Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General...

40
0.1cm Outline Numerical Solutions of Population-Balance Models in Particulate Systems Shamsul Qamar Gerald Warnecke Institute for Analysis and Numerics Otto-von-Guericke University Magdeburg, Germany In collaboration with Max-Planck Institute for Dynamical Systems, Magdeburg Harrachov, August 19–25, 2007 S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Transcript of Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General...

Page 1: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

Outline

Numerical Solutions of Population-BalanceModels in Particulate Systems

Shamsul Qamar Gerald Warnecke

Institute for Analysis and NumericsOtto-von-Guericke University Magdeburg, Germany

In collaboration with Max-Planck Institute for Dynamical Systems, Magdeburg

Harrachov, August 19–25, 2007

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 2: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

Outline

Outline

1 MotivationAimApplication Areas

2 Mathematical ModelGeneral Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

3 Numerical ProcedureDomain DiscretizationNumerical Method 1: Combination of MOC and FVSNumerical method 2: Semi-Discrete HR-Schemes

4 Numerical Results

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 3: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

AimApplications

Outline

1 MotivationAimApplication Areas

2 Mathematical ModelGeneral Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

3 Numerical ProcedureDomain DiscretizationNumerical Method 1: Combination of MOC and FVSNumerical method 2: Semi-Discrete HR-Schemes

4 Numerical Results

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 4: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

AimApplications

Motivation

Aim

To model and simulate nucleation, growth, aggregationand Breakage phenomena in processes engineering bysolving population balance equations (PBEs).

Numerical Methods

To solve population balance models we use thehigh resolution finite volume schemes as well astheir combination with the method of characteristics

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 5: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

AimApplications

Outline

1 MotivationAimApplication Areas

2 Mathematical ModelGeneral Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

3 Numerical ProcedureDomain DiscretizationNumerical Method 1: Combination of MOC and FVSNumerical method 2: Semi-Discrete HR-Schemes

4 Numerical Results

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 6: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

AimApplications

Industrial Applications

Applications

Pharmaceutical

Chemical industries

Biomedical science

Aerosol formation

Atmospheric physics

Food industries

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 7: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

General Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

Outline

1 MotivationAimApplication Areas

2 Mathematical ModelGeneral Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

3 Numerical ProcedureDomain DiscretizationNumerical Method 1: Combination of MOC and FVSNumerical method 2: Semi-Discrete HR-Schemes

4 Numerical Results

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 8: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

General Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

General Population Balance Equation (PBE)

∂f (t, x)

∂t+

∂[G(t, x)f (t, x)]

∂x= Q±

agg(t, x) + Q±break(t, x) + Q+

nuc(t, x)

f (0, x) = f0 , x ∈ R+ :=]0, +∞[, t ≥ 0

1 f (t , x) is the number density function,2 t denotes the time and x is an internal coordinate3 G(t , x) is the growth/dissolution rate along x ,4 Q±

α (t , x) are the aggregation, breakage and nucleationterms for α = agg, break, nuc.

5 The entities in the population density can be crystals,droplets, molecules, cells, and so on.

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 9: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

General Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

phase boundary

Qout

Qin

Q±agg

break

∂[Gf ]∂x

Q−

dis

Q+nuc

Figure: A schematic representation of different particulate processes

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 10: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

General Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

Q±agg(t, x) =

12

x∫

0

β(t, x ′, x − x ′) f (t, x ′) f (t, x ′ − x)dx ′

−∞∫

0

β(t, x , x ′) f (t, x) f (t, x ′)dx ′ .

Where: β = β(t, x , x ′) is the rate at which the aggregation of twoparticles with respective volumes x and x ′ produces a particle ofvolume x + x ′ and is a nonnegative symmetric function,

0 ≤ β(t, x , x ′) = β(t, x ′, x) , x ′ ∈]0, x [, (x , x ′) ∈ R2+ .

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 11: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

General Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

Q±break(t, x) =

∞∫

x

b(t, x , x ′) S(x ′) f (t, x ′)dx ′ − S(x) f (t, x) .

b := b(t, x , x ′) is the probability density function for the formation ofparticles of size x from particle of size x ′. The selection functionS(x ′) describes the rate at which particles are selected to break.

Moments: µi(t) =

∞∫

0

x i f (t, x)dx , i = 0, 1, 2, · · · ,

µ0(T ) =total number of particles, µ1(t) =total volume of particles

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 12: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

General Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

Outline

1 MotivationAimApplication Areas

2 Mathematical ModelGeneral Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

3 Numerical ProcedureDomain DiscretizationNumerical Method 1: Combination of MOC and FVSNumerical method 2: Semi-Discrete HR-Schemes

4 Numerical Results

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 13: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

General Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

Reformulation of PBEMultiply the original PBE with x and re-arrange the terms, we get

∂ f (t, x)

∂t+

∂[(Gf )(t, x)]

∂x− (Gf )(t, x)

x= −∂Fagg(t, x)

∂x+

∂Fbreak(t, x)

∂x+ Qnuc ,

f (0, x) = f0 , x ∈ R+ , t ≥ 0 ,

where f (t, x) := xf (t, x), Qnuc = xQ+nuc and

Fagg(t, x) = −x

0

∞∫

x−u

u β(t, u, v) f (t, u) f (t, v) dvdu (Filbet & Laurencot, 2004)

Fbreak(t, x) =

x∫

0

∞∫

x

u b(t, u, v) S(v) f (t, v) dvdu .

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 14: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

General Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

Outline

1 MotivationAimApplication Areas

2 Mathematical ModelGeneral Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

3 Numerical ProcedureDomain DiscretizationNumerical Method 1: Combination of MOC and FVSNumerical method 2: Semi-Discrete HR-Schemes

4 Numerical Results

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 15: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

General Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

Amino acid enantiomers

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 16: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

General Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

Ternary Phase Diagram

Metastablezone

Solubilitycurves

seeds

Equilibriumpoint

Seeding with

Real trajectories after seeding with

Solvent

EEE1

E1E1 E2

A

M

Tcryst

Tcryst + ∆T

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 17: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

General Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

Preferential Batch Crystallizer With Fines Dissolution

LoopFines Dissolution

Settling ZoneAnnular

Tank A

(unseeded)counter crystals

preferred crystals(seeded)

F (k)(x, t)

τ1, V1

τ2, V2

m(k)

liq,2, mw,2

m(k)

liq,1, mw,1

V

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 18: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

General Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

Model for Preferential CrystallizationBalance for solid phase

∂f (k)(t , x)

∂t= −G(k)(t)

∂f (k)(t , x)

∂x− 1

τ1h(x)f (k)(t , x) , k ∈ [p, c].

Mass balance for liquid phase in cyrstallizer

dm(k)(t)dt

= m(k)in (t) − m(k)

out(t) − 3ρkvG(k)(t)∫

0x2f (k)(t , x)dx .

f (k)(t , 0) =B(k)(t)G(k)(t)

, w (k)(t) =m(k)(t)

m(p)(t) + m(c)(t) + mW (t)

S(k)(t) =w (k)(t)

w (k)eq

− 1, G(k)(t) = kg [S(k)(t)]α, kg ≥ 0, α ≥ 1 .

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 19: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

General Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

B(p)0 (t) = k (p)

b

(

S(p)(t))b(p)

µ(p)3 (t)

B(c)0 (t) = k (c)

b e−

b(c)

ln(S(c)(t))2

m(k)out(t) = w (k)(t) ρliq(T )

m(k)in (t) = m(k)

out(t − τ2) +kvρ

τ1

0x3h(x)f (k)(t − τ2, x) dx .

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 20: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Domain DiscretizationNumerical Method 1: Combination of MOC and FVSNumerical method 2: Semi-Discrete HR-Schemes

Outline

1 MotivationAimApplication Areas

2 Mathematical ModelGeneral Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

3 Numerical ProcedureDomain DiscretizationNumerical Method 1: Combination of MOC and FVSNumerical method 2: Semi-Discrete HR-Schemes

4 Numerical Results

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 21: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Domain DiscretizationNumerical Method 1: Combination of MOC and FVSNumerical method 2: Semi-Discrete HR-Schemes

Domain Discretization

Regular/Irregular grid: Let N be a large integer and denote by(xi− 1

2)i∈1,··· ,N+1 a mesh of [xmin, xmax]. We set

x1/2 = xmin , xN+1/2 = xmax , xi+1/2 = xmin + i · ∆xi , ∀ i = 1, 2, · · ·N − 1 .

xi−1 xi xi+1

xi− 12

xi+ 12

x

Here xi = (xi−1/2 + xi+1/2)/2 , ∆xi = xi+1/2 − xi−1/2 .

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 22: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Domain DiscretizationNumerical Method 1: Combination of MOC and FVSNumerical method 2: Semi-Discrete HR-Schemes

Geometric grid:

x1/2 = xmin , xi+1/2 = xmin + 2(i−N)/q(xmax − xmin) , ∀ i = 1, 2, · · · , N

where the parameter q is any positive integer.

Let Ωi =[

xi−1/2, xi+1/2]

for i ≥ 0. We approximate the initial dataf0(x) in each grid cell by

fi =1

∆xi

Ωi

f0(x)dx .

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 23: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Domain DiscretizationNumerical Method 1: Combination of MOC and FVSNumerical method 2: Semi-Discrete HR-Schemes

Outline

1 MotivationAimApplication Areas

2 Mathematical ModelGeneral Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

3 Numerical ProcedureDomain DiscretizationNumerical Method 1: Combination of MOC and FVSNumerical method 2: Semi-Discrete HR-Schemes

4 Numerical Results

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 24: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Domain DiscretizationNumerical Method 1: Combination of MOC and FVSNumerical method 2: Semi-Discrete HR-Schemes

Method 1: Combination of MOC and FVS

Let us substitute the growth rate G(t, x) by

dxdt

:= x(t) = G(t, x) .

Then we have to solve:

dfidt

= − 1∆xi(t)

[

(Fagg)i+ 12− (Fagg)i− 1

2

]

+1

∆xi(t)

[

(Fbreak)i+ 12− (Fbreak)i− 1

2

]

+Gi+ 1

2fi

xi(t)−

(

Gi+ 12− Gi− 1

2

) fi∆xi(t)

+ Qi

dxi+ 12

dt= Gi+ 1

2, ∀ i = 1, 2, · · · , N with i.c. f (0, xi) = f0(xi)

where

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 25: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Domain DiscretizationNumerical Method 1: Combination of MOC and FVSNumerical method 2: Semi-Discrete HR-Schemes

(Fagg)i+1/2 =

i∑

k=0

∆xk(t)fk

N∑

j=αi,k

Λhj

β(x ′, xk )

x ′dx ′ fj +

αi,k−1/2∫

xi+1/2−xk

β(x ′, xk )

x ′dx ′ fαi,k−1

,

(Fbreak)i+1/2 =

i∑

k=0

Ωk

x∗

N∑

j=i+1

fj

Ωj

b(x∗, x ′)S(x ′)

x ′dx ′

dx∗ + O(∆x3) .

Here, the integer αi,k corresponds to the index of the cell such thatxi+1/2(t) − xk (t) ∈ Ωαi,k−1(t).

A standard ODE-solver can be used to solve the above ODEs.

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 26: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Domain DiscretizationNumerical Method 1: Combination of MOC and FVSNumerical method 2: Semi-Discrete HR-Schemes

Outline

1 MotivationAimApplication Areas

2 Mathematical ModelGeneral Population Balance Equation (PBE)Reformulation of PBEPreferential Crystallization Model

3 Numerical ProcedureDomain DiscretizationNumerical Method 1: Combination of MOC and FVSNumerical method 2: Semi-Discrete HR-Schemes

4 Numerical Results

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 27: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Domain DiscretizationNumerical Method 1: Combination of MOC and FVSNumerical method 2: Semi-Discrete HR-Schemes

Method 2: Semidiscrete HR-schemes

Integration of PBE over the control volume Ωi =[

xi− 12, xi+ 1

2

]

implies

Ωi

∂ f (t, x)

∂tdx+

Ωi

∂[G(t, x)f (t, x)]

∂xdx −

Ωi

G(t, x)f (t, x)

xdx

= −∫

Ωi

∂Fagg(t, x)

∂xdx +

Ωi

∂Fbreak(t, x)

∂xdx +

Ωi

Q(t, x) dx .

Let fi = fi(t) and Qi = Qi(t) be the averaged values, then we have

∂ fi∂t

= − 1∆x

[

Fi+ 12−Fi− 1

2

]

− 1∆x

[

(Fagg)i+ 12− (Fagg)i− 1

2

]

+[

(Fbreak)i+ 12− (Fbreak)i− 1

2

]

+Gi+ 1

2fi

xi+ Qi ,

where Fi+ 12

= (Gf )i+ 12

and (Fagg) & (Fbreak) are as given in Method 1.

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 28: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Domain DiscretizationNumerical Method 1: Combination of MOC and FVSNumerical method 2: Semi-Discrete HR-Schemes

The flux Fi+ 12

at the right cell interface is given as (Koren, 1993):

Fi+ 12

=

(

Fi +12

Φ(

ri+ 12

)

(Fi −Fi−1)

)

and Φ is defined as:

Φ(ri+ 12) = max

(

0, min(

2ri+ 12, min

(

13

+23

ri+ 12, 2

)))

.

The argument ri+ 12

of the function Φ is given as

ri+ 12

=Fi+1 −Fi + ε

Fi −Fi−1 + ε.

Analogously, one can formulate the flux Fi− 12. Here, ε = 10−10.

There are several other limiting functions, namely, minmod, superbeeand MC limiters, etc. Each of them leeds to a different HR-scheme(LeVeque 2002, Koren 1993).

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 29: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Further Reading

Example 1: All Processes

The initial data:

f (0, x) =

100 for 0.4 ≤ x ≤ 0.6 ,0.01 elsewhere .

B.C.: f (t, 0) = 100 + 106 exp(−104(t − 0.215)2) .

G = 1.0, β = 1.5 · 10−5, b(t, x , x ′) = 2x′

and S(x) = x2. The exactsolution in growth and nucleation case is:

f (t, x) =

102 + 106 exp(−104((G′t − x) − 0.215)2) for 0 ≤ x ≤ Gt ,102 for 0.4 ≤ x − Gt ≤ 0.6 ,0.01 elsewhere .

tmax = 0.5 and N = 200.

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 30: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Further Reading

Results of Method 1: MOC+FVM

0 0.5 1 1.5 210

−2

100

102

104

106

volume

num

ber

dens

ity

Pure Growth and Nucleation

MOC

AnalyticalPure Growth and Nucleation

0 0.5 1 1.5 210

−2

100

102

104

106

volume

num

ber

dens

ity

Nucleation + Growth + Aggregation

MOC+FVM

AnalyticalPure Growth and Nucleation

0 0.5 1 1.5 2

10−2

100

102

104

106

volume

num

ber

dens

ity

Nucleation+Growth + Breakage

MOC+FVM

AnalyticalPure Growth and Nucleation

0 0.5 1 1.5 2

10−2

100

102

104

106

volume

num

ber

dens

ity

Nucleation + Growth + Aggregation + Breakage

MOC+FVM

AnayticalPure Growth and Nucleation

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 31: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Further Reading

Results of Method 2: FVM

0 0.5 1 1.5 210

−2

100

102

104

106

volume

num

ber

dens

ity

Pure Growth and NucleationFVM

AnalyticalPure Growth and Nucleation

0 0.5 1 1.5 210

−2

100

102

104

106

volume

num

ber

dens

ity

Nucleation + Growth + AggregationFVM

AnalyticalPure Growth and Nucleation

0 0.5 1 1.5 2

10−2

100

102

104

106

volume

num

ber

dens

ity

Nucleation + Growth + Breakage FVM

AnalyticalPure Growth and Nucleation

0 0.5 1 1.5 2

10−2

100

102

104

106

volume

num

ber

dens

ity

Nucleation +Growth + Aggregation + Breakage

FVM

AnalyticalPure growth and Nucleation

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 32: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Further Reading

Example 2: Pure Growth

The initial data are:

f (0, x) =

1 × 1010 if 10 < x < 20 ,0 elsewhere .

with G = 1.0, N = 100, t = 60.

0 20 40 60 80 1000

2

4

6

8

10

x 109 Uniform Mesh

crystal size

part

icle

den

sity

ExactFirst OrderLeVequeKoren

20 40 60 80 1000

2

4

6

8

10

x 109 Adaptive Mesh

crystal size

part

icle

den

sity

ExactFirst OrderLeVequeKoren

For mesh adaptation we have used a moving mesh techniqueof T. Tang et al. (2003)

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 33: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Further Reading

Preferential Crystallization

Isothermal Case

Temperature = 33Co.

Non-isothermal Case

T (t)[Co] = −1.24074e−7t3 +4.50926e−5t2−0.00405556t+33 .

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 34: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Further Reading

Example 3: Preferential Crystallization

The initial data:

f (p)(0, x) =1√

2πσIa· 1

x· exp

[

−12·(

ln(x) − µ

σ

)2]

,

f (c)(0, x) = 0 , with Ia =kV · ρs

Msµ

(p)3 (0) .

Here Ms = 2.5 · 10−3kg is the mass of initial seeds. Themaximum crystal size is xmax = 0.005 m with N = 500 fort = 600 min.

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 35: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Further Reading

Example 3: Preferential Crystallization

0 1 2 3 4 5

x 10−3

0

2

4

6

8

10x 10

8 Without Fines Dissolution

crystal size [m]

part

icle

den

sity

[#/m

]

Initial DataFirst OrderHR−κ=−1HR−κ=1/3

0 1 2 3 4 5

x 10−3

0

2

4

6

8

10x 10

8 With Fines Dissolution

crystal size [m]

part

icle

den

sity

[#/m

]

Initial DataFirst OrderHR−κ=−1HR−κ=1/3

0 1 2 3 4 5

x 10−3

0

1

2

3

4

5

x 109 Without Fines Dissolution

crystal size [m]

part

icle

den

sity

[#/m

]

Initial DataFirst OrderHR−κ=−1HR−κ=1/3

0 1 2 3 4 5

x 10−3

0

1

2

3

4

5

6x 10

9 With Fines Dissolution

crystal size [m]

part

icle

den

sity

[#/m

]

Initial DataFirst OrderHR−κ=−1HR−κ=1/3

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 36: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Further Reading

Example 3: Preferential Crystallization

0 100 200 300 400 500 6000

1

2

3

4

5

6x 10

−6 Isothermal Case

time [min]

grow

th r

ate

[m/m

in]

p−without finesc−without finesp−with finesc−with fines

0 100 200 300 400 500 6000

1

2

3

4

5

6x 10

−6 Non−isothermal Case

time [min]

grow

th r

ate

[m/m

in]

p−without finesc−without finesp−with finesc−with fines

0 100 200 300 400 500 6000

1000

2000

3000

4000

5000Isothermal Case

time [min]

nucl

eatio

n ra

te [m

/min

]

p−without finesc−without finesp−with finesc−with fines

0 100 200 300 400 500 600−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4x 10

4 Non−isothermal Case

time [min]

nucl

eatio

n ra

te [m

/min

]

p−without finesc−without finesp−with finesc−with fines

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 37: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Further Reading

Example 3: Mass Preservation in the Schemes

Table: Percentage errors in mass preservation without fines dissolution.Method Isothermal Non-isothermal CPU time (s)

(isothermal)N=500 N=1000 N=500 N=1000 N=500 N=1000

First order 3.737 3.775 4.460 4.669 1.5 3.1HR-κ = −1 3.811 3.813 4.733 4.736 2.2 4.4HR-κ = 1/3 3.813 3.814 4.736 4.737 2.3 4.6

MOC 2.604 1.844 3.792 2.917 0.34 0.41

Table: Percentage errors in mass preservation with fines dissolution.Method Isothermal Non-isothermal CPU time (s)

(isothermal)N=500 N=1000 N=500 N=1000 N=500 N=1000

First order 2.801 2.838 2.841 2.904 2.3 5.5HR-κ = −1 2.873 2.875 2.962 2.965 3.1 7.5HR-κ = 1/3 2.875 2.876 2.965 2.967 3.5 7.7

MOC 1.823 1.30 2.055 1.086 0.39 0.71

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 38: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Further Reading

Current Project

Results of isothermal (30 C) seeded growth experiments withmandelic acid in water. Left:without counter enantiomer;

Right: with counter-enantiomer (Lorenz et al., 2006).

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 39: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Further Reading

For Further Reading

S. Qamar, M. Elsner, I. Angelov, G. Warnecke and A.Seidel-MorgensternA comparative study of high resolution schemes for solvingpopulation balances in crystallization.Compt. & Chem. Eng., Vol. 30, 1119-1131, 2006.

S. Qamar, and G. WarneckeSolving population balance equations for two-componentaggregation by a finite volume scheme.Chem. Sci. Eng., 62, 679-693, 2006.

S. Qamar, and G. WarneckeNumerical solution of population balance equations fornucleation growth and aggregation processes.Compt. & Chem. Eng. (in press), 2007.

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg

Page 40: Numerical Solutions of Population-Balance Models in Particulate … · 2008-03-30 · General Population Balance Equation (PBE) Reformulation of PBE Preferential Crystallization Model

0.1cm

MotivationMathematical Model

Numerical ProcedureNumerical Results

Further Reading

Thanks for your Attention

S. Qamar, G. Warnecke Otto-von-Guericke University Magdeburg