Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 ·...

21
Scaling Laws Motivation for miniaturization S li ff Scaling off orces Scaling in nature Scaling of mechanical, electrical, and fluidic systems EECE 300 2011 1 Learning Objectives – Scaling By the end of this section, students should be able to: able to: explain how the surfacetovolume ratio chan es as si e is decreased changes as siz e is decreased. explain how forces scale with size. explain which forces dominate at the microand nanoscales. EECE 300 2011 2

Transcript of Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 ·...

Page 1: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

Scaling Laws

• Motivation for miniaturization

S li f f• Scaling of forces

• Scaling in nature 

• Scaling of mechanical, electrical, and fluidic systems

EECE 300 ‐ 2011 1

Learning Objectives – Scaling

By the end of this section, students should be able to:able to:

• explain how the surface‐to‐volume ratio chan es as si e is decreasedchanges as size is decreased.

• explain how forces scale with size.

• explain which forces dominate at the micro‐and nanoscales.

EECE 300 ‐ 2011 2

Page 2: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

pick‐and‐place robotspick and place robots

pick and place machinep p

van der Waals forcesvan der Waals forces

F ~ L2

1/ ~vdw grF F L−

Fvdw  L

adhesion force dominates the gravitational force at low L

Page 3: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

The heterogeneous self-assembly process.

Stauth S A , Parviz B A PNAS 2006;103:13922-13927

©2006 by National Academy of Sciences

Details of the self-assembly process for a single microcomponent.

Stauth S A , Parviz B A PNAS 2006;103:13922-13927

©2006 by National Academy of Sciences

Page 4: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

High yield (≈97%) self-assembly of 100-μm, circular, single-crystal silicon elements onto a flexible plastic template containing 10,000 binding sites.

Stauth S A , Parviz B A PNAS 2006;103:13922-13927©2006 by National Academy of Sciences

Page 5: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

Further Reading

• S. Vogel, Life's Devices: The Physical World of Animals and Plants: Princeton University Press, 1988.

• W S N Trimmer "Micro Robots and Micro Mechanical Systems "W. S. N. Trimmer,  Micro Robots and Micro Mechanical Systems,  Sensors and Actuators, vol. 19, pp. 267‐287, 1988. 

• M. Wautelet, "Scaling laws in the macro‐, micro‐ and nanoworlds," European Journal of Physics, vol. 22, pp. 601, 2001.

• Acknowledgment: part of this material is based on notes by G. F. Spencer, Texas State University San Marcos

EECE 300 ‐ 2011 3

Scaling

• Fabrication processes are developed to create electronic and micro

Why is scaling important at the micro and nano scale?

create electronic and micro electromechanical devices at ever decreasing sizes.

• MEMS are often 1000x smaller than macro counterparts.

• As these sizes shrink, different physical forces become more important or less important depending on their nature. p p g

• These changes are predictable since the forces are generally well understood.

• We need to develop new intuition of microscale phenomenamicroscale phenomena.

• These changes dictate how the device must be built and what forces it will use to operate. This issue is called scaling.

EECE 300 ‐ 2011 4

Page 6: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

Why Miniaturize?

• Motivation– Batch fabrication, lower cost per device– Less energy, less material consumed, disposable– Arrays of sensors possible, minimally invasive– Similar size scale as individual cells– Can take advantage of different scaling laws (e.g., 

electrostatic forces)– Breakdown of macroscale laws of physics

• PerformanceI i i h i i d i d– Integration with circuitry can reduce noise and improve sensitivity

– Yield and reliability may be improved, fewer defects per chip

106 d f t / 3 → 1 d f t f 106 3• 106 defects/cm3 → 1 defect for every 106 μm3

EECE 300 ‐ 2011 5

Geometrical Scaling

• In many instances, the behavior of a physical system can be predicted using geometric scaling from larger to smaller sizes.

• Assume an object is defined by some initial characteristic size, L0.j y 0

L0 LS

• Next this object is reduced in size by a multiplicative factor S, where the scale factor is in the range 0 ≤ S ≤ 1.

• This gives a new, smaller size for the object as LS = S ∙L0This gives a new, smaller size for the object as LS  S  L0• We assume that all 3 dimensions of the object are scaled by the same 

amount, isomorphic scaling.

EECE 300 ‐ 2011 6

Page 7: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

Animal sizes

EECE 300 ‐ 2011 7

Why are there no mice in the arctic?

The larger an animal is, the less surface area it has relative to overall body mass and the harder it is for the creature to rid its body of excess heat (On the flip side mice and other small animals which have a highheat. (On the flip side, mice and other small animals, which have a high surface‐to‐volume ratio, often struggle to retain sufficient heat.)

EECE 300 ‐ 2011 8

Page 8: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

Walking on water

Surface tension or capillary forces scale with perimeter of wetted area  ~ SWalking on water is a feat some creatures such as water striders can do.Make a dimensionless index to examine the practicality of standing or walking (not floating 

i i ) h f f h ld b h f f f ior swimming) on the surface of water, held up by the force of surface tension on some hydrophobic (nonwettable) foot:

EECE 300 ‐ 2011 9

Scaling in nature: velocity

Body mass (kg)

Comparison of theoretical predictions with the speeds, stroke frequencies, and force

v=speed, Mb=body mass, f=frequency (stride, flapping)

EECE 300 ‐ 2011 10Bejan A , Marden J H. J Exp Biol 2006;209:238-248

Comparison of theoretical predictions with the speeds, stroke frequencies, and force outputs of a wide variety of animals.

Page 9: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

Scaling laws in natureVelocity as a function of body length –``natural law of speed``

T H hi ``Mi h i d th iT. Hayashi, ``Micromechanism and their characteristics``, Micro Electro Mechanical Systems, 1994, MEMS '94, Proceedings, IEEE Workshop.

EECE 300 ‐ 2011 11

Swimming and flyingRe vs. L

Swimming:Mass of muscles ~ s3

Drag force FD ~ s2

L h

Re vs. L

Larger creatures have greater swimming speed.

21F c Avρ=

2D DF c Avρ=

Flying:Mass of muscles ~ s3

Weight ~ s3

Drag force FD ~ s2

Lift force FL ~ s2

Larger creatures have faster flight but

21L LF c Avρ=

Larger creatures have faster flight but more power to keep weight aloft.

T. Hayashi, "Micromechanisms and their

EECE 300 ‐ 2011

2L LF c Avρ

12

T. Hayashi, Micromechanisms and their characteristics," presented at Micro Electro Mechanical Systems, 1994, MEMS '94, Proceedings, IEEE Workshop on, 1994.

Page 10: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

Scaling in nature: force output

EECE 300 ‐ 2011 13Bejan A , Marden J H. J Exp Biol 2006;209:238-248

When animals attack!

Throwing projectiles:Chimps and humans throw projectiles (rocks) as one of various aggressive tactics. Smaller animals, even manually dexterous ones do not.

momentum = mass × velocitymass ∝ length3

achievable velocity ∝ length of appendage (length of organism)

If an animal can throw a projectile of mass proportionate to its own, thenproportionate to its own, then

momentum ∝ length4 (!!!)

EECE 300 ‐ 2011 14

Page 11: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

Surface area

In some cases, an important quantity is given by the ratio of the surface area to volume of the object (for example, heat transfer and fluid dynamics problems).j ( p , y p )

If a quantity depends on the surface area per unit length, then it scales as

EECE 300 ‐ 2011 15

Scaling laws in Mechanics 

For elements with typical linear dimension L,

assume all linear dimensions vary proportionally to L

How do the following quantities scale with L?

AreaArea

Volume

Mass

gravitation force

pressure

EECE 300 ‐ 2011 16

Page 12: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

Scaling of Mechanical Components

Two important mechanical properties for MEMS are mass and stiffness. These will determine the device inertia and the degree of its response to applied forces.

Example: spring loaded with a massA spring (spring constant k) with a mass m attached. From Hooke’s law, the restoring force when the spring is stretched or compressed by Δx from its equilibrium length is

F kΔx ma (where a is the acceleration from Newton’s 2nd law)F = ‐kΔx = ma (where a is the acceleration from Newton s 2nd law)The spring constant k is a measure of the stiffness of the spring. The mass m measures the inertia (the resistance to changes in its own motion).

If this spring is oscillating, the resonant frequency is  k

mω =

EECE 300 ‐ 2011 17

Stiffness

Hooke’s law can be used to provide a definition of the stiffness of a mechanical component. Using the spring force law, 

k = F/Δx Th i k h i f [k] f /l h /The spring constant k has units of  [k] = force/length = newtons/meter.

force

d fl ti f ilib ik =

deflection from equilibrium

EECE 300 ‐ 2011

There are several modes of motion or oscillation for this cantilever.

18

Page 13: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

Axial loading on a cantilever

Forces applied along the axis provide an axial load to either lengthen or shorten the cantilever.

F

ΔLΔL

0 0

0 0

A L AF E E L k x

L L

⎛ ⎞Δ= = Δ = Δ⎜ ⎟

⎝ ⎠

Hooke’s law relation for stress and strain:

From this relation, the stiffness coefficient is

0i l

Ak E=

2

~i l

Sk E S≈

EECE 300 ‐ 2011

0axialk E

Laxialk E S

S

19

Transverse load on a cantilever

Forces applied at the end of the cantilever will give a bending load.

F

The stiffness coefficient is given by:

3bending

Ik E

L=

3 4

3 3~bending

wt Sk E E S

L S≈ =

where I = moment of inertia around the end of the bar.

L S

EECE 300 ‐ 2011 20

Page 14: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

Scaling – resonant frequencyFF

w

lt

F k x= ⋅

• Cantilever spring, fixed‐free

xk x

• l=length, w=width, t=thickness

• E=Young modulus 3 3w t S S⋅ ⋅3 3

~4

w t S Sk E S

l S

⋅ ⋅= =

Interpretation: as we scale down the dimensions the spring constant will decreaseInterpretation: as we scale down the dimensions, the spring constant will decrease.

i‐clicker: What will happen to the resonant frequency? A. f0 remains the same

EECE 300 ‐ 2011 21

B. f0 increasesC. f0 decreases

Scaling in electronics

A ρ

L

EECE 300 ‐ 2011 22

Page 15: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

Parallel plate capacitorA capacitor stores electrical charge on its plates. It contains energy that depends on the amount of stored charge or on the electric field between the two plates.

area Al t ti d

+ Qplate separation d

Q

‐ Q

E

Given a parallel plate capacitor with plate area A and plate separation d, the 

it i icapacitance is given as

where ε is the permittivity of the gap insulator material 

EECE 300 ‐ 2011 23

Non‐isomorphic scaling

How these components come together in an electronic or MEMS device depends on how the actual circuit/device components are scaled. The actual scaling may not be isomorphic.In designing the device, the nature of the actual scaling must be accounted for in the design of each componentdesign of each component.For example, if a device contains both R and C, then there will be an associated RC time constant that governs the device behavior. How might this scale as the device is shrunk?

One example of shrinking some part of a device is the interconnects, the wires that connect individual components in an IC. The C is the parasitic capacitance along the wire length. In shrinking these, the lengths are decreased, but the major shrink is the wire widths or areasshrinking these, the lengths are decreased, but the major shrink is the wire widths or areas and the film thicknesses.How do these shrinking interconnect dimensions and thinner films affect the RC time constant, and hence the speed at which these devices operate?

EECE 300 ‐ 2011 24

Page 16: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

Interconnects ‐ Resistance

L

WMaterial Resistivity

H

Material Resistivity [Ω‐m]

Silver (Ag) 1.6x10‐8

Copper (Cu) 1 7x10‐8Copper (Cu) 1.7x10

Gold (Au) 2.2x10‐8

Aluminium (Al) 2.7x10‐8

( ) 0 8

EECE 300 ‐ 2011

Tungsten (W) 5.5x10‐8

25

Interconnects ‐ capacitance

parallel plate capacitance:

L

W

H

Dielectric

Substrate

ddi

EECE 300 ‐ 2011 26

Page 17: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

Interconnect scaling

To fit more devices, reduce the width of the interconnects. This allows a denser network of wires between the high‐density devices underneath the interconnect layer.

The width shrink cancels out. If either d or H are reduced, RC increases as ~ 1/S

Example: Intel 0.25 micron Process5 metal layersTi/Al ‐ Cu/Ti/TiN

l ili di l iPolysilicon dielectric

EECE 300 ‐ 2011 “Digital Integrated Circuits”, 2nd Edition, Jan M. Rabaey, et al 27

Power dissipationHow does the power dissipated per unit area scale?

A. L‐2

B. L‐1

C. L0C. LD. L1

E. L2

EECE 300 ‐ 2011 28

Page 18: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

Example: IBM air‐gap technology

• Present microelectronics is constrained by the transmission of information: wires (interconnects)information: wires (interconnects) get much slower when scale shrinks ( R ) + interference (C)

• 2007: ~10km of wiring into a space• 2007:  10km of wiring into a space smaller than a postage stamp!

• The constraint motivates specific technological solutions:technological solutions: – 1st generation: Cu interconnects, low‐k 

dielectrics– 2nd generation: IBM air gap (vacuum 

IEEE Spectrum, Jan. 2008

embedded in the insulation that surrounds the interconnects), Intel (nanopore technology), STMicroelectronics

EECE 300 ‐ 2011 29

Energy stored in a capacitor

How does stored energy scale with capacitor size?

A. L‐1

B. L0

1. for constant charge density

C. L1

D. L2

E. L3

2. for constant applied voltage

A. L‐2

B. L‐1

C. L0

D. L1

E. L2

EECE 300 ‐ 2011 30

Page 19: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

Electrostatic Forces

Calculate the electrostatic force exerted between the plates of a parallel plate capacitor.

EECE 300 ‐ 2011 31

Paschen Curve Two regimes in breakdown voltage Vb vs. spacing d curve:

In an air capacitor the maximum E field is given by the

Breakdownlt

In an air capacitor the maximum E field is given by the electrical breakdown of the air in its gap.

In microscale devices, the breakdown E field can be much 

voltage greater (as the gap d approaches the mean free path λ of insulator molecules, fewer molecules are around to be ionized).

Ebd~100MV/mbd

~200V~200V

2 @

EECE 300 ‐ 2011

Distance*pressure(meter*atm)

~2μm@1atm

32

Page 20: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

Electrostatic Forces

EECE 300 ‐ 2011 33

Physical Forces & ScalingOne concern when devices are scaled is whether the interactions or forces which wereOne concern when devices are scaled is whether the interactions or forces which were used at the larger sizes are still appropriate (or even operable) at the smaller sizes.A common example is that of motors. Everyday common “electric” motors use electromagnetic (EM) forces for operation. Alternating electric currents in the motor windings create magnetic forces to cause motion of the rotor.

Magnetic‐ actuated motor Electrostatic rotary motor

EECE 300 ‐ 2011

At small sizes, these forces may no longer be appropriate to use in microdevices. Why?

34

Page 21: Objectives –Scalingcourses.ece.ubc.ca/300/handouts/EECE300-2011-scaling.pdf · 2011-09-15 · Comparison of theoretical predictions with the speeds, stroke frequencies, and force

Magnetic forcesFor example, take the case of an electric motor.At macroscale, it relies on magnetic fields to generate forces, involving a combination of coils and permanent magnets.  However, at microscale, most of the micromotors use electrostatic instead of magnetic fieldselectrostatic instead of magnetic fields.

EECE 300 ‐ 2011 35

Conclusions

• Scaling modifies the relative importance of various physical effects

• dominant physical quantities between different scales change: – gravitational, inertial forces become less effective– electrostatic forces, surface tension forces become more importantmore important

• However, intensive parameters (material properties) generally impose the scaling invariants (Jmax, Emax, Tmax) 

EECE 300 ‐ 2011 36