O - Inherited Change

16
A2 Biology 9700 – Chapter O Inheritance Peter Ting 1 Introduction: Gregory Mendel was a member of the Augustinian monastery in Brunn, Austria. His ambition was to be a teacher but repeatedly failed the necessary examinations and had to content himself with a job as substitute science teacher at the main school in Brunn. He had always been interested in the problem of heredity and this led him to carry out breeding experiments on plants. As the subject for his research he chose the garden pea, which has a number of sharply contrasting and easily recognizable characteristics: for example; long and short stem, red and white flowers, smooth and wrinkled seeds. With such clearcut differences it is possible to cross or selfpollinate certain plants and examine the characteristics of their offspring. Starting in about 1856, Mendel carried out vast number of experiments in the garden of his monastery. The conclusions he drew forms the basis or foundations on which the study of heredity is built. This chapter introduces the concept of inheritance. It is the theory of how one trait/phenotype can be successfully passed on to the next generation. One must fully understand that between a parent and their offspring, there is remarkable similarity and yet it is no less noticeable that they also differ from each other in many respects. The science of heredity/inheritance attempts to explain both similarities and differences between parents and offspring. (a) [PA] describe, with the aid of diagrams, the behaviour of chromosomes during meiosis, and the associated behaviour of the nuclear envelope, cell membrane and centrioles (names of the main stages are expected, but not the subdivisions of prophase); Key idea – In the topic of inheritance, there is this notion of variation. What is variation? Why must there be variation? Where can we see/observe variation? Variation can be explained by understanding that genes control the traits, being different in many organisms. How is it being different? Fertilization: New life begins at fertilization, when the sperm and egg combine their genetic material. Genetic material is located in the nucleus, where every gamete (reproductive cells of male and female) is unique and different. The process meiosis explains the uniqueness and the blueprint of genomic content, which is the reason why individuals are with varying shape, sizes and other observable characteristics. Meiosis involves two divisions: meiosis I and meiosis II. Meiosis I results in two daughter nuclei with half the number of chromosomes of the parent nucleus. This is reduction division. Meiosis II results in the chromosome behave as in mitosis (each of the two haploid daughter nuclei divides again) Own notes: Peter Ting 11/28/12 5:57 PM Comment [1]: Trait/Phenotype = observable characteristics. Peter Ting 11/28/12 6:01 PM Comment [2]: Very often, the notion of variation can be seen as intraspecific variation or interspecific variation. Nevertheless, variation describes the observable differences in traits between 2 organisms. Peter Ting 11/28/12 6:06 PM Comment [3]: What is a gene? Peter Ting 11/28/12 6:28 PM Comment [4]: This is a term you must be familiar with. Reduction division describes the result of the cell division which produces a daughter cell that has half of the chromosome number compared to the parental cell.

Transcript of O - Inherited Change

Page 1: O - Inherited Change

A2  Biology  9700  –  Chapter  O  -­‐  Inheritance                                                                                                            Peter  Ting    

  1  

Introduction:  Gregory  Mendel  was  a  member  of  the  Augustinian  monastery  in   Brunn,   Austria.   His   ambition   was   to   be   a   teacher   but   repeatedly   failed   the  necessary   examinations   and   had   to   content   himself   with   a   job   as   substitute  science   teacher  at   the  main   school   in  Brunn.  He  had  always  been   interested   in  the  problem  of  heredity  and  this   led  him  to  carry  out  breeding  experiments  on  plants.   As   the   subject   for   his   research   he   chose   the   garden   pea,   which   has   a  number   of   sharply   contrasting   and   easily   recognizable   characteristics:   for  example;   long   and   short   stem,   red   and   white   flowers,   smooth   and   wrinkled  seeds.   With   such   clear-­‐cut   differences   it   is   possible   to   cross   or   self-­‐pollinate  certain   plants   and   examine   the   characteristics   of   their   offspring.   Starting   in  about  1856,  Mendel  carried  out  vast  number  of  experiments  in  the  garden  of  his  monastery.  The  conclusions  he  drew  forms  the  basis  or  foundations  on  which  the  study  of  heredity  is  built.    This   chapter   introduces   the  concept  of   inheritance.   It   is   the   theory  of  how  one  trait/phenotype  can  be  successfully  passed  on  to  the  next  generation.  One  must  fully  understand  that  between  a  parent  and  their  offspring,  there  is  remarkable  similarity  and  yet  it  is  no  less  noticeable  that  they  also  differ  from  each  other  in  many   respects.   The   science   of   heredity/inheritance   attempts   to   explain   both  similarities  and  differences  between  parents  and  offspring.    (a)  [PA]  describe,  with  the  aid  of  diagrams,  the  behaviour  of  chromosomes  during  meiosis,  and  the  associated  behaviour  of  the  nuclear  envelope,  cell  membrane  and  centrioles   (names   of   the   main   stages   are   expected,   but   not   the   sub-­‐divisions   of  prophase);    Key   idea  –   In   the   topic  of   inheritance,   there   is   this  notion  of  variation.  What   is  variation?  Why  must  there  be  variation?  Where  can  we  see/observe  variation?    Variation  can  be  explained  by  understanding  that  genes  control  the  traits,  being  different  in  many  organisms.  How  is  it  being  different?    Fertilization:  New   life  begins  at   fertilization,  when   the   sperm  and  egg  combine  their   genetic  material.   Genetic  material   is   located   in   the   nucleus,   where   every  gamete   (reproductive   cells   of   male   and   female)   is   unique   and   different.   The  process  meiosis  explains   the  uniqueness  and   the  blueprint  of  genomic  content,  which   is   the   reason   why   individuals   are   with   varying   shape,   sizes   and   other  observable  characteristics.      Meiosis  involves  two  divisions:  meiosis  I  and  meiosis  II.    

• Meiosis   I   results   in   two   daughter   nuclei   with   half   the   number   of  chromosomes  of  the  parent  nucleus.  This  is  reduction  division.  

• Meiosis   II   results   in   the   chromosome  behave  as   in  mitosis   (each  of   the  two  haploid  daughter  nuclei  divides  again)  

 Own  notes:  

Peter Ting � 11/28/12 5:57 PMComment [1]: Trait/Phenotype  =  observable  characteristics.    

Peter Ting � 11/28/12 6:01 PMComment [2]: Very  often,  the  notion  of  variation  can  be  seen  as  intraspecific  variation  or  interspecific  variation.  Nevertheless,  variation  describes  the  observable  differences  in  traits  between  2  organisms.    Peter Ting � 11/28/12 6:06 PMComment [3]: What  is  a  gene?    

Peter Ting � 11/28/12 6:28 PMComment [4]: This  is  a  term  you  must  be  familiar  with.  Reduction  division  describes  the  result  of  the  cell  division  which  produces  a  daughter  cell  that  has  half  of  the  chromosome  number  compared  to  the  parental  cell.  

Page 2: O - Inherited Change

A2  Biology  9700  –  Chapter  O  -­‐  Inheritance                                                                                                            Peter  Ting    

  2  

   

The  stages  of  meiosis    (b)  explain  how  meiosis  and  fertilisation  can  lead  to  variation;    During   normal   cell   growth,   mitosis   produces   daughter   cells   identical   to  parent   cell   (2n   to   2n).  Meiosis   results   in   genetic   variation   by   shuffling   of  maternal  and  paternal  chromosomes  and  crossing  over.  

 Own  notes:    

Peter Ting � 11/29/12 12:17 AMComment [5]: 9700/41/OctNov/2010  Q9a  [9]  –  Outline  the  behavior  of  chromosomes  during  meiosis.    Prophase  1  1 idea of condensation of chromosomes ; 2 homologous chromosomes pair up / bivalent formed ; 3 chiasmata / described ; 4 crossing over / described ; Metaphase 1 5 homologous chromosomes / bivalents, line up on equator ; 6 independent assortment / described ; 7 ref to spindle ; 8 role of centromeres ; Anaphase 1 9 chromosomes move to poles ; 10 homologous chromosomes / bivalents, separate ; 11 pulled by microtubules ; Telophase 1 12 reduction division ; Metaphase 2 13 chromosomes line up on equator ; 14 of spindle ; Anaphase 2 15 centromeres divide ; 16 chromatids move to poles ; 17 pulled by microtubules ; 18 ref. haploid number ; Telophase 2 19 Meiosis results in total of FOUR total haploid cells.  

Peter Ting � 12/10/12 1:35 PMComment [6]: Crossing  over  allows  genetic  material  to  be  exchanged  between  bivalents  (non-­‐sister  chromatid).  There  will  be  new  variation  of    chromatids  within  the  pair.  

Page 3: O - Inherited Change

A2  Biology  9700  –  Chapter  O  -­‐  Inheritance                                                                                                            Peter  Ting    

  3  

   No   daughter   cells   formed   during   meiosis   are   genetically   identical   to   either  mother   or   father.   There   are   reasons   why   that   happen.   During   sexual  reproduction,   fusion   of   the   unique   haploid   gametes   produces   truly   unique  offspring.      The   two   events   that   take   place   during  meiosis   which   help   to   produce   genetic  variation  between  daughter  cells  are:    

– Crossing   over,   which   happens   between   chromatids   of   homologous    chromosomes    

• in  prophase  I    • chiasma  /  crossing  over    • between  non-­‐sister  chromatids    • homologous  chromosomes  /  bivalents    • exchange  of  genetic  material    • linkage  groups  broken    • new  combination  of  alleles    

 – Independent  assortment  of  the  homologous  chromosomes  

• in  metaphase  I  • bivalents  are  arranged  randomly  on  the  equator  

(c)  explain  the  terms  locus,  allele,  dominant,  recessive,  codominant,  homozygous,  heterozygous,  phenotype  and  genotype;    Glossary  of  terms    Term   Definition  Genotype:     the  alleles  of  an  organism.  Phenotype:     the  observable  characteristics  of  an  organism.  Allele:   alternative  form  of  a  gene.  Dominant  allele:      

an   allele   that   has   the   same   effect   on   the   phenotype  whether   it   is   present   in   the   homozygous   or  heterozygous  state.  

Recessive  allele:     an  allele  that  only  has  an  effect  on  the  phenotype  when  present  in  the  homozygous  state.  

Codominant  alleles:      

pairs   of   alleles   that   both   affect   the   phenotype   and   is  expressed  when  present  in  a  heterozygote.  

Locus:      

the   particular   position   on   homologous   chromosomes  of  a  gene.  

Homozygous:      

having  two  identical  alleles  of  a  gene.  

Heterozygous:      

having  two  different  alleles  of  a  gene.  

 Own  Notes  

Peter Ting � 11/29/12 12:49 PMComment [7]: 9700/42/MayJune/2011 Q7(b) [5].  

Peter Ting � 12/10/12 1:36 PMComment [8]: Due  to  the  random  alignment,  there  is  possibility  to  create  gametes  with  unique  combinations  of  chromosomes.  This  means  that,  e.g.  for  2  homologous  chromosomes  present,  the  combination  of  different  gametes/haploids  that  will  be  produced  is  4.  This  follow  the  rule  2n,  where  n  =  number  of  homologous  chromosomes.  

Page 4: O - Inherited Change

A2  Biology  9700  –  Chapter  O  -­‐  Inheritance                                                                                                            Peter  Ting    

  4  

 Carrier:      

an   individual   that   has   one   copy   of   a  recessive   allele   that   causes   a   genetic  disease   in   individuals   that   are  homozygous  for  this  allele.  

Test  cross:      

testing   a   suspected   heterozygote   by  crossing   it  with   a   known   homozygous  recessive.  

 (d)   (i)   use   genetic   diagrams   to   solve   problems   involving   monohybrid   cross   -­‐  single  pair  allele  inheritance.    Key   Points:   In   each   locus   within   the   homologous   chromosomes,   lies   a   set   of  genes   that   codes   a   character/trait.   The   combination   of   these   genes,   called   the  genotype  will  control  what  the  phenotype  will  be.    These  genes,  which  are  two  of  them,   occupy   the   locus   within   the   homologous   chromosomes.   Together   the  genes   will   be   expressed   and   one   final   phenotype   will   arise.   In   this   form   of  inheritance,  there  are  specifically  TWO  forms  of  the  genes,  which  are  now  called  alleles.  One  can  have  homozygous  or  heterozygous  of  those  alleles,  depending  on  what  is  available.      The  fruit  fly,  Drosophila  melanogaster,  feeds  on  sugars  found  in  damaged  fruits.  A   fly   with   normal   features   is   called   a   wild   type.   It   has   a   striped   body   and   its  wings   are   longer   than   its   abdomen.   There   are   mutant   variations   such   as   an  ebony   coloured   body   or   vestigial  wings.   These   three   types   of   fly   are   shown   in  figure  below    

                                                             wild  type                                        ebony  body                            vestigial  wing    There   are   two   phenotypes   in   the   fruit   fly,   body   and   wings.   Wild   type   fly   has  striped  body,  allele  A  and  longer  wings,  allele  B.  But  there  were  other  variations  around,  namely  ebony  body,   allele  a  and  vestigial  wing,   allele  b.  This   is   a   clear  example  of  single  pair  allele  inheritance.  For  every  characteristics  or  traits,  there  is  a  pair  of  alleles  associated  with  it.  No  more,  no  less.    (d)   (ii)   use   genetic   diagrams   to   solve   problems   involving  monohybrid   cross   –  multiple  allele  inheritance    Key  Points:  In  some  cases,  there  are  variety  forms  of  genes  for  a  particular  trait  that  exists   in   the  gene  pool.  You  can  have  blue,  green,  and  brown  for  eye  color  but  you  can  only  have  two  alleles.        Own  Notes  

Peter Ting � 11/29/12 3:26 PMComment [9]: Two wild type fruit flies were crossed. Each had alleles A and B and carried alleles for ebony body and vestigial wings. Draw a genetic diagram to show the possible offspring of this cross Parental genotype: AaBb X AaBb Gametes : AB Ab aB ab (circle) Offspring genotypes: punnet square Offspring genotype : linked with genotype.

Peter Ting � 11/29/12 7:08 PMComment [10]: In  a  homologous  chromosomes,  ONLY  two  alleles  can  occupy,  one  for  each  loci.    

Page 5: O - Inherited Change

A2  Biology  9700  –  Chapter  O  -­‐  Inheritance                                                                                                            Peter  Ting    

  5  

What  causes  the  gene  pool  to  have  so  many  alleles  swimming  around?  Variation,  as   it   is   the   key   to   complexity   in   characters   and   traits   that   we   see   everyday  around  us.      An  example  of  this  is  the  human  blood  groups.  A  single  gene  determines  all  the  four   blood   groups   A,   B,   AB   and   O.   The   alleles   of   these   genes   are   IA,   IB   and   IO.  Alleles  IA  and  IB  are  codominant  and  IO  is  recessive  to  both.      

 

 a)   The   inheritance   of   trypsin   inhibitors   in   soybeans   is   an   example   of  multiple  allele  inheritance.  Compare  how  it  is  different  with  single  pair  allele  inheritance?    b)  Give  all  possible  genotype  of  a  plant  which  only  contains  inhibitor    A?    c)  Give  all  possible  genotypes  of  the  gametes  produced  by  a  plant  that  contains  inhibitors  B  and  C?        d)  Two  soybean  plants  were  crossed  and   the  seeds  collected  and  counted.  The  results  are  shown  in  the  table.    

 i) Draw  a  genetic  diagram  to  explain  the  results  of  this  cross.      

   (d)   (iii)   use   genetic   diagrams   to   solve   problems   involving  monohybrid   cross   –  sex  linked  inheritance    Key  points:  In  humans,  the  chromosomes  responsible  to  determine  sex  or  sexual  characteristics   are   appropriately   known   as   the   sex   chromosome.  Drosophila   is  used  to  illustrate  how  alleles  on  sex  chromosomes  are  inherited  in  predictable      Own  notes  

Peter Ting � 11/30/12 9:21 AMComment [11]: Do  you  still  remember  what  codominant  and  recessive  are  about?  

Peter Ting � 11/30/12 9:26 AMComment [12]:                  Peter Ting � 11/30/12 9:28 AMComment [13]:    Peter Ting � 11/30/12 9:29 AMComment [14]:    Peter Ting � 11/30/12 9:31 AMComment [15]:                                              

Page 6: O - Inherited Change

A2  Biology  9700  –  Chapter  O  -­‐  Inheritance                                                                                                            Peter  Ting    

  6  

patterns.  For  example,   in  Drosophila   the   locus   for  eye  color   is   located  on   the  X  chromosome.    The   allele   for   red   eye   color,   which   is   normal   in   wild   flies,   is  dominant  to  the  mutant  allele  for  white  eyes.  

As  females  have  two  chromosomes  X  (with  a  locus  for  eye  color),  they  might  be  homozygous   or   heterozygous   for   either   allele.    Males,   who   carry   only   one   X  chromosome,   are   always   hemizygous.   They   carry   only   the   one   X   chromosome  inherited  from  their  mother,  and  it  determines  their  eye  color.  

In   the   left   hand   example,   homozygous   red   eyed   females   (RR)   mate   with  hemizygous  white   eyed  males   (w-­‐).   In   the   offspring,   all   the   daughters   are   red  eyed   heterozygotes   (Rw)   and   all   sons   are   red   eyed   hemizygotes   (R-­‐).      In   the  right   hand,   homozygous   white   eyed   females   (ww)  mate   with   hemizygous   red  eyed  males  (R-­‐).      In  the  offspring,  all  the  daughters  are  red  eyed  heterozygotes  (Rw)  and  all  sons  are  white  eyed  hemizygotes  (w-­‐).    

   Sex   linkage  –   If  an  allele   for  a  gene   is  only  on  the  X  chromosome,   then   females  will  have   two  copies  while  men  will   only  have  one.   In   addition   to   their   role   in  determining   sex,   this   chromosome   has   genes   for   many   characters;   these   are  called   sex-­‐linked   genes.   Fathers   can   pass   their   sex-­‐linked   alleles   to   their  daughters  but  not   their   sons.  Mothers   can  pass   their   sex-­‐linked   alleles   to  both  sons  and  daughters.        Own  notes  

Peter Ting � 11/30/12 10:02 AMComment [16]: Do  you  know  that  sex  chromosomes  may  not  necessarily  be  homologous?    Look  at  X  and  Y,  they  do  not  have  the  same  length,  in  fact  they  are  quite  significantly  different  in  terms  of  length.      Q  –  In  your  opinion,  would  the  sex  chromosomes  pair  up  during  meiosis?    Food  for  thought:  The  human  Y  chromosome  has  lost  1,393  of  its  1,438  original  genes  over  the  course  of  its  existence.  Peter Ting � 11/30/12 10:03 AMComment [17]: You  have  heard  of  heterozygous  and  homozygous.  Hemizygous  describes  an  individual  who  has  only  one  member  of  a  chromosome  pair  or  chromosome  segment  rather  than  the  usual  two.    

Page 7: O - Inherited Change

A2  Biology  9700  –  Chapter  O  -­‐  Inheritance                                                                                                            Peter  Ting    

  7  

E.g.  Red  –  green  color  blindness    X  chromosome  has  a  locus  for  colour  vision  with  two  alleles:  

– XN  =  Normal  colour  vision  – Xn  =  Red-­‐green  colour  blindness  

Y  chromosome  does  not  have  a  colour  vision  locus.      If  a  male  receives  the  Xn  allele  he  will  have  impaired  colour  vision,  whereas  a  female  with  XNXn  will  not.    Parental     Phenotypes      Carrier  Female  x  Normal  Male     Genotypes                                          XNXn                                      XNY      

Gametes     XN            Xn                              XN                      Y              Circle  all    Offspring  1     Genotypes               Female  gamete       XN               Xn  Males  gamete   XN   XNXN   XnXn  

   Y   XNY   XnY      X-­‐chromosome  inactivation    Key   points:   Human   females   inherit   two   copies   of   every   gene   on   the   X  chromosome,   whereas   males   inherit   only   one.   But   for   the   hundreds   of   other  genes  on  the  X,  are  males  at  a  disadvantage  in  the  amount  of  gene  product  their  cells   produce?   The   answer   is   no,   because   females   have   only   a   single   active   X  chromosome  in  each  cell.    During  interphase,  chromosomes  are  too  tenuous  to  be  stained  and  seen  by  light  microscopy.  However,  a  dense,  stainable  structure,  called  a  Barr  body  (after   its  discoverer)  is  seen  in  the  interphase  nuclei  of  female  mammals.  The  Barr  body  is  one  of  the  X  chromosomes.  Its  compact  appearance  reflects  its  inactivity.  So,  the  cells  of  females  have  only  one  functioning  copy  of  each  X-­‐linked  gene  —  the  same  as  males.    X-­‐chromosome   inactivation   (XCI)   occurs   early   in   embryonic   development.   In   a  given   cell,   which   of   a   female's   X   chromosomes   becomes   inactivated   and  converted  into  a  Barr  body  is  a  matter  of  chance.  After  inactivation  has  occurred,  all  the  descendants  of  that  cell  will  have  the  same  chromosome  inactivated.  Thus  X-­‐chromosome  inactivation  creates  clones  with  differing  effective  gene  content.      Own  notes        

Peter Ting � 11/30/12 11:24 PMComment [18]: The pseudoautosomal regions get their name because any genes located within them (so far only 9 have been found) are inherited just like any autosomal genes. Males have two copies of these genes: one in the pseudoautosomal region of their Y, the other in the corresponding portion of their X chromosome. So males can inherit an allele originally present on the X chromosome of their father and females can inherit an allele originally present on the Y chromosome of their father. Crossing over occurs in two regions of pairing, called the pseudoautosomal regions.  

Page 8: O - Inherited Change

A2  Biology  9700  –  Chapter  O  -­‐  Inheritance                                                                                                            Peter  Ting    

  8  

E.g.  –  Tortoiseshell  fur  coat  in  female  cats    In  cats,   the   fur  pigmentation  gene   is  X-­‐linked,  and  depending  on  which  copy  of  the  X   chromosome  each   cell   chooses   to   leave   active,   either   an  orange  or   black  coat  color  results.  X  inactivation  only  occurs  in  cells  with  2  X  chromosomes,  which  explains  why  almost  all  tortoiseshell  cats  are  female.      

   

i) What  is  the  genotype  of  a  tortoiseshell  cat?  ii) Explain  why  there  is  no  male  tortoiseshell  cat?  

 (d)   use   genetic   diagrams   to   solve   problems   involving   monohybrid   cross   –  codominance  inheritance    Key   points:   Have   you   wondered   what   determines   your   blood   group?   At   the  beginning  of  the  20th  century  an  Austrian  scientist,  Karl  Landsteiner,  noted  that  the  serum  from  other  individuals  agglutinated  the  RBCs  of  some  individuals.  He  made   a   note   of   the   patterns   of   agglutination   and   showed   that   blood   could   be  divided  into  groups.  This  marked  the  discovery  of  the  first  blood  group  system,  ABO,  and  earned  Landsteiner  a  Nobel  Prize..      

         Own  notes    

Peter Ting � 11/30/12 11:41 PMComment [19]: Ans  :    Peter Ting � 11/30/12 11:41 PMComment [20]: Ans  :    

Peter Ting � 12/1/12 4:19 PMComment [21]: What  is  the  characteristics  of  an  offspring  showing  co-­‐dominance?    Use  the  example  of  ABO  blood  group  to  describe  your  answer  

Page 9: O - Inherited Change

A2  Biology  9700  –  Chapter  O  -­‐  Inheritance                                                                                                            Peter  Ting    

  9  

 (d)   use   genetic   diagrams   to   solve   problems   involving   monohybrid   cross   –  multiple  gene  inheritance    Key  points:  The  garden  peas  studied  by  Gregor  Mendel  involved  pairs  of  alleles  with  only  three  possible  genotypes  and  two  phenotypes  per  trait.  For  example,  the  gene   for  round  pea  (R)   is  dominant  over  the  gene   for  wrinkled  pea  (r)  and  only  three  genotypes  are  possible:  RR,  Rr  and  rr.  These  three  genotypes  produce  only   two   phenotypes:   Round   (RR   and   Rr)   and   wrinkled   (rr).   There   are   no  intermediate   traits   between   round   and   wrinkled.   If   all   human   characteristics  were   controlled  by   simple  pairs   of   dominant   and   recessive   alleles   like   the  one  Mendel  studied,  we  would  have  tall  and  short  people  with  no  intermediates.      Therefore   for   some   traits,   especially   with   ones   involved   polygenic  inheritance/multiple  gene  inheritance,  there  is  a  secondary  gene  that  controls  a  trait.    Human   skin   color   is   a   good   example   of   polygenic   (multiple   gene)   inheritance.  Assume   that   three   "dominant"   capital   letter   genes   (A,   B   and   C)   control   dark  pigmentation  because  more  melanin  is  produced.  The  "recessive"alleles  of  these  three   genes   (a,   b   &   c)   control   light   pigmentation   because   lower   amounts   of  melanin   are   produced.   The   words   dominant   and   recessive   are   placed   in  quotation   marks   because   these   pairs   of   alleles   are   not   truly   dominant   and  recessive   as   in   some   of   the   garden   pea   traits   that   Gregor   Mendel   studied.   A  genotype  with  all  "dominant"  capital  genes  (AABBCC)  has  the  maximum  amount  of  melanin  and  very  dark  skin.  A  genotype  with  all  "recessive"  small  case  genes  (aabbcc)  has  the  lowest  amount  of  melanin  and  very  light  skin.  Each  "dominant"  capital  gene  produces  one  unit  of  color,  so  that  a  wide  range  of  intermediate  skin  colors   are   produced,   depending   on   the   number   of   "dominant"   capital   genes   in  the  genotype.  For  example,  a  genotype  with  three  "dominant"  capital  genes  and  three   small   case   "recessive"   genes   (AaBbCc)  has   a  medium  amount  of  melanin  and  an  intermediate  skin  color    Q:   A  gene  for  feather  colour  in  chickens  is  carried  on  an  autosome.  This  gene  has  two  alleles,  black  (CB)  and  splashed-­‐white  (CW).  When  a  male  chicken  with  black   feathers   is  mated  with  a   female  chicken  with  splashed-­‐white   feathers,  all  the   offspring   have   blue   feathers.   This   also   occurs   when   a   male   chicken   with  splashed-­‐white  feathers  is  crossed  with  a  female  with  black  feathers.    Another   gene   may   cause   stripes   on   feathers   (barred   feathers).   This   gene   is  carried  on  the  X  chromosome.  The  allele  for  barred  feathers  (XA)  is  dominant  to  the  allele  for  nonbarred  feathers  (Xa).    In   chickens   the   male   is   homogametic   and   has   two   X   chromosomes   while   the  female  is  heterogametic  and  has  one  X  chromosome  and  one  Y  chromosome.      Own  notes  

Page 10: O - Inherited Change

A2  Biology  9700  –  Chapter  O  -­‐  Inheritance                                                                                                            Peter  Ting    

  10  

A   male   chicken   with   black,   non-­‐barred   feathers   was   crossed   with   a   female  chicken  with  splashed-­‐white,  barred  feathers.  All  the  offspring  had  blue  feathers,  but  the  males  were  barred  and  the  females  were  non-­‐barred.    Q:   Draw  a  genetic  diagram  to  explain  this  cross.    (d)  use  genetic  diagrams  to  solve  problems  involving  dihybrid  cross    Key  points:  A  dihybrid  cross  is  a  breeding  experiment  between  parental  generation  organisms  that  differ  in  two  traits.      

   (e)  use  genetic  diagrams  to  solve  problems  involving  test  crosses.    Key   points:   The   test   cross   is   another   one   of   the   fundamental   tools   devised   by  Gregor  Mendel.    In  its  simplest  form  this  is  an  experimental  cross  of  an  individual  organism   of   dominant   phenotype   but   unknown   genotype   to   an   organism  with  a  homozygous  recessive  genotype  (and  phenotype).      Q:   A  gene  for  feather  colour  in  chickens  is  carried  on  an  autosome.  This  gene  has  two  alleles,  black  (CB)  and  splashed-­‐white  (CW).  When  a  male  chicken  with  black   feathers   is  mated  with  a   female  chicken  with  splashed-­‐white   feathers,  all  the   offspring   have   blue   feathers.   This   also   occurs   when   a   male   chicken   with  splashed-­‐white  feathers  is  crossed  with  a  female  with  black  feathers.    Another   gene   may   cause   stripes   on   feathers   (barred   feathers).   This   gene   is  carried  on  the  X  chromosome.  The  allele  for  barred  feathers  (XA)  is  dominant  to  the  allele  for  nonbarred  feathers  (Xa).    In   chickens   the   male   is   homogametic   and   has   two   X   chromosomes   while   the  female  is  heterogametic  and  has  one  X  chromosome  and  one  Y  chromosome.    A   male   chicken   with   black,   non-­‐barred   feathers   was   crossed   with   a   female  chicken  with  splashed-­‐white,  barred  feathers.  All  the  offspring  had  blue  feathers,  but  the  males  were  barred  and  the  females  were  non-­‐barred.    Q:   Explain   how   a   farmer   could   use   a   breeding   programme   to   find   out   the  genotype  of  a  male  chicken  with  blue,  barred  feathers    Own  notes  

Peter Ting � 12/2/12 8:27 AMComment [22]:                                                  Peter Ting � 12/1/12 5:39 PMComment [23]: Pure  breeding  organism  describes  that  the  trait  possessed  came  from  alleles  which  are  homozygous.    

Page 11: O - Inherited Change

A2  Biology  9700  –  Chapter  O  -­‐  Inheritance                                                                                                            Peter  Ting    

  11  

(f)  [PA]  use  the  chi-­‐squared  test  to  test  the  significance  of  differences  between  observed  and  expected  results    Key   points:   The   difference   between   an   experiment   and   real   life   is   that   an  experiment  tries  to  reproduce  the  real   life  while  actually  the  real   life  cannot  be  completely  mimicked  at  all,  even  if  you  try  as  hard  as  you  may.      E.g.     If  you  are  experimenting  on  a  subject,  the  results  you  get  by  repeating  the  experiment  over  and  over  again  are  not  going  to  be  the  same.  There’re  bound  to  be   differences,   which   could   mean   little   or   big.   How   far   would   you   accept  differences?   A   statistical   test   allows   us   to   accept   or   reject   the   differences,  depending   on   the   results   of   the   experiment   and   criteria   of   the   test.   If   the  difference   is  not   large  or   significant,   then   the  null   hypothesis  will   be   accepted.  However,  to  accept  a  hypothesis  does  not  mean  that  it  is  true,  only  that  we  do  not  have  evidence  to  believe  otherwise.      There  are  many  statistical  test  being  used,  however  there  are  two  which  we  will  particularly  study   in   the  syllabus.  There  are   the  chi-­‐squared  test  and  the  t-­‐test.  Knowing  the  function  of  each  test  is  important  because  we  cannot  simply  employ  a  test  that  is  not  meant  for  certain  data.  The  requirements  to  use  each  test  are  as  follows;        Chi-­‐Squared  Test  

• When  data  acquired  is  discontinuous/categorical/discreet  • When  the  results  involve  an  expected  number  and  observed  number  

T-­‐Test  • When  data  acquired  is  continuous/normal  • When  the  results  involve  means  between  TWO  groups  

 Chi-­‐Squared  Test    As  part  of  an  investigation  into  the  foraging  habits  of  bees  (Bombus  monticola),  the  number  of  visits  made  to  two  types  of  plant,  Vaccinium  vitis-­‐idaea  and  Erica  tetralix,  were  recorded  in  the  table  below;  these  numbers  are  called  the  observed  frequencies  (O).    

   The  researchers  wished  to  test  for  a  significant  difference  in  the  number  of  visits  to  the  two  plants,  i.e.  whether  Bombus  monticola  has  a  feeding  preference.    Step  1:  State  your  null  hypothesis,  H0  

Null   hypothesis:   There   will   be   no   difference   in   the   number   of   visits   to  each  type  of  plant.  

Own  notes  

Peter Ting � 12/2/12 12:38 AMComment [24]: You  know  what  is  a  hypothesis  is  right?      A  null  hypothesis  describes  how  it  behaves  positively  towards  the  differences  in  the  results  of  the  experiment.  Means  to  say  that  there  is  no  big  difference  at  all,  despite  how  big  or  small.  Usually  we  doubt  this  to  be  true,  which  is  why  we  carry  out  the  statistical  test.  If  proven  true  that  NH  can’t  be  used,  then  we  will  believe  in  the  alternative  hypothesis  instead.  

Page 12: O - Inherited Change

A2  Biology  9700  –  Chapter  O  -­‐  Inheritance                                                                                                            Peter  Ting    

  12  

Step  2:  Calculate  the  expected  frequencies,  

Step   3:   Calculate   the   differences   between   the   observed   frequencies   (O)   and  expected  frequencies  (E)  

Step   4:   Square   the   differences   ,   and   divide   each   square   by   the   corresponding  expected  frequency,  E  

Step  5:  Calculate  the  test  value  

Therefore  2.29  +  2.29  =  4.58    Step  6:  Calculate  the  number  of  degrees  of  freedom,  df  using  the  formula  below    D.O.F  =  (number  of  columns)  –  1  =  2  –  1  =  1    Use   the   table   below,   to   find   the   critical   value,   corresponding   to   1   degree   of  freedom  and  5%  level  of  significance.  REMINDER:  Please  use  5%  significance  level  if  the  question  doesn’t  indicate  you  to  do  otherwise.  

Own  notes  

Peter Ting � 12/2/12 1:42 AMComment [25]:  The  critical  region  encompasses  those  values  of  the  test  statistic  that  lead  to  a  rejection  of  the  null  hypothesis.  Based  on  the  distribution  of  the  test  statistic  and  the  significance  level,  a  cut-­‐off  value  for  the  test  statistic  is  computed.  Values  either  above  or  below  or  both  (depending  on  the  direction  of  the  test)  this  cut-­‐off  define  the  critical  region.  Peter Ting � 12/2/12 1:37 AMComment [26]:  The  significance  level,  defines  the  sensitivity  of  the  test.  A  value  of    =  0.05  means  that  we  inadvertently  reject  the  null  hypothesis  5%  of  the  time  when  it  is  in  fact  true.  This  is  also  called  the  type  I  error.  The  choice  of    significance  level  is  somewhat  arbitrary,  although  in  practice  values  of  0.1,  0.05,  and  0.01  are  commonly  used.    

Page 13: O - Inherited Change

A2  Biology  9700  –  Chapter  O  -­‐  Inheritance                                                                                                            Peter  Ting    

  13  

Critical  value  =  3.84    Step  7:  Reject  the  null  hypothesis  and  accept  the  alternative  hypothesis  if  the  test  value,  Χ2  is  greater  than  the  critical  value.    Step   8:   State   the   smallest   level   of   significance   for  which   the   null   hypothesis   is  rejected.  

“Null  Hypothesis  is  rejected.  The  difference  did  not  occur  by  chance  for  P  <  0.05”  

 If  null  hypothesis  is  accepted;  

“Null  Hypothesis   is  accepted.  The  difference  did  occur  by  chance   for  P  >  0.05”  

 

   If  Χ2  is  big/large,  means  that  the  P(O  =  E)  becomes  smaller,  likewise  if  Χ2  =  0,  means  that  the  O  =  E,  probability  of  Observed  approaching  Expected  is  1,  P(O  =  E)  =  1.  The  graph   tells  us  where   is   the  cut-­‐off  point  where  we  allow  our  data  to  deviate  from  the  expected.  The  cut  off  point  is  saying,  this  is  only  where  the  observed  is  allowed  to  spread  away  from  the  expected.  Beyond  that  point,  I  reject   the   null   hypothesis.   Which   is   why,   when   the   Χ2   is   falls   in   the   area   of  rejection  (more  than  critical  value),  means  that  the  observed  has  already  spread  so  much  from  the  expected  value  that  I  can  no  longer  accept  its  difference.  That  would   also  mean   the  P(O=E)  drops   significantly   too,   so   it   falls   below  0.05,  P  <  0.05,  Null  hypothesis  is  then  rejected.  The  differences  are  not  due  by  chance.  And      Own  notes  

Page 14: O - Inherited Change

A2  Biology  9700  –  Chapter  O  -­‐  Inheritance                                                                                                            Peter  Ting    

  14  

if  the  Χ2  value  falls  in  the  area  of  acceptance  (smaller  than  critical  value),  means  that  the  observed  has  spread  from  the  expected  value  within  the  level  that  you  may  ignore  its  difference.  That  would  mean  that  the  P(O=E)  is  high,  higher  than  0.05,   P   >   0.05.   Null   hypothesis   is   then   accepted.   The   differences   are   due   by  chance.    (h)  explain,  with  examples,  how  the  environment  may  affect  the  phenotype;    Key  points:  Although  genes  have  major  effects  on  an  organism’s  phenotype,  the  organism’s  environment  can  also  have  large  effects.    Lactase  production  in  Escherichia  coli    The  bacterium  Escherichia  coli   has   a   gene   that   codes   for   the  production  of   the  enzyme   lactase,   which   hydrolyses   the   disaccharide   lactose   to   glucose   and  galactose.  This  gene  is  only  expressed  when  the  bacterium  encounters  lactose  in  its  environment.      Hair  colour  in  cats    Many  different  genes  determine  hair  colour  in  cats.  At  least  eight  different  genes.,  at  different   loci,  are  known  to   influence  hair  colour  and  it   is   thought  that  there  are  probably  more.  These  are  known  as  polygenes.  Depending  on  the  particular  combination  of  allele  that  a  cat  has  for  each  of  these  genes,  it  can  have  any  of  a  very   wide   range   of   colours.   Hair   colour   in   cats   is   an   example   of   continuous  variation.  This  is  variation  in  which  there  are  no  clear-­‐cut  categories.    There  is  a  continuous   range   of   variation   in   colour   between   the   very   lightest   and   very  darkest  extremes.      The   cat   hair   colour   genes   exert   their   effect   by   coding   for   the   production   of  enzymes.  One  such  gene  is  found  at  the  C  locus.  Siamese  cats  have  two  copies  of  recessive   allele   of   this   gene   called   cs.   This   gene   codes   for   an   enzyme,  which   is  sensitive   to   temperature.   It   produces   dark  hair   at   the   extremities   of   the   paws,  ears  and  tail  where  the  temperature  is   lower,  and  light  hair   in  warmer  parts  of  the   body.   The   colouring   of   a   Siamese   cat   is   therefore   the   result   of   interaction  between  gene  and  environment.      

     Own  notes  

Page 15: O - Inherited Change

A2  Biology  9700  –  Chapter  O  -­‐  Inheritance                                                                                                            Peter  Ting    

  15  

Human  height    Many  different  genes  at  different  loci  also  affect  human  height.  It  is  also  affected  by   environment.   Even   if   a   person   inherits   alleles   of   these   genes   that   give   the  potential  to  grow  tall,  he  or  she  will  not  grow  tall  unless  the  diet  supplies  plenty  of   nutrients   to   allow   this   to   happen.   Poor   nutrition,   specially   in   childhood,  reduces  the  maximum  height  that  is  attained.    

       Cancer    The  risk  of  developing  cancer  in  influenced  by  both  genes  and  environment.  For  example,  a  woman  with  particular  alleels  of  the  genes  BRCA1  or  BRCA2  has  50%  to   80%   chance   of   developing   breast   cancer   at   some   stage   in   her   life.   This   is   a  much   higher   risk   than   for   people   who   do   not   have   these   alleles.   The   normal  alleles   of   these   genes   protect   cells   from   changes   that   could   lead   to   them  becoming   cancerous.  However,   environment   also   affects   this   risk.   Smoking,   for  example,   increases  the  risk  even  further.  Taking  the  drug  tamoxifen  can  reduce  the  risk.      Monoamine  oxidase  A      Monoamine   oxidase   A   (MAO-­‐A)   is   an   enzyme   that   is   found   associated   with  mitochondria  in  the  nervous  system,  and  also  in  the  liver  and  digestive  system.  In   the   nervous   system,   it   is   involved   in   the   inactivation   of   neurotransmitters  including  noradrenaline  and  serotonin.        Own  notes        

Page 16: O - Inherited Change

A2  Biology  9700  –  Chapter  O  -­‐  Inheritance                                                                                                            Peter  Ting    

  16  

Some  alleles  of  the  monoamine  oxidase  gene  produce  low  activity  MAO-­‐A,  while  others  produce  high  activity  of  MAO-­‐A.  It  has  been  found  that  children  with  the  high  activity  form,  if  maltreated,  are  more  likely  to  show  antisocial  behavior  than  similarly  treated  children  with  low  activity  form.      Other   behaviours,   such   as   novelty   seeking,   also   appear   to   be   associated   with  particular   alleles   of   this   gene.   However   in   all   cases   the   environment   also   has  large  effect  on  bahaviour;  behavior  is  produced  by  interaction  between  this  gene  (and  probably  others  as  yet  unidentified)  and  the  environment.      (g)  explain,  with  examples,  how  mutation  may  affect  the  phenotype;    Key  points:  Refer  to  Genetic  Control    (i)  explain  how  a  change  in  the  nucleotide  sequence  in  DNA  may  affect  the  amino  acid  sequence  in  a  protein  and  hence  the  phenotype  of  the  organism;    Key  points:  Refer  to  Genetic  Control        Own  notes                                                        

Peter Ting � 12/2/12 8:26 AMComment [27]:  Recall;    -­‐Genetic  Codons  -­‐Primary  structure  of  proteins  -­‐Replication  error  -­‐Degenerate  codon  (prevents  a  change  even  if  mutation  occurs)  -­‐Sickle  cell  anemia