC 74, 027301 (2006); PRC 75, 064316 (2007); PRL 98, 052501 (2007) L.Fortunato (ECT*,Trento, Italy) A.Vitturi (Univ. Padova, Italy) C.Alonso, J.M.Arias (Univ. Seville, Spain) I.Inci (Erciyes Univ., Kayseri, Turkey) M.Böyükata (Kırıkkale Univ.,Turkey)

Transcript of Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC...

Page 1: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

Odd nuclei and Shape Phase Transitions:

the role of the unpaired fermion

PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306 (2009); PRC 80, 034321 (2009); PRC 82, 014317 (2010).

PRC 74, 027301 (2006); PRC 75, 064316 (2007); PRL 98, 052501 (2007)

L.Fortunato (ECT*,Trento, Italy)

A.Vitturi (Univ. Padova, Italy)

C.Alonso, J.M.Arias (Univ. Seville, Spain)

I.Inci (Erciyes Univ., Kayseri, Turkey)

M.Böyükata (Kırıkkale Univ.,Turkey)

Page 2: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

Outline

L. L. FortunatFortunatoo

• Shape-phase transitions in the collective model, IBM and IBFM. Casten’s triangle and critical points

• γ–unstable case with the fermion in a j=3/2 shell (supersymmetric case). Comparison of even and odd systems. We disuss a model case that can be tested against experimental data.

• brief discussion of the j=9/2 case (no supersymmetry): the extra fermion smooths out the core’s phase transition

• modification of the potential energy surfaces due to the extra fermion in the UBF(5) to SUBF(3) transition. Here j={1/2, 3/2, 5/2} and therefore U(6/12).

Page 3: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

Collective Model

L. L. FortunatFortunatoo

The collective model treats vibrations and rotations of an ellipsoid (quadrupole d.o.f.)

A collective Hamiltonian (Bohr H.) is solved with some potential V and the spectrum and B(E2)’s are compared with experiments.

N ∞

Underlying U(6) symmetry

Analytic solutions in a few cases

Review articles: L.F. EPJA26 s01 (2005 ) 1-30

Próchniak, Rohoziski, JPG 36 (2009)

Page 4: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

Critical point symmetries

L. L. FortunatFortunatoo

Three PRL papers by Iachello introduced critical point symmetries in the framework of the collective model (for even nuclei).

Solution of the γ–unstable Bohr hamiltonian with a square well - E(5) symmetry

In the IBM one can study the same phenomenology, but with a finite number of particles.

~β²

~β4

Page 5: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

How it has emerged ? Check out EuroPhysics News 42 (2009)

L. L. FortunatFortunatoo

Page 6: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

Casten’s triangle and extension

L. L. FortunatFortunatoo

The new symmetries establish new benchmarks that help categorizing the great varieties of nuclear spectra.

The predictions of these relatively simple (symmetry-based) models have been

tested against energies, BE(2) and other observables giving often good results.

Page 7: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

Where are to be expected ?

L.

L.

Fort

un

at

Fort

un

at

oo

Many candidates have been identified, in reasonable transitional regions (between closed shell and midshell). Critical point symmetries have proven to be a reliable model in nuclear spectroscopy and serve also to properly place various nuclei within the Casten’s triangle.

P.VanIsacker

Page 8: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

So far so good for the even system… and then what?

L. L. FortunatFortunatoo

The IBFM is the ideal to tool to address the problem of extending these concepts to odd-even systems.

We consider the case of a fermion in a j=3/2 orbit coupled to a bosonic core that undergoes a shape-phase transition from a spherical U(5) to a γ-unstable SO(6) case.

parameter x

quadr. - quadr.

Page 9: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

Critical point spectrum

L. L. FortunatFortunatoo

N=7

Only the j=3/2 [Bayman-Silverberg Nucl.Phys.16, (1960)] gives you supersymmetry compare with E(5/4) of Iachello

even odd

U(5) SO(6) U(5/4) SpinBF(6)

Page 10: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

Odd system at the core’s critical point

L. L. FortunatFortunatoo

Page 11: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

Comparison with even case

L. L. FortunatFortunatoo

Limiting supersymmetric cases have a number of selection rules, that are not present at the critical point of the odd system, although the BE(2) values corresponding to forbidden transitions are weaker than others.

The odd system is qualitativ. similar to the even one, but of course the fermion modifies the details of the spectra and introduces new bands.

Page 12: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

Case of J=9/2 coupled to a boson core (Böyükata)

L.

L.

Fort

un

at

Fort

un

at

oo

The boson core undergoes a shape phase transition from spherical to -unstable.

The components of a j=9/2 fermionic orbital fall into a prolate or an oblate deformation, depending on the value of K.

The effect of the fermion is to smooth out the core’s transition.

Page 13: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

Coupling with j= {1/2, 3/2, 5/2} orbitals in the

Spherical to axially deformed case

L. L. FortunatFortunatoo

j = { 1/2, 3/2, 5/2} J = L ± 1/2 , L=0,2 Pseudo orbital a.m.

UB(6) x UF(12)

Here we recast the terms in the hamiltonian into Casimir operators, that are more easily tractable:

Page 14: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

L. L. FortunatFortunatoo

Necessity of an ad hoc fermion quadrupole operator to obtain supersymmetry

Page 15: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

L. L. FortunatFortunatoo

Quite similar at first glance, but there

are important differences: the most relevant is the presence of mixed-symmetry

bands.

Page 16: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

Spectrum at the critical point

L. L. FortunatFortunatoo

Page 17: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

Connection to geometry through coherent states

L. L. FortunatFortunatoo

Potential energy for the even-even cases

Together with the ground state coherent state,

One needs the beta and gamma coherent states:

and then couple each one of them with the fermionic part

Page 18: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

Odd-even potential energy surface

L. L. FortunatFortunatoo

The dashed violet line gives the corresponding energy surface in the even-even case.

Left: x=1, SUBF(3)

Center: even-even critical point

Right: odd-even critical point

Page 19: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

Various predictions

L. L. FortunatFortunatoo

Care must be taken when one compares even-even with odd-even, because in the latter case there might be “more” observables, than in the former.

On one side nothing spectacular… on the other universal behaviour!

Page 20: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

Spectrum and transition rates at the critical point

L. L. FortunatFortunatoo

Page 21: Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, 061302 (2005); PRC 76, 014316 (2007); PRC 78, 017301 (2008); PRC 79, 014306.

Conclusions

L. L. FortunatFortunatoo

We have analyzed in detail the solutions of the IBFM for a spherical to gamma-unstable transition, studying the spectral properties of the odd-even system at the critical point and making a series of comparisons with the even-even case. Our model should be more directly comparable with experimental data (e.g. 135Ba) because of the finite number of particles (in contrast with E(5/4) model).

We have studied the non-supersymmetric case of a fermion in a j=9/2 orbit, showing that the main effect is to smooth out the phase transition of the core.

We have also studied other supersymmetric cases, like the UBF(5) to SUBF(3) transition, where the role of the extra-fermion is higlighted. Various signatures for the shape-phase transition are calculated that could give an indication on how to properly pin down the critical points.