o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U...

37
S1 Electronic Supplementary Information: An Exceptionally Long-Lived Triplet State of Red Light- Absorbing Compact Phenothiazine-StyrylBodipy Electron Donor/Acceptor Dyads: A Better Alternative to the Heavy Atom-Effect? Yuqi Hou, a Qingyun Liu b and Jianzhang Zhao a, * a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E208 West Campus, 2 Ling Gong Rd., Dalian 116024, P. R. China. Email: [email protected] (J. Z.) b College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China. Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020

Transcript of o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U...

Page 1: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S1

Electronic Supplementary Information:

An Exceptionally Long-Lived Triplet State of Red Light-

Absorbing Compact Phenothiazine-StyrylBodipy

Electron Donor/Acceptor Dyads: A Better Alternative to

the Heavy Atom-Effect?

Yuqi Hou,a Qingyun Liub and Jianzhang Zhao a,*

a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of

Technology, E208 West Campus, 2 Ling Gong Rd., Dalian 116024, P. R. China.

Email: [email protected] (J. Z.)

b College of Chemical and Environmental Engineering, Shandong University of Science and

Technology, Qingdao 266590, P. R. China.

Electronic Supplementary Material (ESI) for Chemical Communications.This journal is © The Royal Society of Chemistry 2020

Page 2: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S2

Contents

1. General Information..............................................................................................................................S3

2. Synthesis and Molecular Structure Characterization Data....................................................................S3

3. NMR and HRMS Spectra.......................................................................................................................S5

4. Crystallographic Data..........................................................................................................................S10

5. DFT Calculation...................................................................................................................................S12

6. UVVis Absorption Spectra.................................................................................................................S13

7. Fluorescence Spectra and Lifetime.....................................................................................................S14

8. Electrochemical Studies......................................................................................................................S16

9. Nanosecond Transient Absorption Spectra.........................................................................................S19

10. Application on DPBF Capturing 1O2.................................................................................................S20

11. Simplified Jablonski Diagram Illustrating the Photophysical Process................................................S22

12. Coordinates of the Optimized Geometries of the Compounds..........................................................S23

13. Reference..........................................................................................................................................S37

Page 3: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S3

1. General Information

All the chemicals used in synthesis are analytical pure and were used as received. Solvents were dried

before using. The UVVis absorption spectra were obtained on UV-2550 UVVis spectrophotometer

(Shimadzu Ltd, Japan). The fluorescence spectra were measured on RF-5301PC spectrofluorometer

(Shimadzu Ltd, Japan). The fluorescence lifetimes were measured on OB920 (Edinburgh Instruments Ltd,

UK) luminescence lifetime spectrometer. The nanosecond transient absorption spectra were

measurement on LP980 transient absorption spectrometer (Edinburgh Instruments Ltd, UK) with OPO

tuneable laser system (OPOTEK Inc, USA).

2. Synthesis and Molecular Structure Characterization Data

Compounds PTZ-BDP1, BDP-12, BDP-23 were synthesized with literature methods. PTZ-BDP: 1H NMR

(400 MHz, CDCl3): 7.207.16 (m, 1H), 7.127.10 (m, 1H), 7.027.00 (m, 2H), 6.966.89 (m, 3H), 5.97 (s,

2H), 3.903.87 (m, 2H), 2.54 (s, 6H), 1.851.75 (m, 2H), 1.51 (s, 6H), 1.491.43 (m, 2H), 0.95 (t, 3H, J =

7.4 Hz). TOF MALDIHRMS: Calcd ([C29H30BF2N3S]+), m/z = 501.2222; found, m/z = 501.2226.

Synthesis of BDP-PTZ-Ph. Under N2 atmosphere, PTZ-BDP (75 mg, 0.15 mmol), benzaldehyde (32 mg,

0.3 mmol), TsOH (p-toluenesulfonic acid, 31 mg, 0.18 mmol), piperidine (0.75 mL) were dissolved in dried

toluene (5 mL). The mixture was refluxed at 140 C, then the toluene and generated water during the

reaction were distilled. The reaction was monitored by thin-layer chromatography. After the reaction,

the mixture was washed with water, extract with dichloromethane (3 10 mL), the organic layer was

collected, dried over with anhydrous sodium sulfate. After evaporated of the solvent under vacuum, the

crude product was purified by column chromatography (silica gel, DCM:PE = 1:2) to yield dark blue solid

(64 mg, yield 63%). M.p. > 250 C. 1H NMR (400 MHz, CDCl3): 7.76 (s, 1H), 7.72 (s, 1H), 7.63 (d, 4H, J =

7.5 Hz), 7.427.38 (m, 4H), 7.337.30 (m, 2H), 7.277.23 (m, 2H), 7.197.12 (m, 2H), 7.057.03 (m, 2H),

6.926.87 (m, 3H), 6.64 (s, 2H), 3.97 (s, 2H), 1.841.81 (m, 2H), 1.50 (s, 6H), 1.531.47 (m, 2H), 0.97 (t,

3H, J = 7.3 Hz). 13C NMR (CDCl3, 100 MHz): 152.6, 145.7, 144.8, 142.2, 138.3, 136.6, 136.2, 133.6, 128.9,

128.8, 128.7, 127.6, 127.4, 127.3, 126.8, 126.0, 124.1, 122.7, 119.3, 117.8, 115.6, 115.52, 47.47, 30.3,

29.7, 29.4, 28.7, 20.0, 15.2, 13.8. IR (KBr) 3022, 1622, 1500, 1385, 1369, 1164, 989, 960, 694 cm1. TOF

MALDIHRMS: Calcd ([C43H38BF2N3S]+), m/z = 677.2848; found, m/z = 677.2855.

Page 4: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S4

Synthesis of BDP-PTZ-F. The synthesis was similar with BDP-PTZ-Ph. With PTZ-BDP (75 mg, 0.15 mmol),

p-fluorobenzaldehyde (0.05 mL, 0.45 mmol), TsOH (50 mg, 0.3 mmol), piperidine (1 mL) and dried

toluene (5 mL), to get dark blue solid (10 mg, yield 9%). M.p. > 250 C. 1H NMR (400 MHz, DMSO):

7.707.59 (m, 6H), 7.48 (s, 1H), 7.44 (s, 1H), 7.347.30 (m, 4H), 7.267.16 (m, 5H), 7.097.07 (d, 1H, J =

8.4 Hz), 6.996.96 (m, 3H), 3.96 (t, 2H, J = 7.0 Hz), 1.761.69 (m, 2H), 1.56 (s, 6H), 1.481.39 (m, 2H),

0.90 (t, 3H, J = 7.3 Hz). 13C NMR (CDCl3, 100 MHz): 164.4, 161.9, 152.4, 145.8, 144.8, 142.3, 138.5, 134.8,

133.6, 132.9, 129.2, 129.2, 128.6, 127.5, 127.3, 126.8, 126.0, 122.7, 119.1, 119.1, 117.7, 115.98, 115.76,

115.6, 115.5, 47.5, 31.5, 29.7, 28.7, 20.1, 15.2, 13.8. IR (KBr) 3013, 1621, 1509, 1384, 1367, 1155, 991,

956, 821 cm1. TOF MALDIHRMS: Calcd ([C43H36BF4N3S]+), m/z = 713.2659; found, m/z = 713.2661.

Synthesis of BDP-PTZ-OMe. The synthesis was similar with BDP-PTZ-Ph. With PTZ-BDP (100 mg, 0.2

mmol), p-methoxybezaldehyde (0.06 mL, 0.5 mmol), TsOH (31 mg, 0.18 mmol), piperidine (0.75 mL) and

dried toluene (5 mL), to get dark blue solid (90 mg, yield 61%). M.p. > 250 C. 1H NMR (400 MHz, CDCl3):

7.627.56 (m, 6H), 7.217.16 (m, 3H), 7.11 (d, 1H, J = 7.2 Hz), 7.057.03 (m, 2H), 6.956.88 (m, 7H),

6.60 (s, 2H), 3.903.85 (m, 8H), 1.841.81 (m, 2H), 1.57 (s, 6H), 1.511.46 (m, 2H), 0.96 (t, 3H, J = 7.0 Hz).

13C NMR (CDCl3, 100 MHz): 160.4, 152.7, 145.6, 144.9, 141.7, 137.3, 135.7, 133.4, 129.6, 129.0, 128.8,

127.5, 127.4, 127.0, 125.8, 124.1, 122.7, 117.5, 117.3, 115.6, 115.5, 114.3, 47.4, 29.7, 28.7, 20.0, 15.1,

13.8. IR (KBr) 3007, 1619, 1512, 1385, 1371, 1249, 1171, 1164, 991, 959, 818 cm1. TOF MALDIHRMS:

Calcd ([C45H42BF2N3O2S]+), m/z = 737.3059; found, m/z = 737.3064.

Page 5: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S5

3. NMR and HRMS Spectra

Figure S1. 1H NMR spectrum of compound PTZ-BDP-Ph (400 MHz, CDCl3), 25°C.

Page 6: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S6

Figure S2. MALDITOFHRMS of PTZ-BDP-Ph, 25°C.

Figure S3. 13C NMR spectrum of compound PTZ-BDP-Ph (100 MHz, CDCl3), 25°C.

Page 7: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S7

Figure S4. 1H NMR spectrum of compound PTZ-BDP-F (400 MHz, DMSO), 25°C.

Figure S5. MALDITOFHRMS of PTZ-BDP-F, 25°C.

Page 8: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S8

Figure S6. 13C NMR spectrum of compound PTZ-BDP-F (100 MHz, CDCl3), 25°C.

Figure S7. 1H NMR spectrum of compound PTZ-BDP-OMe (400 MHz, CDCl3), 25°C.

160 140 120 100 80 60 40 20 0Chemical Shift (ppm)

0.00

13.7

815

.20

20.0

5

28.7

329

.71

30.2

131

.45

47.4

7

115.

5211

5.61

115.

7611

5.98

117.

7012

2.74

125.

9912

6.81

127.

2912

7.46

129.

1612

9.24

132.

8513

4.83

138.

4614

2.27

144.

8014

5.75

152.

42

161.

9016

4.38

Page 9: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S9

Figure S8. MALDIHRMS of PTZ-BDP-OMe, 25°C.

Figure S9. 13C NMR spectrum of compound PTZ-BDP-OMe (100 MHz, CDCl3), 25°C.

737.3064

906.3533

19061314-2

0

2000

4000

6000

Intens. [a.u.]

300 400 500 600 700 800 900 1000 1100 1200m /z

NB

N

F F

O

N

S

O

Page 10: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S10

4. Crystallographic Data

The single crystals of PTZ-styrylBodipy compounds were obtained by solvent diffusion method in

dichloromethane/n-hexane mixed solution. CCDC numbers are 1960328 for PTZ-BDP-Ph, 1960329 for

PTZ-BDP-F, 1960330 for PTZ-BDP-OMe, respectively.

Figure S10. ORTEP diagrams of the single-crystal structures of PTZ-BDP-Ph and PTZ-BDP-OMe (50%

probability thermal ellipsoids).

a b

Page 11: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S11

Table S1. Crystal Data for PTZ-styrylBodipy Compounds.

compounds PTZ-BDP-Ph·H2O PTZ-BDP-F PTZ-BDP-OMe Empirical formula C43H40BF2N3OS 0.06 (C43H36BF4N3S) C45H42BF2N3O2S Formula weight 695.65 41.98 737.68 Temperature (K) 270(2) 270(2) 273(2) Wavelength (Å) 0.71073 0.71073 0.71073 Crystal system monoclinic triclinic triclinic Space group C2/c P-1 P-1 a (Å) 32.320(4) 11.910(4) 8.3719(8) b (Å) 16.5482(18) 12.254(5) 11.6265(12) c (Å) 16.796(2) 15.840(6) 21.171(2) (deg) 90 97.029(6) 91.635(8) (deg) 118.803(2) 102.576(6) 97.842(7) (deg) 90 95.160(6) 102.352(7) Volume (Å3) 7872.0(15) 2223.2(14) 1990.7(3) Z 8 34 2 Dx / g·cm3 1.173 1.066 1.231 crystal size (mm) 0.0540.0430.033 0.20.20.2 0.50.20.2 F (000) 2928 744 776 / mm1 0.127 0.119 0.132 Theta range /deg 2.282 – 27.432 2.290 – 27.677 1.796 – 27.579 Index ranges 41 h 28 15 h 15, 10 h 10, 21 k 21, 15 k 15, 14 k 15, 17 l 21 20 l 20 26 l 26 Absorption correction MULTI-SCAN MULTI-SCAN MULTI-SCAN Goodness of fit 1.363 1.335 0.957 Largest peak 1.896 1.365 0.307 Deepest hole -0.477 -0.334 -0.288 R a 0.1397 0.1662 0.0740 ωR2

a 0.4301 0.4505 0.2426 Tmin / T max 0.937 / 0.959 0.582 / 0.746 0.568 / 0.746

Page 12: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S12

5. DFT Calculation

Figure S11. The HOMO and LUMO energies of Bodipy compounds. Calculated at B3LYP/6-31G(d) level

with Gaussian 09W.

Figure S12. Optimized ground state geometries of (a) PTZ-BDP-Ph, (b) PTZ-BDP-F and (c) PTZ-BDP-OMe.

Calculated at B3LYP/6-31G(d) level with Gaussian 09W.

2.61 eV 2.33 eV

HOMO

4.85 eV

5.34 eV

LUMO

Page 13: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S13

Figure S13. The calculated potential energy curves of the rotation around the linker bond of (a) PTZ-BDP-

Ph, (b) PTZ-BDP-F and (c) PTZ-BDP-OMe. is the torsion angle between PTZ moiety and styrylBodipy

moiety. The dash lines indicate the thermal energy (0.026 eV) at room temperature. Calculated at

B3LYP/6-31G(d) level with Gaussian 09W.

6. UVVis Absorption Spectra

Figure S14. UVVis absorption spectra of (a) BDP-1 and (b) BDP-2 in toluene, c = 1 105 M, 20 C.

Page 14: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S14

7. Fluorescence Spectra and Lifetime

Figure S15. Fluorescence spectra of (a) PTZ-BDP-Ph, (b) PTZ-BDP-OMe and (c) BDP-1, optically matched

solutions were used in each panel (each of the solutions gives the same absorbance at the excitation

wavelength); λex = 540 nm, A = 0.05; 20 °C.

Figure S16. Fluorescence lifetime spectra of (a) PTZ-BDP-Ph and (b) PTZ-BDP-OMe in toluene (TOL),

diethyl ether (DEE), acetonitrile (ACN) solvents. λex = 635 nm, c = c.a. 1.0 × 10−5 M, 20 °C.

Page 15: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S15

Table S2. Fluorescence Quantum Yields and Lifetimes in Different Solvents

solvent ET(30) a ΦF b 1

c / ns 2 c/ ns

PTZ-BDP-Ph HEX 31.0 62% 5.5 100%

TOL 33.9 42% 4.4 100%

DEE 34.5 4% 1.2 74% 4.3 26%

THF 37.4 1% 0.7 22% 4.1 78%

DCM 40.7 d 4.1 100%

ACN 45.6 d 4.3 100%

MeOH 55.4 d 3.9 100%

PTZ-BDP-F HEX 31.0 58% 5.0 100%

TOL 33.9 32% 4.1 100%

DEE 34.5 2% 1.1 88% 4.4 12%

THF 37.4 1% 0.5 80% 4.3 20%

DCM 40.7 d 0.6 63% 4.3 37%

ACN 45.6 1% 0.6 41% 4.4 59%

MeOH 55.4 1% 0.5 64% 4.2 36%

PTZ-BDP-OMe HEX 31.0 49% 5.3 100%

TOL 33.9 39% 4.8 100%

DEE 34.5 43% 4.7 100%

THF 37.4 2% e

DCM 40.7 1% e

ACN 45.6 d e

MeOH 55.4 d e

a The solvent polarity parameter (kcal/mol). b Fluorescence quantum yields with BDP-1 (ΦF = 0.59 in toluene) as the standard. c Multiexponential fitting of the fluorescence lifetime. c = c.a. 1.0 × 10−5 M. d

The value is less than 1%. e Not observed.

Page 16: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S16

8. Electrochemical Studies

Figure S17. Cyclic voltammogram of PTZ-BDP-Ph, PTZ-BDP-F and PTZ-BDP-OMe in deaerated

dichloromethane containing 0.10 M Bu4N[PF6] as supporting electrolyte and Ag/AgNO3 as the reference

electrode. Scan rate: 100 mV/s. Ferrocene (Fc) was used as internal reference (set as 0 V in the cyclic

voltammograms), c = 2.0 × 104 M, 20 °C.

The cyclic voltammogram of PTZ-styrylBodipy dyads were measured (Figure S17). Compared with PTZ-

BDP, the first oxidation potentials of PTZ-styrylBodipy dyads were almost the same, while the reduction

potentials were increased by c.a. 280 mV due to the styryl-Bodipy moiety, which agrees with the

increasing HOMO of DFT results (Figure S11). For -Ph, -F, -OMe substituted compounds, reversible

reduction waves at 1.40, 1.40 and 1.47 V were observed and attributed to the reduction of the styryl-

Bodipy moiety, whereas the first reversible oxidation waves at +0.37, +0.37 and +0.32 V are attributed

to the one-electron oxidations of PTZ moiety. The second reversible oxidation waves at +0.54, +0.55 and

+0.42 V were observed to be the oxidations of styryl-Bodipy moiety.

1 0 -1 -2

Cur

rent

Potential / V

PTZ-BDP-Ph PTZ-BDP-F PTZ-BDP-OMe

Page 17: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S17

The Gibbs free energy changes of charge separation (GCS) were calculated with the Rehm-Weller

equation (Eq. S1 and Eq. S2). The energy levels of the charge separation state (ECS) were calculated with

Eq. S3.4

(Eq. S1)

(Eq. S2)

(Eq. S3)

Where the GS is the static Coulombic energy, which is defined in Eq. S2; e is the electronic charge; EOX

is the half-wave oxidation potential; ERED is the half-wave reduction potential; E00 is the adiabatic energy

level approximated as the crossing point wavelength of the normalized absorption and emission spectra

in dichloromethane; S is the static dielectric constant of the solvent; 0 is the permittivity of free space;

RCC is the center to center separation distance determined using the DFT optimization of the geometry

(RCC-Ph = 9.82 Å, RCC-F = 9.98 Å, RCC-OMe = 11.36 Å); RD (RA) is the radius of the electron donor (acceptor),

REF is the static dielectric constant of the solvent used in the measurement.

Figure S18. Cyclic voltammogram of BDP-1 in deaerated dichloromethane containing 0.10 M Bu4N[PF6]

as supporting electrolyte and Ag/AgNO3 as the reference electrode. Scan rate: 100 mV/s. Ferrocene (Fc)

was used as internal reference (set as 0 V in the cyclic voltammograms), c = 1.0 × 103 M, 20 °C.

CS OX RED 00 S= [ ]G e E E E G

2 2

SS 0 CC 0 D A REF S

1 1 1 1=

4 8

e eG

R R R

CS OX RED SE e E E G

1 0 -1

Cur

rent

Potential / V

Page 18: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S18

Table S3. Redox Potentials of the Compounds a

Compounds ERED / V EOX / V

phenothiazineb c +0.21, +0.54

PTZ-BDPd 1.69 +0.36, +0.84

BDP-1 1.39 +0.48

PTZ-BDP-Ph 1.40 +0.37, +0.54

PTZ-BDP-F 1.40 +0.37, +0.55

PTZ-BDP-OMe 1.47 +0.32, +0.42, +0.72

a Cyclic voltammetry in N2-saturated dichloromethane containing a 0.10 M Bu4N[PF6] supporting electrolyte. Counter electrode is Pt electrode and working electrode is glassy carbon electrode, Ag/AgNO3 couple as the reference electrode. b Literature value.5 c Not observed. d Reported in Literature value.1

Table S4. Charge Separation Free Energy (GCS) and Charge Separation Energy States (ECS) for

Compounds in Different Solvents

GCS / eV ECS / eV n-HEX TOL DEE DCM ACN n-HEX TOL DEE DCM ACN

PTZ-BDP-Pha 0.07 0.05 0.24 0.34 0.46 2.05 1.93 1.74 1.61 1.51

PTZ-BDP-Fb 0.10 0.02 0.21 0.35 0.44 2.07 1.95 1.75 1.62 1.52

PTZ-BDP-OMec 0.27 0.14 0.09 0.25 0.36 2.17 2.04 1.81 1.65 1.54

a E00 = 1.98 eV. b E00 = 1.97 eV. c E00 = 1.90 eV. E00 is the energy level of the singlet excited state with the cross point of the normalized UVVis absorption and fluorescence emission spectra.

Page 19: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S19

9. Nanosecond Transient Absorption Spectra

Figure S19. (a) Nanosecond transient absorption spectra of PTZ-BDP-Ph in the presence of 10% ethyl

iodide (v/v) and (b) the triplet state decay kinetics at 680 nm in the absence of ethyl iodide. In deaerated

toluene, ex = 620 nm, 20 °C.

Figure S20. The triplet state decay kinetics at 685 nm of (a) PTZ-BDP-Ph and (b) PTZ-BDP-F with 10%

ethyl iodide (v/v) in deaerated toluene. ex = 620 nm, c = 1.0 × 105 M, 20 °C.

Page 20: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S20

10. Application on DPBF Capturing 1O2

Figure S21. Relative absorbance changes of DPBF consumption at 415 nm at different time, with PTZ-

BDP-Ph, PTZ-BDP-F and BDP-2 as triplet photosensitizers. 0 160 s is in hypoxia environment (O2/N2

mixture with 0.2% O2), 200 s ~ 360 s is in air environment (air with 21% O2); λex = 590 nm, in toluene,

20 °C.

Table S5. Singlet Oxygen Quantum Yields in Different Oxygen Concentration Environment.a

hypoxia air

PTZ-BDP-Ph 11% 13%

PTZ-BDP-F 19% 21%

BDP-1 b 40%

aSinglet oxygen quantum yield (1O2) with methylene blue as standard (ΦΔ = 0.57 in dichloromethane). The estimated determination error is ±2%. bThe value is nearly 0%.

Page 21: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S21

Figure S22. Consumption of DPBF by 1O2 produced by the sensitized photosensitizers (a) PTZ-BDP-Ph, (b)

PTZ-BDP-F, (c) BDP-2 and oxygen in hypoxia (0 ~ 160 s) and air (200 s ~ 360 s) environment with different

oxygen content. 0 ~ 160 s is in hypoxia environment (O2/N2 mixture with 0.2% O2), 200 s~ 360 s is in air

environment (air with 21% O2); λex = 590 nm, in toluene, 20 °C.

Page 22: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S22

11. Simplified Jablonski Diagram Illustrating the Photophysical Process in (a) PTZ-BDP-

Ph and (b) PTZ-BDP-OMe a

a The energy levels of the excited singlet states are derived from the spectroscopic data; the energy levels of charge transfer states (CTS) are obtained from the electrochemistry data; the energy levels of the triplet states are from DFT calculation.

Page 23: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S23

12. Coordinates of the Optimized Geometries of the Compounds

PTZ-BDP-Ph

Charge = 0; Multiplicity = 1

Symbolic Z-matrix:

C 1.92424300 -2.54721500 -0.17123400

C -0.32758300 -2.79067600 -0.41097800

C 0.01435700 -1.39321700 -0.34517300

C -0.77959900 -0.23610600 -0.43549800

C -0.19720200 1.04347600 -0.40627400

C -0.77641500 2.35676100 -0.52426100

C 1.48419900 2.51665200 -0.29593700

N 1.39694500 -1.29474200 -0.20236600

N 1.18200300 1.19163600 -0.27093100

B 2.16347100 0.03314300 0.09060300

F 2.51014800 0.10062200 1.43183300

F 3.30643400 0.10937300 -0.71346100

C -1.67137300 -3.43815300 -0.57736500

H -2.35590800 -3.18529400 0.23919100

H -2.16509100 -3.13482100 -1.50646800

Page 24: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S24

H -1.55574200 -4.52648900 -0.59513900

C -2.21273200 2.75633600 -0.69850500

H -2.84858300 2.37612600 0.10765900

H -2.29203800 3.84808200 -0.70529300

H -2.63673900 2.38189100 -1.63641900

C 0.86386800 -3.48257200 -0.30386800

C 0.27762900 3.24798500 -0.45725400

H 0.20032000 4.32430500 -0.53416000

H 0.97454300 -4.55823300 -0.33654000

C 3.33934900 -2.79125400 -0.04081900

H 3.97230500 -1.91302500 -0.08302400

C 3.88204300 -4.02308500 0.11047000

H 3.21681200 -4.88495900 0.14573100

C 5.30099100 -4.34475200 0.23554200

C 5.68342400 -5.69678400 0.33583600

C 6.31790500 -3.36775400 0.26127600

C 7.02223400 -6.06299100 0.45111100

H 4.91355500 -6.46504500 0.32038100

C 7.65408800 -3.73407700 0.37722000

H 6.05871800 -2.31567100 0.19440700

C 8.01517600 -5.08240400 0.47162500

H 7.29008900 -7.11363400 0.52560600

Page 25: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S25

H 8.42100100 -2.96423100 0.39601600

C 2.83504900 3.00934200 -0.18558200

H 3.61372600 2.25619200 -0.20341400

C 3.15060600 4.32199900 -0.07529100

H 2.34205300 5.05160800 -0.05442600

C 4.48942900 4.89573100 0.02839500

C 4.62087800 6.29437100 0.13257700

C 5.66749300 4.12024400 0.03044200

C 5.87217900 6.89758700 0.23315000

H 3.72381600 6.90955900 0.13408500

C 6.91627000 4.72315500 0.13097100

H 5.60341100 3.03912500 -0.04478100

C 7.02715700 6.11408300 0.23257400

H 5.94544800 7.97904000 0.31219200

H 7.81081700 4.10593400 0.13119400

C -2.26116500 -0.36808700 -0.58036000

C -3.08232800 -0.43949800 0.55328100

C -2.86362200 -0.41737100 -1.84026700

C -4.46246100 -0.58976300 0.43070400

H -2.63890300 -0.39379900 1.54396000

C -4.24864000 -0.52988300 -1.97031600

H -2.24790600 -0.35274000 -2.73302500

Page 26: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S26

C -5.07350800 -0.63180500 -0.83957100

H -4.68343400 -0.53335500 -2.96340200

C -6.93850900 -0.00230700 1.32734200

C -7.74643700 0.67219800 2.24185500

C -7.30982900 -0.09560400 -0.02814200

C -8.95861800 1.23270900 1.83491700

H -7.42734700 0.74216900 3.27791500

C -8.51338400 0.50193900 -0.43064900

C -9.33662100 1.14287400 0.49742100

H -9.59287500 1.73804900 2.55700600

H -8.81180200 0.47439100 -1.47249700

H -10.27015500 1.58508200 0.16091200

N -6.47272400 -0.78257900 -0.94131000

S -5.46187100 -0.83103000 1.88532000

C -7.03200900 -1.17478100 -2.22588200

H -7.09458700 -0.34908000 -2.95209700

H -6.41473600 -1.96790200 -2.65453400

H -8.03658000 -1.57345600 -2.06703700

H 8.00552800 6.58014500 0.31133300

H 9.06089500 -5.36316900 0.56252500

Calculation Method = RB3LYP

Page 27: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S27

Basis Set = 6-31G(d)

Charge = 0

Spin = Singlet

E(RB3LYP) = -2330.70181635 a.u.

RMS Gradient Norm = 0.00000263 a.u.

Imaginary Freq = 0

Dipole Moment = 5.3249 Debye

Point Group = C1

PTZ-BDP-F

Charge = 0; Multiplicity = 1

Symbolic Z-matrix:

C 1.50452000 -2.58484500 -0.21231500

C -0.74993800 -2.81539400 -0.43850000

C -0.39994600 -1.42002800 -0.37254500

C -1.18823800 -0.25849900 -0.45544600

C -0.59838800 1.01771100 -0.42746000

C -1.17099900 2.33439700 -0.53868400

C 1.09166200 2.48135800 -0.32344800

N 0.98408400 -1.32931100 -0.23823700

NB

N

F F

F

N

S

F

PTZ-BDP-F

Page 28: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S28

N 0.78248400 1.15787000 -0.30016600

B 1.75939200 -0.00656600 0.05291700

F 2.11577700 0.05617200 1.39197100

F 2.89876600 0.06524400 -0.75775100

C -2.09829000 -3.45500000 -0.59792200

H -2.77635100 -3.19979700 0.22327200

H -2.59584300 -3.14686700 -1.52337400

H -1.98898900 -4.54392100 -0.61858300

C -2.60603400 2.74229000 -0.70364600

H -3.23916600 2.36385800 0.10545500

H -2.67940400 3.83444800 -0.70779200

H -3.03748400 2.37198300 -1.63977700

C 0.43838700 -3.51410400 -0.33987400

C -0.11160000 3.21971000 -0.47577300

H -0.18364900 4.29661300 -0.54984900

H 0.54266400 -4.59034300 -0.37521200

C 2.91896600 -2.83611800 -0.09094400

H 3.55539100 -1.96051600 -0.13701700

C 3.45690100 -4.07046600 0.05685400

H 2.78798100 -4.92915600 0.09632300

C 4.87418000 -4.39873400 0.17341200

C 5.25359800 -5.75213700 0.27303900

Page 29: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S29

C 5.89691500 -3.42645500 0.19211800

C 6.58845400 -6.13190200 0.38080100

H 4.48340200 -6.51937200 0.26352700

C 7.23369000 -3.78901600 0.29980700

H 5.64399400 -2.37322100 0.12574300

C 7.56127700 -5.13981900 0.39149400

H 6.88134800 -7.17389100 0.45633100

H 8.02382300 -3.04546100 0.31591000

C 2.44584100 2.96570400 -0.21938300

H 3.21945500 2.20749300 -0.24496600

C 2.77022500 4.27591200 -0.10558600

H 1.96641300 5.01031900 -0.07678200

C 4.11222500 4.84095900 -0.00756100

C 4.25540300 6.23851100 0.10183600

C 5.28674800 4.05864800 -0.01561000

C 5.50674800 6.84061900 0.19749400

H 3.36492300 6.86213400 0.11169400

C 6.54303700 4.64421600 0.07911300

H 5.21748100 2.97851300 -0.09474600

C 6.63532100 6.03016700 0.18417700

H 5.61784800 7.91666400 0.28130400

H 7.44913300 4.04722000 0.07389300

Page 30: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S30

C -2.67157700 -0.38180200 -0.58894200

C -3.48361600 -0.45074000 0.55141600

C -3.28478800 -0.42479800 -1.84388600

C -4.86559500 -0.59241800 0.44023200

H -3.03170800 -0.40980300 1.53846500

C -4.67153700 -0.52848300 -1.96242100

H -2.67632900 -0.36198800 -2.74174800

C -5.48762600 -0.62769700 -0.82500200

H -5.11469000 -0.52707200 -2.95180400

C -7.33023200 0.00685900 1.35966000

C -8.12621800 0.68357000 2.28297200

C -7.71363000 -0.08039600 0.00718600

C -9.33846700 1.25239300 1.88800900

H -7.79786300 0.74870900 3.31644400

C -8.91701500 0.52539200 -0.38332100

C -9.72844300 1.16855000 0.55356100

H -9.96350800 1.75942200 2.61690200

H -9.22450000 0.50255400 -1.42263400

H -10.66218800 1.61717400 0.22629600

N -6.88835900 -0.76946800 -0.91529700

S -5.85366200 -0.83181800 1.90274200

C -7.46110600 -1.15470900 -2.19613900

Page 31: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S31

H -7.52417800 -0.32675100 -2.91969300

H -6.85290600 -1.95094200 -2.63193100

H -8.46694400 -1.54697700 -2.02974700

F 7.85451100 6.59933500 0.27537300

F 8.85884700 -5.49221600 0.49584200

Calculation Method = RB3LYP

Basis Set = 6-31G(d)

Charge = 0

Spin = Singlet

E(RB3LYP) = -2529.16880099 a.u.

RMS Gradient Norm = 0.00000284 a.u.

Imaginary Freq = 0

Dipole Moment = 7.6243 Debye

Point Group = C1

PTZ-BDP-OMe

Charge = 0; Multiplicity = 1

Symbolic Z-matrix:

C 1.11446200 -2.61221900 -0.25952600

NB

N

F F

O

N

S

O

PTZ-BDP-OMe

Page 32: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S32

C -1.14229400 -2.84094500 -0.47260600

C -0.79225800 -1.44610200 -0.40083600

C -1.58078000 -0.28403800 -0.47113800

C -0.99080300 0.99190000 -0.43990900

C -1.56342400 2.30920200 -0.54123100

C 0.70145100 2.45534600 -0.33995600

N 0.59289000 -1.35636800 -0.27495800

N 0.39111700 1.13148500 -0.32075800

B 1.36912600 -0.03532700 0.02128900

F 1.73022300 0.01914200 1.36004200

F 2.50556300 0.04148400 -0.79286300

C -2.49175900 -3.47987400 -0.62734300

H -3.16569100 -3.22854900 0.19853500

H -2.99478100 -3.16839400 -1.54882600

H -2.38251500 -4.56880900 -0.65318200

C -2.99946800 2.71849900 -0.69554400

H -3.62817800 2.33767300 0.11597300

H -3.07213200 3.81082800 -0.69490600

H -3.43747800 2.35250900 -1.63043000

C 0.04638700 -3.54031600 -0.38595800

C -0.50372600 3.19401700 -0.48120800

H -0.57640200 4.27130200 -0.54961300

Page 33: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S33

H 0.15026200 -4.61637900 -0.42880800

C 2.52819200 -2.86591100 -0.14794700

H 3.16666600 -1.99177800 -0.19238000

C 3.06486400 -4.10310400 -0.00742900

H 2.39235100 -4.95923800 0.03546400

C 4.47833200 -4.43736300 0.10024700

C 4.85773500 -5.78492600 0.22237600

C 5.51311600 -3.47342100 0.08988000

C 6.19218900 -6.17485200 0.32716900

H 4.08570500 -6.55103500 0.23513700

C 6.84140400 -3.84411500 0.19308400

H 5.26910300 -2.41929600 0.00240000

C 7.19611800 -5.19980300 0.31251300

H 6.43421000 -7.22749300 0.41933500

H 7.63392000 -3.10228600 0.18616900

C 2.05467600 2.94056800 -0.24264800

H 2.82993600 2.18419100 -0.27050400

C 2.37792100 4.25274200 -0.13244400

H 1.57155600 4.98476800 -0.10208400

C 3.71535100 4.82199800 -0.04168400

C 3.86167300 6.21578300 0.06197900

C 4.89837400 4.04721900 -0.05133400

Page 34: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S34

C 5.11141300 6.82733900 0.14977400

H 2.97100000 6.84002400 0.07390600

C 6.14540200 4.63887100 0.03516200

H 4.83588400 2.96600400 -0.12570400

C 6.26600500 6.03647600 0.13592200

H 5.17223900 7.90684500 0.22760700

H 7.05217000 4.04208100 0.02794900

C -3.06529700 -0.40630200 -0.59382400

C -3.86902400 -0.47897300 0.55217500

C -3.68891200 -0.44404100 -1.84383500

C -5.25195700 -0.61931400 0.45112500

H -3.40925600 -0.44174400 1.53571400

C -5.07668600 -0.54607600 -1.95223100

H -3.08720300 -0.37801800 -2.74599100

C -5.88378800 -0.64933700 -0.80899200

H -5.52751600 -0.54013100 -2.93816800

C -7.70878100 -0.01932100 1.39156900

C -8.49697300 0.65526400 2.32308800

C -8.10313000 -0.10220800 0.04174000

C -9.71209500 1.22604600 1.93982100

H -8.16008700 0.71710500 3.35403300

C -9.30953500 0.50536500 -0.33694900

Page 35: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S35

C -10.11300400 1.14619000 0.60838200

H -10.33078800 1.73145600 2.67527300

H -9.62555600 0.48571200 -1.37377800

H -11.04915400 1.59628300 0.28999000

N -7.28618800 -0.78943400 -0.88881700

S -6.22942100 -0.86176300 1.92053200

C -7.86872400 -1.16853600 -2.16679500

H -7.93584900 -0.33756300 -2.88666800

H -7.26449800 -1.96355300 -2.61027400

H -8.87396700 -1.56015600 -1.99504100

O 7.53927000 6.51524100 0.21392300

O 8.53119700 -5.45439600 0.40816200

C 7.72583500 7.91858100 0.31382600

H 8.80515200 8.07415600 0.35958500

H 7.32029700 8.44200000 -0.56198700

H 7.26193300 8.32330800 1.22290900

C 8.95143000 -6.80336500 0.54083900

H 10.04065900 -6.77239800 0.60304500

H 8.54854200 -7.26289300 1.45296600

H 8.65455900 -7.40551300 -0.32797000

Calculation Method = RB3LYP

Page 36: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S36

Basis Set = 6-31G(d)

Charge = 0

Spin = Singlet

E(RB3LYP) = -2559.74910430 a.u.

RMS Gradient Norm = 0.00000596 a.u.

Imaginary Freq = 0

Dipole Moment = 3.6821 Debye

Point Group = C1

Page 37: o } v ] ^ µ o u v Ç / v ( } u ] } v Wd Z v } o } P Ç U î ì ô t u µ U î > ] v P ' } v P Z X U o ] v í í ò ì î ð U W X Z X Z ] v X u ] o W Ì Z } i Ì Z o µ X µ X v ~:

S37

13. Reference

(1) K. Chen, W. Yang, Z. Wang, A. Iagatti, L. Bussotti, P. Foggi, W. Ji, J. Zhao and M. Di Donato, J. Phys.

Chem. A 2017, 121, 75507564.

(2) L. Huang, X. Yu, W. Wu and J. Zhao, J. Org. Lett. 2012, 14, 25942597.

(3) L. Huang, J. Zhao, S. Guo, C. Zhang and J. Ma, J. Org. Chem. 2013, 78, 56275637.

(4) (a) R. Ziessel, B. D. Allen, D. B. Rewinska and A. Harriman, Chem. Eur. J. 2009, 15, 73827393. (b)

W.-J. Shi, M. E. El-Khouly, K. Ohkubo, S. Fukuzumi and D. K. P. Ng, Chem. Eur. J. 2013, 19, 1133211341.

(5) Y. Hou, T. Biskup, S. Rein, Z. Wang, L. Bussotti, N. Russo, P. Foggi, J. Zhao, M. Di Donato, G. Mazzone

and S. Weber, J. Phys. Chem. C 2018, 122, 2785027865.