NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte...

94
Numerical solution of surface PDEs with Radial Basis Functions Andriy Sokolov Institut f¨ ur Angewandte Mathematik (LS3) TU Dortmund [email protected] TU Dortmund June 1, 2017

Transcript of NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte...

Page 1: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Numerical solution of surface PDEs

with

Radial Basis Functions

Andriy Sokolov

Institut fur Angewandte Mathematik (LS3)TU Dortmund

[email protected]

TU DortmundJune 1, 2017

Page 2: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Outline

1 Radial Basis Functions (RBFs)

2 FD-RBF approximation of differential operators(Finite Difference Radial Basis Functions)

3 FD-RBF level set method for surface PDEs

4 Outlook

Page 3: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Outline

1 Radial Basis Functions (RBFs)

2 FD-RBF approximation of differential operators(Finite Difference Radial Basis Functions)

3 FD-RBF level set method for surface PDEs

4 Outlook

Page 4: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Outline

1 Radial Basis Functions (RBFs)

2 FD-RBF approximation of differential operators(Finite Difference Radial Basis Functions)

3 FD-RBF level set method for surface PDEs

4 Outlook

Page 5: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Outline

1 Radial Basis Functions (RBFs)

2 FD-RBF approximation of differential operators(Finite Difference Radial Basis Functions)

3 FD-RBF level set method for surface PDEs

4 Outlook

Page 6: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Problem

Figure: Scattered data interpolation

Page 7: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Idea 1: polynomial interpolation

Given points a < x1,x2, . . . ,xN < b

and data values f1, f2, . . . , fNconstruct a polynomial p of degree N − 1 s.t. p(xi) = fi.

Page 8: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Idea 1: polynomial interpolation

Given points a < x1,x2, . . . ,xN < b

and data values f1, f2, . . . , fNconstruct a polynomial p of degree N − 1 s.t. p(xi) = fi.

Page 9: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Idea 1: polynomial interpolation

Given points a < x1,x2, . . . ,xN < b

and data values f1, f2, . . . , fNconstruct a polynomial p of degree N − 1 s.t. p(xi) = fi.

Figure: Runge phenomenon

Page 10: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Idea 2: splines

Cubic splines:

S3(X) = s ∈ C2[a, b] : s|[xi,xi+1]

∈ P3(R), 0 ≤ i ≤ N.

dimS3(X) = N + 4, but N interpolation conditions s(xi) = fi.

Page 11: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Idea 2: splines

Cubic splines:

S3(X) = s ∈ C2[a, b] : s|[xi,xi+1]

∈ P3(R), 0 ≤ i ≤ N.

dimS3(X) = N + 4, but N interpolation conditions s(xi) = fi.

Natural splines:

N3(X) = s ∈ S3(X) : s|[a,x1], s|[xN,b]

∈ P1(R).

Here, the initial interpolation problem has a unique solution

Page 12: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Idea 2: splines, 2D case

Figure: Stanford Bunny

In the subdivision of a region by triangles, the dimension of the splinespace is in general unknown

Even if great progresses have been made in the 2D setting, the methodis not suited for general dimensions

Page 13: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Idea 2: splines, 2D case

Figure: Stanford Bunny

In the subdivision of a region by triangles, the dimension of the splinespace is in general unknown

Even if great progresses have been made in the 2D setting, the methodis not suited for general dimensions

Page 14: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Idea 2: splines, 2D case

Figure: Stanford Bunny

In the subdivision of a region by triangles, the dimension of the splinespace is in general unknown

Even if great progresses have been made in the 2D setting, the methodis not suited for general dimensions

Page 15: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

Idea:

Let us search interpolant as a linear combination of basis functions ϕjNj=1:

s(x) =

N∑

j=1

λjϕj(x).

Page 16: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

Idea:

Let us search interpolant as a linear combination of basis functions ϕjNj=1:

s(x) =

N∑

j=1

λjϕj(x).

Applying interpolation conditions

s(xi) = fi, i = 1, . . . , N

we obtain a system of linear equations

ϕ1(x1) . . . ϕN (x1)... · · ·

...ϕ1(xN) . . . ϕN (xN)

︸ ︷︷ ︸

=A

λ1

. . .

λN

=

f1. . .

fN

.

Page 17: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

Idea:

Let us search interpolant as a linear combination of basis functions ϕjNj=1:

s(x) =

N∑

j=1

λjϕj(x).

Applying interpolation conditions

s(xi) = fi, i = 1, . . . , N

we obtain a system of linear equations

ϕ1(x1) . . . ϕN (x1)... · · ·

...ϕ1(xN) . . . ϕN (xN)

︸ ︷︷ ︸

=A

λ1

. . .

λN

=

f1. . .

fN

.

Is this SLE solvable?

Page 18: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

The answer: in general NO

Page 19: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

The answer: in general NO

Definition

Let the finite-dimensional linear function space Φ ⊂ C(Ω), have a basisφ1, φ2, . . . , φN. Then Φ is a Haar space on Ω if

det(A) 6= 0

for any set of distinct points x1, . . . , xN ∈ Ω. Here, A = φj(xi)ij=1,N .

Page 20: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

The answer: in general NO

Definition

Let the finite-dimensional linear function space Φ ⊂ C(Ω), have a basisφ1, φ2, . . . , φN. Then Φ is a Haar space on Ω if

det(A) 6= 0

for any set of distinct points x1, . . . , xN ∈ Ω. Here, A = φj(xi)ij=1,N .

Theorem (Mairhuber-Curtis)

Let Ω ⊆ Rd, d ≥ 2 contains an interior point, thenthere exist no Haar space

of continuous functions except for the 1-dimensional case.

Page 21: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

The answer: in general NO

Definition

Let the finite-dimensional linear function space Φ ⊂ C(Ω), have a basisφ1, φ2, . . . , φN. Then Φ is a Haar space on Ω if

det(A) 6= 0

for any set of distinct points x1, . . . , xN ∈ Ω. Here, A = φj(xi)ij=1,N .

Theorem (Mairhuber-Curtis)

Let Ω ⊆ Rd, d ≥ 2 contains an interior point, thenthere exist no Haar space

of continuous functions except for the 1-dimensional case.

Let φi be dependent on xi!

Page 22: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

Approach

shift the function ϕj(x) to the point xj

ϕj(‖x− xj‖)

Choose a radially symmetric function

ϕ(r) = ϕ(‖x‖)

Page 23: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

Approach

shift the function ϕj(x) to the point xj

ϕj(‖x− xj‖)

Choose a radially symmetric function

ϕ(r) = ϕ(‖x‖)

Remark 1: Every natural spline s has the representation

s(x) =

N∑

j=1

ajϕ(‖x− xj‖) + p(x), x ∈ R

where ϕ(r) = r3, r ≥ 0 and p ∈ P1(R).

Page 24: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

Radial Basis Functions (RBFs)

s(x) =

N∑

j=1

λjϕ(‖x− xj‖),

Page 25: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

Radial Basis Functions (RBFs)

s(x) =

N∑

j=1

λjϕ(‖x− xj‖),

where λj ’s are calculated to satisfy s(xi) = fi:

ϕ(‖x1 − x1‖) ϕ(‖x1 − x2‖) . . . ϕ(‖x1 − xN‖)ϕ(‖x2 − x1‖) ϕ(‖x2 − x2‖) . . . ϕ(‖x2 − xN‖)

...... · · ·

...ϕ(‖xN − x1‖) ϕ(‖xN − x2‖) . . . ϕ(‖xN − xN‖)

︸ ︷︷ ︸

=A distance matrix

λ1

λ2

. . .

λN

=

f1f2. . .

fN

.

Page 26: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

Radial Basis Functions (RBFs)

s(x) =

n∑

j=1

λjϕ(‖x− xj‖),

dimension independent,

sufficiently smooth,

easy to find (multiple-) derivatives,

the corresponding SLE is well-posed, i.e. det(A) 6= 0,

meshfree,

other advantages to discuss later.

Page 27: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

Linear vs Multiquadratic RBF:

s(x) =

N∑

j=1

λj‖x− xj‖ s(x) =

N∑

j=1

λj

c2 + ‖x− xj‖2

Page 28: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

Types of RBFs:

Infinitely smooth RBFs ϕ(r) (r ≥ 0)

Gaussian (GA) e−(εr)2

Inverse quadratic (IQ)1

1 + (εr)2

Inverse multiquadratic (IMQ)1

√1 + (εr)2

Multiquadratic (MQ)√

1 + (εr)2

Piecewise smooth RBFs

Linear r

Cubic r3

Thin plate spline (TPS) r2 log r

Page 29: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

Page 30: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

Solvability of the SLE :

ϕ(‖x1 − x1‖) ϕ(‖x1 − x2‖) . . . ϕ(‖x1 − xN‖)ϕ(‖x2 − x1‖) ϕ(‖x2 − x2‖) . . . ϕ(‖x2 − xN‖)

...... · · ·

...ϕ(‖xN − x1‖) ϕ(‖xN − x2‖) . . . ϕ(‖xN − xN‖)

︸ ︷︷ ︸

=A distance matrix

λ1

λ2

. . .

λN

=

f1f2. . .

fN

Page 31: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

Solvability of the SLE :

ϕε(‖x1 − x1‖) ϕε(‖x1 − x2‖) . . . ϕε(‖x1 − xN‖)ϕε(‖x2 − x1‖) ϕε(‖x2 − x2‖) . . . ϕε(‖x2 − xN‖)

...... · · ·

...ϕε(‖xN − x1‖) ϕε(‖xN − x2‖) . . . ϕε(‖xN − xN‖)

︸ ︷︷ ︸

=A(ε) distance matrix

λ1

λ2

. . .

λN

=

f1f2. . .

fN

Page 32: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

Solvability of the SLE :

ϕε(‖x1 − x1‖) ϕε(‖x1 − x2‖) . . . ϕε(‖x1 − xN‖)ϕε(‖x2 − x1‖) ϕε(‖x2 − x2‖) . . . ϕε(‖x2 − xN‖)

...... · · ·

...ϕε(‖xN − x1‖) ϕε(‖xN − x2‖) . . . ϕε(‖xN − xN‖)

︸ ︷︷ ︸

=A(ε) distance matrix

λ1

λ2

. . .

λN

=

f1f2. . .

fN

Page 33: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

Solvability of the SLE :

ϕε(‖x− x1‖)ϕε(‖x− x2‖)

...

...ϕε(‖x− xN‖)

Page 34: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

Solvability of the SLE :

ϕε(‖x− x1‖)ϕε(‖x− x2‖)

...

...ϕε(‖x− xN‖)

=

· · · · · ·· · · · · ·· · C · · ·· · · · · ·· · · · · ·· · · · · ·

ε0

ε2

. . .

ε4

. . .

Y 00 (x)

Y −11 (x).........

,

where C is a matrix with entries of size O(1).

Page 35: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

Solvability of the SLE :

ϕε(‖x− x1‖)ϕε(‖x− x2‖)

...

...ϕε(‖x− xN‖)

=

· · · · · ·· · · · · ·· · C · · ·· · · · · ·· · · · · ·· · · · · ·

ε0

ε2

. . .

ε4

. . .

Y 00 (x)

Y −11 (x).........

,

where C is a matrix with entries of size O(1).

Remedy: special QR-decomposition ⇒ work of Markus Verkely

Page 36: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

Error estimation for the RBF interpolation:(Gaussian and multiquadratic-like functions)

if |f (l)| ≤ l!M l ⇒ ‖f − sf,X‖L∞(Ω) ≤ e−c/hX,Ω |f |N (Ω),

if |f (l)| ≤ Ml ⇒ ‖f − sf,X‖L∞(Ω) ≤ e

c log hX,Ω/hX,Ω |f |N (Ω),

where

hX,Ω = supx∈Ω

minxj∈X

‖x− xj‖2

is the fill distance.

Page 37: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Interpolation with RBFs

0 0.1 0.2 0.3 0.4 0.50

0.05

0.1

0.15

0.2

0.25

exp(log(x)./x)

x 2

Page 38: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Outline

1 Radial Basis Functions (RBFs)

2 FD-RBF approximation of differential operators(Finite Difference Radial Basis Functions)

3 FD-RBF level set method for surface PDEs

4 Outlook

Page 39: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Finite difference (notation u(xi) = ui):

Forward: (ux)i =ui+1 − ui

h+RF (h, ·)

Backward: (ux)i =ui − ui−1

h+RB(h, ·)

Central: (ux)i =ui+1 − ui−1

2h+RC(h, ·)

Page 40: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Finite difference (notation u(xi) = ui):

Forward: (ux)i =1

hui+1 +

−1

hui +RF (h, ·)

Backward: (ux)i =1

hui +

−1

hui−1 +RB(h, ·)

Backward: (ux)i =1

2hui+1 +

−1

2hui−1 +RC(h, ·)

Page 41: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Finite difference (notation u(xi) = ui):

Forward: (ux)i = ωi+1ui+1 + ωiui +RF (h, ·)

Backward: (ux)i = ωiui + ωi−1ui−1 +RB(h, ·)

Central: (ux)i = ωi+1ui+1 + ωi−1ui−1 +RC(h, ·)

Page 42: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Finite difference (notation u(xi) = ui):

Forward: (ux)i =∑

i∈ΞF

ωiui +RF (h, ·)

Backward: (ux)i =∑

i∈ΞB

ωiui +RB(h, ·)

Central: (ux)i =∑

i∈ΞC

ωiui +RC(h, ·)

Page 43: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Approximation of the Laplace operator:

∆u = f, Ω ⊂ Rd

Page 44: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Approximation of the Laplace operator:

∆u = f, Ω ⊂ Rd

u(x) ≈ s(x) =

N∑

i=1

ciϕ(‖x− xi‖)

Page 45: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Approximation of the Laplace operator:

∆u = f, Ω ⊂ Rd

∆s(ζ) ≈∑

ξ∈Ξζ

ωξu(ξ), Ξζ = ζ, ξ1, ξ2, . . . , ξK.

Page 46: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Approximation of the Laplace operator:

∆u = f, Ω ⊂ Rd

∆s(ζ) =

K∑

j=0

ωju(ξj),

∆N∑

i=0

ciϕ(‖ζ − ξi‖) =K∑

j=0

ωju(ξj),

N∑

i=0

ci∆ϕ(‖ζ − ξi‖) =N∑

i=0

ci

K∑

j=0

ωjϕ(‖ξj − ξi‖)

∆ϕ(‖ζ − ξi‖)︸ ︷︷ ︸

rhs

=K∑

j=0

ωj︸︷︷︸

ω

ϕ(‖ξj − ξi‖)︸ ︷︷ ︸

Φ

Φω = rhs(∆)

Page 47: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Approximation of a differential operator:

Lu = f, Ω ⊂ Rd

∆s(ζ) =

K∑

j=0

ωju(ξj),

LN∑

i=0

ciϕ(‖ζ − ξi‖) =K∑

j=0

ωju(ξj),

N∑

i=0

ciLϕ(‖ζ − ξi‖) =N∑

i=0

ci

K∑

j=0

ωjϕ(‖ξj − ξi‖)

Lϕ(‖ζ − ξi‖)︸ ︷︷ ︸

rhs

=K∑

j=0

ωj︸︷︷︸

ω

ϕ(‖ξj − ξi‖)︸ ︷︷ ︸

Φ

Φω = rhs(L)

Page 48: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Derivative(s) of the Gaussian RBF:

ϕ(‖x− ξ‖︸ ︷︷ ︸

r(x)

) = ϕ(r(x)) = e−ε2r2(x)

,

Page 49: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Derivative(s) of the Gaussian RBF:

ϕ(‖x− ξ‖︸ ︷︷ ︸

r(x)

) = ϕ(r(x)) = e−ε2r2(x)

,

s(x) =r2(x)

2⇒ ϕ(s(x)) = e

−2 ε2s(x),

ϕxi(s(x)) = ϕs

︸︷︷︸

−2ε2ϕ

sxi︸︷︷︸

(xi−ξi)

= −2ε2ϕ [xi − ξi] ,

ϕxixi(s(x)) = ϕss sxi

sxi︸ ︷︷ ︸

(xi−ξi)2

+ϕs sxixi︸ ︷︷ ︸

1

ϕxixj(s(x)) = ϕss(xi − ξi)(xj − ξj), since sxixj

= 0.

Page 50: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Consistency + Stability ⇒ convergence

Page 51: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Consistency + Stability ⇒ convergence

Consistency: ”Error Bounds for Kernel-Based Numerical Differentiation” by O.Davydov and R. Schaback, Numer. Math., 132 (2016), 243–269.

Stability: ”Error Analysis of Nodal Meshless Methods” by R. Schaback,Numerical Analysis, arXiv:1612.07550 (2016) ... + ???

Page 52: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Poisson equation:

−∇ · (∇u(x)) = f(x) in Ω = [0, 1]2,

uanalyt = sin(πx) sin(πy).

Page 53: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Poisson equation:

−∇ · (∇u(x)) = f(x) in Ω = [0, 1]2,

uanalyt = sin(πx) sin(πy).

01

0.2

0.4

1

0.6

0.8

0.8

0.5 0.6

1

0.40.2

0 0

Figure: Numericalsolution, h=1/20.

El2 EOC(l2) Emax EOC(max)

h=1/5 13019 – 22401 –

h=1/10 330 4,967 726 4,947

h=1/20 89 1,891 188 1,949

h=1/40 23 1,952 47 2,000

h=1/80 5,87 1,970 11,89 1,983

Table: 5-points stencil (including the main node).

Page 54: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Anisotropic diffusion:

−∇ (A∇u(x)) = f(x) in Ω = [0, 1]2,

where

A =

(

cosφ − sinφsinφ cosφ

)(

1 00 ε

)(

cosφ sinφ− sinφ cos φ

)

.

Page 55: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Anisotropic diffusion:

−∇ (A∇u(x)) = f(x) in Ω = [0, 1]2,

where

A =

(

cosφ − sinφsinφ cosφ

)(

1 00 ε

)(

cosφ sinφ− sinφ cos φ

)

.

01

0.2

0.4

1

0.6

0.8

0.8

0.5 0.6

1

0.40.2

0 0

Figure: Numericalsolution, h=1/20.

El2EOC(l2) Emax EOC(max)

Stencil=5, ε = 10−6, φ = π/6h=1/5 58180 – 143297 –

h=1/10 71389 diverges 152334 diverges

h=1/20 76663 diverges 155059 diverges

Stencil=9, ε = 10−6, φ = π/6h=1/5 4895 – 10783 –

h=1/10 1882 1.379 4025 1.421

h=1/20 560 1.748 1150 1.807

Stencil=25, ε = 10−6, φ = π/6h=1/5 609 – 1529 –

h=1/10 47 3.695 85 4.168

h=1/20 3 3.969 12 2.824

Table: Numerical experiments.

Page 56: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Transport equation (the solid body rotation):

ut + v · ∇u = 0 in Ω = [0, 1]2.

01

0.2

0.4

1

0.6

0.8

Initial solution

0.8

0.5 0.6

1

0.40.2

0 0

Page 57: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Transport equation (the solid body rotation):

ut + v · ∇u−0.0008∆u = 0 in Ω = [0, 1]2.

01

0.2

0.4

1

0.6

0.8

Initial solution

0.8

0.5 0.6

1

0.40.2

0 0

Page 58: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Transport equation (the solid body rotation):

ut + v · ∇u−0.0008∆u = 0 in Ω = [0, 1]2.

Stabilization: ”Stabilization of RBF-generated finite difference methods for convectivePDEs” by Bengt Fornberg and Erik Lehto, Journal of Computational Physics, 2010.

Page 59: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Transport equation (the solid body rotation):

ut + v · ∇u−0.0008∆u = 0 in Ω = [0, 1]2.

Stabilization: ”Stabilization of RBF-generated finite difference methods for convectivePDEs” by Bengt Fornberg and Erik Lehto, Journal of Computational Physics, 2010.

... or ???

Page 60: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Reaction-Convection-Diffusion Equation:

ut + v · ∇u−∇ (A(x)∇u(x)) = f in Ω ⊂ R2.

Page 61: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Finite Difference Radial Basis Function (FD-RBF)

Reaction-Convection-Diffusion Equation:

ut + v · ∇u−∇ (A(x)∇u(x)) = f in Ω ⊂ R2.

More? ⇒ work of Ufuk Erkul

Page 62: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Outline

1 Radial Basis Functions (RBFs)

2 FD-RBF approximation of differential operators(Finite Difference Radial Basis Functions)

3 FD-RBF method for surface PDEs

4 Outlook

Page 63: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

Laplace-Beltrami:

∆Γu = u(x) + f on Γ ⊂ Rd,

where Γ is sufficiently smooth, closed hypersurface.

Page 64: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

Laplace-Beltrami:

∇Γ · (∇Γu(x)) = u(x) + f on Γ ⊂ Rd,

where Γ is sufficiently smooth, closed hypersurface.

How to treat the surface?

How to treat ∇Γ·?

Page 65: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

Laplace-Beltrami:

∇Γ · (∇Γu(x)) = u(x) + f on Γ ⊂ Rd,

where Γ is sufficiently smooth, closed hypersurface.

How to treat the surface?

How to treat ∇Γ·?

Page 66: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

Laplace-Beltrami:

∇Γ · (∇Γu(x)) = u(x) + f on Γ ⊂ Rd,

where Γ is sufficiently smooth, closed hypersurface.

How to treat the surface?

How to treat ∇Γ·?

Page 67: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The phase-field method:

ut −∇ · (∇Γu(x)) = u(x) + f on Γ ⊂ Rd,

Page 68: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The phase-field method:

B(φ) ut −∇ · (B(φ)∇u(x)) = B(φ) (u(x) + f) in Ωε ⊂ Rd,

01

0.2

0.4

1

0.6

0.8

Initial solution

0.8

0.5 0.6

1

0.40.2

0 0

Page 69: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The level set based method:

−D∇Γ(t) ·(∇Γ(t)u

)= f(u), on Γ(t)

Page 70: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The level set based method:

−D∇Γ(t) ·(∇Γ(t)u

)= f(u), on Γ(t)

Introducing the level-set function

φ(x) =

−dist(x,Γ) if x is inside Γ

0 if x ∈ Γ

dist(x,Γ) if x is outside Γ

Page 71: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The level set based method:

−D∇Γ(t) ·(∇Γ(t)u

)= f(u), on Γ(t)

Introducing the level-set function

φ(x) =

−dist(x,Γ) if x is inside Γ

0 if x ∈ Γ

dist(x,Γ) if x is outside Γ

we obtain

PΓ u =

(

I −∇φ

‖∇φ‖⊗

∇φ

‖∇φ‖

)

∇u.

Page 72: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The level set based method:

∇Γ(t)u =

(ex − nxn) · ∇

(ey − nyn) · ∇

(ez − nzn) · ∇

u =

px · ∇

py · ∇

pz · ∇

u =

Gx

Gy

Gz

u

Page 73: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The level set based method:

∇Γ(t)u =

(ex − nxn) · ∇

(ey − nyn) · ∇

(ez − nzn) · ∇

u =

px · ∇

py · ∇

pz · ∇

u =

Gx

Gy

Gz

u

∆Γ(t)u = ∇Γ(t) · ∇Γ(t)u = ∇Γ(t) ·

Gx

Gy

Gz

u

=(Gx Gy Gz

)

Gx

Gy

Gz

u =(GxGx + GyGy + GzGz

)u

Page 74: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The level set based method:

(Gx Iφu(x)) |x=xi=

N∑

j=1

cj (Gx φ(rj(x))) |x=xi

=

N∑

j=1

cj [ ((1 − nxi n

xi )(xi − xj)−

− nyi n

yi (yi − yj)

−nzin

zi (zi − zj))

φ′

r(rj(xi))

rj(xi)] .

Page 75: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The level set based method:

u(x)−∆Γu(x) = f(x) on Γ = x : |x| = 1.

uanalyt =1

|x|526|x|2

|x|2 + 25(x5

1 − 10x31x

22 + 5x1x

42)

f =26

|x|5(x5

1 − 10x31x

22 + 5x1x

42).

Page 76: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The level set based method:

u(x)−∆Γu(x) = f(x) on Γ = x : |x| = 1.

-0.6

1.5

-0.4

1

-0.2

1.5

0

0.51

0.2

solutions in band

0 0.5

0.4

0

0.6

-0.5-0.5

-1-1

-1.5 -1.5

Page 77: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The level set based method:

u(x)−∆Γu(x) = f(x) on Γ = x : |x| = 1.

Page 78: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The level set based method:

u(x)−∆Γu(x) = f(x) on Γ = x : |x| = 1.

E(ε− band) EOC(ε− band)

h=3/10 0.003001 –

h=3/20 0.001026 1.5484

h=3/40 0.000242 2.0840

h=3/80 0.000051 2.2464

h=3/160 0.000013 1.9720

Table: 9-points stencil (including the main node), ε-band = 0.1.

E(ε− band) = ‖unum − uanalyt‖l2(ε−band)/√

#nodes

Page 79: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The level set based method:

u(x)−∆Γu(x) = f(x) on Γ = x : |x| = 1.

E(ε− band) EOC(ε− band)

h=3/10 0.003001 –

h=3/20 0.001026 1.5484

h=3/40 0.000242 2.0840

h=3/80 0.000051 2.2464

h=3/160 0.000013 1.9720

Table: 9-points stencil (including the main node), ε-band = 0.1.

E(ε− band) = ‖unum − uanalyt‖l2(ε−band)/√

#nodes

More? ⇒ work of David Borringo

Page 80: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The level set based method for Γ(t):

∂∗t u = D∆Γ(t)u(x, t) + f(x, t) on Γ = Γ(t),

where Γ(t) = x : φ(t,x) = 0 and

φ(t,x) = |x| − 0.75 + sin(4 t)(|x| − 0.5)(1− |x|).

Page 81: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The level set based method for Γ(t):

∂•

t u︷ ︸︸ ︷

ut(x, t) + v · ∇u+u∇Γ · v︸ ︷︷ ︸

∂∗

t u

= D∇Γ(t)·(∇Γ(t)u(x, t)

)+f(x, t) on Γ = Γ(t),

where v = V n+ vS and

V = v · n = −φt

|∇φ|.

Page 82: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The level set based method for Γ(t):

∂•

t u︷ ︸︸ ︷

ut(x, t) + v · ∇u+u∇Γ · v︸ ︷︷ ︸

∂∗

t u

= D∇Γ(t)·(∇Γ(t)u(x, t)

)+f(x, t) on Γ = Γ(t),

where v = V n+ vS and

V = v · n = −φt

|∇φ|.

The analytical solution is chosen to be

u(x, t) = e−t/|x|2 x1

|x|.

Page 83: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The level set based method for Γ(t):

∂∗t u = D∆Γ(t)u(x, t) + f(x, t) on Γ = Γ(t).

-1 -0.5 0 0.5 1-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Page 84: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The level set based method for Γ(t):

∂∗t u = D∆Γ(t)u(x, t) + f(x, t) on Γ = Γ(t).

-11

-0.5

0.5 1

0

solutions in band

0.5

0

1

0-0.5

-1 -1

numericalanalytical

Page 85: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The level set based method for Γ(t):

∂∗t u = D∆Γ(t)u(x, t) + f(x, t) on Γ = Γ(t).

01

0.5

1

0.5 1

1.5

×10 -3

2

error in Omega

0.50

2.5

3

0-0.5 -0.5

-1 -1

Page 86: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The level set based method for Γ(t):

∂∗t u = D∆Γ(t)u(x, t) + f(x, t) on Γ = Γ(t).

E(ε− band) EOC(ε − band)

N=20 0.010179 –

N=40 0.003626 1.4891

N=80 0.002065 0.8122

N=160 0.001584 0.3875

Table: 9-points stencil (including the main node). ε-band = 0.1

Page 87: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

FD-RBF for surface PDEs

The level set based method for Γ(t):

∂∗t u = D∆Γ(t)u(x, t) + f(x, t) on Γ = Γ(t).

E(ε− band) EOC(ε − band)

N=20 0.010179 –

N=40 0.003626 1.4891

N=80 0.002065 0.8122

N=160 0.001584 0.3875

Table: 9-points stencil (including the main node). ε-band = 0.1

More? ⇒ work in progress...

Page 88: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Conclusion

(FD)RBF is a new rapidly developing approach

It it possible to use it for real-world applications

Mesh adaptivity

Page 89: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Conclusion

(FD)RBF is a new rapidly developing approach

It it possible to use it for real-world applications

Mesh adaptivity

Page 90: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Conclusion

(FD)RBF is a new rapidly developing approach

It it possible to use it for real-world applications

Mesh adaptivity

Page 91: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Conclusion

(FD)RBF is a new rapidly developing approach

It it possible to use it for real-world applications

Mesh adaptivity

Lots of new and unexplored fields

Page 92: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Conclusion

(FD)RBF is a new rapidly developing approach

It it possible to use it for real-world applications

Mesh adaptivity

Lots of new and unexplored fields

Page 93: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Acknowledgements

Prof. Dr. Oleg Davydov, University of Giessen

Prof. Dr. Dmitri Kuzmin, TU Dortmund

Prof. Dr. Stefan Turek, TU Dortmund

Page 94: NumericalsolutionofsurfacePDEs with RadialBasisFunctionsAndriy Sokolov Institut fur Angewandte Mathematik (LS3) TU Dortmund andriy.sokolov@math.tu-dortmund.de TU Dortmund June 1, 2017.

Thank you very much

for your attention!