Objectivity and constitutive modelling Fülöp 2, T., Papenfuss 3, C. and Ván 12, P. 1 RMKI, Dep....

18
Objectivity and constitutive modelling Fülöp 2 , T., Papenfuss 3 , C. and Ván 12 , P. 1 RMKI, Dep. Theor. Phys., Budapest, Hungary 2 Montavid Research Group, Budapest, Hungary 3 TU Berlin, Berlin, Germany – Objectivity – contra Noll – Kinematics – rate definition – Frame independent Liu procedure – Second and third grade solids (waves)

Transcript of Objectivity and constitutive modelling Fülöp 2, T., Papenfuss 3, C. and Ván 12, P. 1 RMKI, Dep....

Page 1: Objectivity and constitutive modelling Fülöp 2, T., Papenfuss 3, C. and Ván 12, P. 1 RMKI, Dep. Theor. Phys., Budapest, Hungary 2 Montavid Research Group,

Objectivity and constitutive modelling

Fülöp2, T., Papenfuss3, C. and Ván12, P.

1RMKI, Dep. Theor. Phys., Budapest, Hungary 2Montavid Research Group, Budapest, Hungary

3TU Berlin, Berlin, Germany

– Objectivity – contra Noll

– Kinematics – rate definition

– Frame independent Liu procedure– Second and third grade solids (waves)

Page 2: Objectivity and constitutive modelling Fülöp 2, T., Papenfuss 3, C. and Ván 12, P. 1 RMKI, Dep. Theor. Phys., Budapest, Hungary 2 Montavid Research Group,

Rigid rotating frames:

xQhx )()(ˆ,ˆ tttt Noll (1958)

,ˆˆ bab

a cJc

Four-transformations, four-Jacobian:

QxQh 01ˆˆ

b

aab x

xJwhere

QcxQhcQxQhc 0

000

)(

01

ˆ

ˆ

c

ccc

Problems with the traditional formulation

Page 3: Objectivity and constitutive modelling Fülöp 2, T., Papenfuss 3, C. and Ván 12, P. 1 RMKI, Dep. Theor. Phys., Budapest, Hungary 2 Montavid Research Group,

Consequences:

four-velocity is an objective vector, time cannot be avoided, transformation rules are not convenient, why rigid rotation?

arbitrary reference frames reference frame INDEPENDENT formulation!

Page 4: Objectivity and constitutive modelling Fülöp 2, T., Papenfuss 3, C. and Ván 12, P. 1 RMKI, Dep. Theor. Phys., Budapest, Hungary 2 Montavid Research Group,

What is non-relativistic space-time?

M=EI?

M=R3R?

E

I

Page 5: Objectivity and constitutive modelling Fülöp 2, T., Papenfuss 3, C. and Ván 12, P. 1 RMKI, Dep. Theor. Phys., Budapest, Hungary 2 Montavid Research Group,

The aspect of spacetime:

Special relativity: no absolute time, no absolute space, absolute spacetime; three-vectors → four-vectors, x(t) → world line (curve in the 4-dimensional spacetime).

The nonrelativistic case (Galileo, Weyl): absolute time, no absolute space, spacetime needed (t’ = t, x’ = x − vt)

4-vectors: , world lines:

(4-coordinates w.r.t. an inertial coordinate system K)

The spacelike 4-vectors are absolute: form a 3-dimensional

Euclidean vector space.

x

t

)()(

t

tt

xx

x

0

Page 6: Objectivity and constitutive modelling Fülöp 2, T., Papenfuss 3, C. and Ván 12, P. 1 RMKI, Dep. Theor. Phys., Budapest, Hungary 2 Montavid Research Group,

Xa=(t0,Xi)

xa=(t,xi)World lines of a body – material manifold?

)(~ Xx

jiij

ij

it

jjt

ii

abb

a

FvxxXtx

txY ~~

01~~~~

01)

~,

~(

),(~~~~

deformation gradient}3,2,1{,},3,2,1,0{, jiba

Page 7: Objectivity and constitutive modelling Fülöp 2, T., Papenfuss 3, C. and Ván 12, P. 1 RMKI, Dep. Theor. Phys., Budapest, Hungary 2 Montavid Research Group,

cFcFcvcF~

~

~~~

~

)~

,~

(~ˆ~

11

00

11

00

1

0

cc

cFcFdt

d

ccdt

d

cF

cc

kk

j

ik

kj

i

itkk

jb

a

Objective derivative of a vector

Upper convected

Tensorial property (order, co-) determines the form of the derivative.

vcc 0c

Page 8: Objectivity and constitutive modelling Fülöp 2, T., Papenfuss 3, C. and Ván 12, P. 1 RMKI, Dep. Theor. Phys., Budapest, Hungary 2 Montavid Research Group,

Spacetime-allowed quantities:• the velocity field v [the 4-velocity field ],

• its integral curves (world lines of material points),

The problem of reference time: is the continuum completely relaxed,undisturbed, totally free at t0, at every material point?

In general, not → incorrect for reference purpose.

The physical role of a strain tensor: to quantitatively characterize not a change but a state:

not to measure a change since a t0 but to express the difference of the current local geometric status from the status in a fully relaxed, ideally undisturbed state.

v

1

)(2

1),(

2

1, i

jj

ii

jj

ij

i vvvvv

Kinematics

Page 9: Objectivity and constitutive modelling Fülöp 2, T., Papenfuss 3, C. and Ván 12, P. 1 RMKI, Dep. Theor. Phys., Budapest, Hungary 2 Montavid Research Group,

What one can have in general for a strain tensor:a rate equation + an initial condition

(which is the typical scheme for field quantities, actually)

Spacetime requirements → the change rate of strain is to bedetermined by ∂ivj

Example: instead offrom now on:

+ initial condition

(e.g. knowing the initial stress and a linear elastic const. rel.)

Remark: the natural strain measure rate equation is

generalized left Cauchy-Green

SR

Cauchy uE

SR

Cauchy vE

TRR vAAvA

Page 10: Objectivity and constitutive modelling Fülöp 2, T., Papenfuss 3, C. and Ván 12, P. 1 RMKI, Dep. Theor. Phys., Budapest, Hungary 2 Montavid Research Group,

Frame independent constitutive theory:

variables: spacetime quantities (v!)

body related rate definition of the deformation

balances: frame independent spacetime relations

pull back to the body (reference time!) Entropy flux is constitutive!

Question: fluxes?

Page 11: Objectivity and constitutive modelling Fülöp 2, T., Papenfuss 3, C. and Ván 12, P. 1 RMKI, Dep. Theor. Phys., Budapest, Hungary 2 Montavid Research Group,

Constitutive theory of a second grade elastic solid

Balances:

material space derivative

Tij first Piola-Kirchhoff stress

Constitutive space:

Constitutive functions:

Remark:

.0~

,0~

,0~

0

0

jii

jji

iijj

i

ii

vF

Tv

we

~

ji

kjii

ji

i FFvvee ~

,,~

,,~

,

iiji JsTw ,,,

:

:

:

ij

i

ji

ki

k

kjkakcb

ak

jiija

bba

FvxY

FvxY ~~~~

00~~~~,~~

01~~~

Page 12: Objectivity and constitutive modelling Fülöp 2, T., Papenfuss 3, C. and Ván 12, P. 1 RMKI, Dep. Theor. Phys., Budapest, Hungary 2 Montavid Research Group,

0)( 0 ji

Fj

ie

ii

ijj

iei FfsTKTvws

ji

Second Law:

Consequences:

Function restrictions:

- Internal energy

Dissipation inequality:

),,(

),,,(),,,(),,,(

jiiji

v

ie

i

jii

jiiij

jiii

FveKsTswJ

FvesFveTFvew

j

),2

(2

jiF

ves

,0~

0 ii Js ,0)

~()

~()

~(

~000 j

iji

ijij

ji

ii

ii

i vFTvweJs

0:11

0 FTq fTT j

iFR

Page 13: Objectivity and constitutive modelling Fülöp 2, T., Papenfuss 3, C. and Ván 12, P. 1 RMKI, Dep. Theor. Phys., Budapest, Hungary 2 Montavid Research Group,

Constitutive theory of a third grade elastic solid

Balances:

Constitutive functions:

Constitutive space:Second Law:

jkii

kjji

k

jii

jji

jiik

jki

j

iijj

i

ii

vF

vF

Tv

Tv

we

0~~

,0~

,0~~

,0~

,0~

0

0

0

ji

klji

kjii

jki

ji

i FFFvvvee ~

,~

,,~

,~

,,~

,

iiji JsTw ,,,

,0~

0 ii Js

:

:

:

ijk

ij

ji

i

,0~~ˆ~~ˆ

)~

()~

()~

(~

0

000

i

kjji

kijkik

jki

jj

i

jij

ii

jijj

ii

ii

ii

vFTv

vFTvweJs

Page 14: Objectivity and constitutive modelling Fülöp 2, T., Papenfuss 3, C. and Ván 12, P. 1 RMKI, Dep. Theor. Phys., Budapest, Hungary 2 Montavid Research Group,

0~~

)(

~0

ji

FkFe

kj

ki

eji

e

ijj

iei

Fsss

TssT

Tvws

ji

kji

Consequences:

Function restrictions:

- Internal energy

Dissipation inequality:

)~

,,~

,,(....

),~

,,~

,,(),~

,,~

,,(

ji

kjii

jiji

v

ie

i

ji

kjii

ji

ji

kjii

jiij

FFvveKsTswJ

FFvvesFFvveT

j

)...,)(Tr22

(2

jiF

ves FF

0:11

~00

FTTq ffTT j

ikj

i FRFRRR

Double stress

Page 15: Objectivity and constitutive modelling Fülöp 2, T., Papenfuss 3, C. and Ván 12, P. 1 RMKI, Dep. Theor. Phys., Budapest, Hungary 2 Montavid Research Group,

0 1 2 3 4k

0 .5

1 .0

1 .5

2 .0

2 .5c2

Waves- 1dQuadratic energy – without isotropy

...~~

2

ˆ

2)

~,( i

jkj

iki

jj

ij

ikj

i FFFFFFf

.0~~

,0~~

ˆ~

0

TF

FFTFT

xxtt

txxxx

0:~

~00

FTT ffj

ikj

i FkF

- Stable- Dispersion relation

2

2

0

222

1

ˆ

k

kk

kc

0

0

ˆ

Page 16: Objectivity and constitutive modelling Fülöp 2, T., Papenfuss 3, C. and Ván 12, P. 1 RMKI, Dep. Theor. Phys., Budapest, Hungary 2 Montavid Research Group,

Summary

- Noll is wrong.

- Aspects of non-relativistic spacetime cannot be avoided.

- Deformation and strain – wordline based rate definition.

- Gradient elasticity theories are valid.

Page 17: Objectivity and constitutive modelling Fülöp 2, T., Papenfuss 3, C. and Ván 12, P. 1 RMKI, Dep. Theor. Phys., Budapest, Hungary 2 Montavid Research Group,

Thank you for your attention!

Continuum Physics and Engineering Applications 2010 June

Page 18: Objectivity and constitutive modelling Fülöp 2, T., Papenfuss 3, C. and Ván 12, P. 1 RMKI, Dep. Theor. Phys., Budapest, Hungary 2 Montavid Research Group,

Real world –Second Law is valid

Impossible world –Second Law is violated

Ideal world –there is no dissipation

Thermodinamics - Mechanics