Numerical Renormalization Group computation of magnetic relaxation rates

31
Numerical Renormalization-Group computation of magnetic relaxation rates Krissia de Zawadzki, Luiz Nunes de Oliveira, Jos´ e Wilson M. Pinto Instituto de F´ ısica de S˜ ao Carlos - Universidade de S˜ ao Paulo Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 1 / 11

description

We report an essentially exact numerical renormalization-group (NRG) computation of the temperature-dependent NMR rate $1/T_1$ of a probe at a distance $R$ from a magnetic impurity in a metallic host. We split the metallic states into two subsets, A and B. The former comprises electrons $a_k$ in $s$-wave states about the magnetic-impurity site. The coupling between the $a_k$ band and the impurity is described by the Anderson Hamiltonian, diagonalizable by the NRG procedure. Each state $b_k$ in the B subset is a linear combination of an $s$-wave state about the probe site with the degenerate $a_k$, constructed to be orthogonal to all the $a_k$'s. The $b_k$ band hence decouples from the impurity and is analytically treatable. We show that the relaxation rate has three components: (i) a constant associated with the $b_k$'s; (ii) a $T$-dependent term associated with the $a_k$'s, which decays in proportion to $1/(k_FR)^2$, where $k_F$ is the Fermi momentum; and (iii) another $T$-dependent term due to the interference between the $a_k$'s and the $b_k$'s. The interference term shows Friedel oscillations whose amplitude, proportional to $1/k_FR$, can be mapped onto the universal function of $T/T_K$ describing the Kondo resistivity. We compare our findings with results in the literature.

Transcript of Numerical Renormalization Group computation of magnetic relaxation rates

Page 1: Numerical Renormalization Group computation of magnetic relaxation rates

Numerical Renormalization-Group computationof magnetic relaxation rates

Krissia de Zawadzki, Luiz Nunes de Oliveira, Jose Wilson M. Pinto

Instituto de Fısica de Sao Carlos - Universidade de Sao Paulo

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 1 / 11

Page 2: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

Radius of Kondo screening cloud

Radius of Kondo screening cloud

𝑅𝑘

𝑅𝐾 ∝ 𝑇−1𝐾

General consensus

𝑅𝐾 = ~𝑣𝐹 /𝑘𝐵𝑇𝐾

Boyce &Slichter

NMR:

Experimental arrangement:

NMR probe: 𝑅 from the impurity

NRG computation of the spin

lattice relaxation rate 1/(𝑇1𝑇 ) as

function of 𝑇 and 𝑅

Can we measure 𝑅𝐾 via NMR?

Our findings:

Yes, we can!

T dependence changes as probe

crosses 𝑅𝐾

Phase of low-𝑇 Friedel oscillations

also changes

LASZLO, B. PRB, 75 (2007). BOYCE, J.B; SLICHTER, C.P. PRL, 32, 61 (1974).

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 2 / 11

Page 3: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

Radius of Kondo screening cloud

Radius of Kondo screening cloud

𝑅𝑘

𝑅𝐾 ∝ 𝑇−1𝐾

General consensus

𝑅𝐾 = ~𝑣𝐹 /𝑘𝐵𝑇𝐾

Boyce &Slichter

NMR:

Experimental arrangement:

NMR probe: 𝑅 from the impurity

NRG computation of the spin

lattice relaxation rate 1/(𝑇1𝑇 ) as

function of 𝑇 and 𝑅

Can we measure 𝑅𝐾 via NMR?

Our findings:

Yes, we can!

T dependence changes as probe

crosses 𝑅𝐾

Phase of low-𝑇 Friedel oscillations

also changes

LASZLO, B. PRB, 75 (2007). BOYCE, J.B; SLICHTER, C.P. PRL, 32, 61 (1974).

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 2 / 11

Page 4: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

Radius of Kondo screening cloud

Radius of Kondo screening cloud

𝑅𝑘

𝑅𝐾 ∝ 𝑇−1𝐾

General consensus

𝑅𝐾 = ~𝑣𝐹 /𝑘𝐵𝑇𝐾

Boyce &Slichter

NMR:

Experimental arrangement:

NMR probe: 𝑅 from the impurity

NRG computation of the spin

lattice relaxation rate 1/(𝑇1𝑇 ) as

function of 𝑇 and 𝑅

Can we measure 𝑅𝐾 via NMR?

Our findings:

Yes, we can!

T dependence changes as probe

crosses 𝑅𝐾

Phase of low-𝑇 Friedel oscillations

also changes

LASZLO, B. PRB, 75 (2007). BOYCE, J.B; SLICHTER, C.P. PRL, 32, 61 (1974).

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 2 / 11

Page 5: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

Radius of Kondo screening cloud

Radius of Kondo screening cloud

𝑅𝑘

𝑅𝐾 ∝ 𝑇−1𝐾

General consensus

𝑅𝐾 = ~𝑣𝐹 /𝑘𝐵𝑇𝐾

Boyce &Slichter

NMR:

Experimental arrangement:

NMR probe: 𝑅 from the impurity

NRG computation of the spin

lattice relaxation rate 1/(𝑇1𝑇 ) as

function of 𝑇 and 𝑅

Can we measure 𝑅𝐾 via NMR?

Our findings:

Yes, we can!

T dependence changes as probe

crosses 𝑅𝐾

Phase of low-𝑇 Friedel oscillations

also changes

LASZLO, B. PRB, 75 (2007). BOYCE, J.B; SLICHTER, C.P. PRL, 32, 61 (1974).

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 2 / 11

Page 6: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

Radius of Kondo screening cloud

Radius of Kondo screening cloud

𝑅𝑘

𝑅𝐾 ∝ 𝑇−1𝐾

General consensus

𝑅𝐾 = ~𝑣𝐹 /𝑘𝐵𝑇𝐾

Boyce &Slichter

NMR:

Experimental arrangement:

NMR probe: 𝑅 from the impurity

NRG computation of the spin

lattice relaxation rate 1/(𝑇1𝑇 ) as

function of 𝑇 and 𝑅

Can we measure 𝑅𝐾 via NMR?

Our findings:

Yes, we can!

T dependence changes as probe

crosses 𝑅𝐾

Phase of low-𝑇 Friedel oscillations

also changes

LASZLO, B. PRB, 75 (2007). BOYCE, J.B; SLICHTER, C.P. PRL, 32, 61 (1974).

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 2 / 11

Page 7: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

The quantum system

NRG Probe

Single-impurity Anderson model

𝐻 =

𝐻𝑐𝑜𝑛𝑑⏞ ⏟ ∑k

𝜀k𝑐†k𝑐k

+

𝐻𝑑⏞ ⏟ 𝜀𝑑𝑐

†𝑑𝑐𝑑 + 𝑈𝑛𝑑↑𝑛𝑑↓ +

𝐻𝑖𝑛𝑡⏞ ⏟ √Γ

𝜋(𝑓†

0𝑐𝑑 +𝐻.𝑐.)

𝜀 = 𝑣𝐹𝐷

(𝑘 − 𝑘𝐹 )

+𝐷

−𝐷

𝑘𝐹

𝐻𝑝𝑟𝑜𝑏𝑒 = −𝐴[Ψ†

↑(��)Ψ↓(��)𝐼− +𝐻.𝑐.]

Ψ𝜇 =∑k

𝑒𝑖k.R𝑐k

1

𝑇1=

4𝜋

~

∑𝐼,𝐹

𝑒−𝛽𝐸𝐼 |⟨𝐼|𝐻𝑝𝑟𝑜𝑏𝑒|𝐹 ⟩|2𝛿(𝐸𝐼 − 𝐸𝐹 )

𝑓0 =1√𝜌

∑k

𝑐k

𝑅

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 3 / 11

Page 8: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

The quantum system

NRG Probe

Single-impurity Anderson model

𝐻 =

𝐻𝑐𝑜𝑛𝑑⏞ ⏟ ∑k

𝜀k𝑐†k𝑐k +

𝐻𝑑⏞ ⏟ 𝜀𝑑𝑐

†𝑑𝑐𝑑 + 𝑈𝑛𝑑↑𝑛𝑑↓

+

𝐻𝑖𝑛𝑡⏞ ⏟ √Γ

𝜋(𝑓†

0𝑐𝑑 +𝐻.𝑐.)

𝜀 = 𝑣𝐹𝐷

(𝑘 − 𝑘𝐹 )

+𝐷

−𝐷

𝑘𝐹

𝐻𝑝𝑟𝑜𝑏𝑒 = −𝐴[Ψ†

↑(��)Ψ↓(��)𝐼− +𝐻.𝑐.]

Ψ𝜇 =∑k

𝑒𝑖k.R𝑐k

1

𝑇1=

4𝜋

~

∑𝐼,𝐹

𝑒−𝛽𝐸𝐼 |⟨𝐼|𝐻𝑝𝑟𝑜𝑏𝑒|𝐹 ⟩|2𝛿(𝐸𝐼 − 𝐸𝐹 )

𝑓0 =1√𝜌

∑k

𝑐k

𝑅

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 3 / 11

Page 9: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

The quantum system

NRG Probe

Single-impurity Anderson model

𝐻 =

𝐻𝑐𝑜𝑛𝑑⏞ ⏟ ∑k

𝜀k𝑐†k𝑐k +

𝐻𝑑⏞ ⏟ 𝜀𝑑𝑐

†𝑑𝑐𝑑 + 𝑈𝑛𝑑↑𝑛𝑑↓ +

𝐻𝑖𝑛𝑡⏞ ⏟ √Γ

𝜋(𝑓†

0𝑐𝑑 +𝐻.𝑐.)

𝜀 = 𝑣𝐹𝐷

(𝑘 − 𝑘𝐹 )

+𝐷

−𝐷

𝑘𝐹

𝐻𝑝𝑟𝑜𝑏𝑒 = −𝐴[Ψ†

↑(��)Ψ↓(��)𝐼− +𝐻.𝑐.]

Ψ𝜇 =∑k

𝑒𝑖k.R𝑐k

1

𝑇1=

4𝜋

~

∑𝐼,𝐹

𝑒−𝛽𝐸𝐼 |⟨𝐼|𝐻𝑝𝑟𝑜𝑏𝑒|𝐹 ⟩|2𝛿(𝐸𝐼 − 𝐸𝐹 )

𝑓0 =1√𝜌

∑k

𝑐k

𝑅

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 3 / 11

Page 10: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

The quantum system

NRG Probe

Single-impurity Anderson model

𝐻 =

𝐻𝑐𝑜𝑛𝑑⏞ ⏟ ∑k

𝜀k𝑐†k𝑐k +

𝐻𝑑⏞ ⏟ 𝜀𝑑𝑐

†𝑑𝑐𝑑 + 𝑈𝑛𝑑↑𝑛𝑑↓ +

𝐻𝑖𝑛𝑡⏞ ⏟ √Γ

𝜋(𝑓†

0𝑐𝑑 +𝐻.𝑐.)

𝜀 = 𝑣𝐹𝐷

(𝑘 − 𝑘𝐹 )

+𝐷

−𝐷

𝑘𝐹

𝐻𝑝𝑟𝑜𝑏𝑒 = −𝐴[Ψ†

↑(��)Ψ↓(��)𝐼− +𝐻.𝑐.]

Ψ𝜇 =∑k

𝑒𝑖k.R𝑐k

1

𝑇1=

4𝜋

~

∑𝐼,𝐹

𝑒−𝛽𝐸𝐼 |⟨𝐼|𝐻𝑝𝑟𝑜𝑏𝑒|𝐹 ⟩|2𝛿(𝐸𝐼 − 𝐸𝐹 )

𝑓0 =1√𝜌

∑k

𝑐k

𝑅

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 3 / 11

Page 11: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

Two-center basis

Two-center basis

Spherically symmetric operators

𝑐𝜀 =∑k

𝑐 k 𝛿(𝜀− 𝜀k) (around impurity)

𝑑𝜀 =∑k

𝑐 k 𝑒𝑖k.R𝛿(𝜀− 𝜀k) (around probe)

𝑐 𝜀

𝑑 𝜀

NRG

analytical

{𝑐†𝜀, 𝑑𝜀′} = sin(𝑘𝑅)𝑘𝑅 𝛿(𝜀− 𝜀′)

Gram-Schmidt construction

𝑐𝜀𝜇 = 1√1−𝑊 2

(𝑑𝜀𝜇 −𝑊𝑐𝜀𝜇)

𝑊 = 𝑊 (𝜀,𝑅) = sin(𝑘𝑅)𝑘𝑅

𝑘𝑅 = 𝑘𝐹𝑅(1 + 𝜀

𝐷

)

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 4 / 11

Page 12: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

Two-center basis

Two-center basis

Spherically symmetric operators

𝑐𝜀 =∑k

𝑐 k 𝛿(𝜀− 𝜀k) (around impurity)

𝑑𝜀 =∑k

𝑐 k 𝑒𝑖k.R𝛿(𝜀− 𝜀k) (around probe)

𝑐 𝜀

𝑑 𝜀

NRG

analytical

{𝑐†𝜀, 𝑑𝜀′} = sin(𝑘𝑅)𝑘𝑅 𝛿(𝜀− 𝜀′)

Gram-Schmidt construction

𝑐𝜀𝜇 = 1√1−𝑊 2

(𝑑𝜀𝜇 −𝑊𝑐𝜀𝜇)

𝑊 = 𝑊 (𝜀,𝑅) = sin(𝑘𝑅)𝑘𝑅

𝑘𝑅 = 𝑘𝐹𝑅(1 + 𝜀

𝐷

)

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 4 / 11

Page 13: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

Two-center basis

Two-center basis

Spherically symmetric operators

𝑐𝜀 =∑k

𝑐 k 𝛿(𝜀− 𝜀k) (around impurity)

𝑑𝜀 =∑k

𝑐 k 𝑒𝑖k.R𝛿(𝜀− 𝜀k) (around probe)

𝑐 𝜀

𝑑 𝜀

NRG

analytical

{𝑐†𝜀, 𝑑𝜀′} = sin(𝑘𝑅)𝑘𝑅 𝛿(𝜀− 𝜀′)

Gram-Schmidt construction

𝑐𝜀𝜇 = 1√1−𝑊 2

(𝑑𝜀𝜇 −𝑊𝑐𝜀𝜇)

𝑊 = 𝑊 (𝜀,𝑅) = sin(𝑘𝑅)𝑘𝑅

𝑘𝑅 = 𝑘𝐹𝑅(1 + 𝜀

𝐷

)

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 4 / 11

Page 14: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

NRG and Lanczos basis

NRG and Lanczos basis

𝐻𝑁 =1

𝒟𝑁

(𝑁−1∑𝑛=0

𝑡𝑛(𝑓†𝑛𝑓𝑛+1 +𝐻.𝑐.) +

√Γ

𝜋(𝑐†𝑑𝑓0 +𝐻.𝑐.) +𝐻𝑑

)NRG[4]

𝐻𝑝𝑟𝑜𝑏𝑒 = −𝐴 [ 𝜙†↑𝜙↓ +Φ†

↑Φ↓ + (𝜙†↑Φ↓ +Φ†

↑𝜙↓) ] I− +𝐻.𝑐.

𝜙𝜇(𝑅) ≡∫ 𝐷

−𝐷

𝑑𝜀√

1 − 𝑊 (𝜀,𝑅)𝑐𝜀𝜇 Φ𝜇(𝑅) ≡∑𝑛

𝛾𝑛𝑓𝑛

analytically

numerically

1

𝑇1=

(1

𝑇1

)𝜙𝜙⏟ ⏞

1−𝑊 2𝐹

+

(1

𝑇1

)ΦΦ⏟ ⏞

𝑊 2𝐹

+

(1

𝑇1

)Φ𝜙⏟ ⏞

(1−𝑊𝐹 )𝑊𝐹

cte

𝑘𝐹𝑅≪

1

𝑘𝐹𝑅

≫1

DULL

SMALL

𝑊𝐹 =sin(𝑘𝐹𝑅)

𝑘𝐹𝑅

WILSON, K. Rev Mod Phys, 47, 773 (1975).

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 5 / 11

Page 15: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

NRG and Lanczos basis

NRG and Lanczos basis

𝐻𝑁 =1

𝒟𝑁

(𝑁−1∑𝑛=0

𝑡𝑛(𝑓†𝑛𝑓𝑛+1 +𝐻.𝑐.) +

√Γ

𝜋(𝑐†𝑑𝑓0 +𝐻.𝑐.) +𝐻𝑑

)NRG[4]

𝐻𝑝𝑟𝑜𝑏𝑒 = −𝐴 [ 𝜙†↑𝜙↓ +Φ†

↑Φ↓ + (𝜙†↑Φ↓ +Φ†

↑𝜙↓) ] I− +𝐻.𝑐.

𝜙𝜇(𝑅) ≡∫ 𝐷

−𝐷

𝑑𝜀√

1 − 𝑊 (𝜀,𝑅)𝑐𝜀𝜇 Φ𝜇(𝑅) ≡∑𝑛

𝛾𝑛𝑓𝑛

analytically

numerically

1

𝑇1=

(1

𝑇1

)𝜙𝜙⏟ ⏞

1−𝑊 2𝐹

+

(1

𝑇1

)ΦΦ⏟ ⏞

𝑊 2𝐹

+

(1

𝑇1

)Φ𝜙⏟ ⏞

(1−𝑊𝐹 )𝑊𝐹

cte

𝑘𝐹𝑅≪

1

𝑘𝐹𝑅

≫1

DULL

SMALL

𝑊𝐹 =sin(𝑘𝐹𝑅)

𝑘𝐹𝑅

WILSON, K. Rev Mod Phys, 47, 773 (1975).

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 5 / 11

Page 16: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

NRG and Lanczos basis

NRG and Lanczos basis

𝐻𝑁 =1

𝒟𝑁

(𝑁−1∑𝑛=0

𝑡𝑛(𝑓†𝑛𝑓𝑛+1 +𝐻.𝑐.) +

√Γ

𝜋(𝑐†𝑑𝑓0 +𝐻.𝑐.) +𝐻𝑑

)NRG[4]

𝐻𝑝𝑟𝑜𝑏𝑒 = −𝐴 [ 𝜙†↑𝜙↓ +Φ†

↑Φ↓ + (𝜙†↑Φ↓ +Φ†

↑𝜙↓) ] I− +𝐻.𝑐.

𝜙𝜇(𝑅) ≡∫ 𝐷

−𝐷

𝑑𝜀√

1 − 𝑊 (𝜀,𝑅)𝑐𝜀𝜇 Φ𝜇(𝑅) ≡∑𝑛

𝛾𝑛𝑓𝑛

analytically

numerically

1

𝑇1=

(1

𝑇1

)𝜙𝜙⏟ ⏞

1−𝑊 2𝐹

+

(1

𝑇1

)ΦΦ⏟ ⏞

𝑊 2𝐹

+

(1

𝑇1

)Φ𝜙⏟ ⏞

(1−𝑊𝐹 )𝑊𝐹

cte

𝑘𝐹𝑅≪

1

𝑘𝐹𝑅

≫1

DULL

SMALL

𝑊𝐹 =sin(𝑘𝐹𝑅)

𝑘𝐹𝑅

WILSON, K. Rev Mod Phys, 47, 773 (1975).

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 5 / 11

Page 17: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

NRG and Lanczos basis

NRG and Lanczos basis

𝐻𝑁 =1

𝒟𝑁

(𝑁−1∑𝑛=0

𝑡𝑛(𝑓†𝑛𝑓𝑛+1 +𝐻.𝑐.) +

√Γ

𝜋(𝑐†𝑑𝑓0 +𝐻.𝑐.) +𝐻𝑑

)NRG[4]

𝐻𝑝𝑟𝑜𝑏𝑒 = −𝐴 [ 𝜙†↑𝜙↓ +Φ†

↑Φ↓ + (𝜙†↑Φ↓ +Φ†

↑𝜙↓) ] I− +𝐻.𝑐.

𝜙𝜇(𝑅) ≡∫ 𝐷

−𝐷

𝑑𝜀√

1 − 𝑊 (𝜀,𝑅)𝑐𝜀𝜇 Φ𝜇(𝑅) ≡∑𝑛

𝛾𝑛𝑓𝑛

analytically

numerically

1

𝑇1=

(1

𝑇1

)𝜙𝜙⏟ ⏞

1−𝑊 2𝐹

+

(1

𝑇1

)ΦΦ⏟ ⏞

𝑊 2𝐹

+

(1

𝑇1

)Φ𝜙⏟ ⏞

(1−𝑊𝐹 )𝑊𝐹

cte

𝑘𝐹𝑅≪

1

𝑘𝐹𝑅

≫1

DULL

SMALL

𝑊𝐹 =sin(𝑘𝐹𝑅)

𝑘𝐹𝑅

WILSON, K. Rev Mod Phys, 47, 773 (1975).

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 5 / 11

Page 18: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

NRG and Lanczos basis

NRG and Lanczos basis

𝐻𝑁 =1

𝒟𝑁

(𝑁−1∑𝑛=0

𝑡𝑛(𝑓†𝑛𝑓𝑛+1 +𝐻.𝑐.) +

√Γ

𝜋(𝑐†𝑑𝑓0 +𝐻.𝑐.) +𝐻𝑑

)NRG[4]

𝐻𝑝𝑟𝑜𝑏𝑒 = −𝐴 [ 𝜙†↑𝜙↓ +Φ†

↑Φ↓ + (𝜙†↑Φ↓ +Φ†

↑𝜙↓) ] I− +𝐻.𝑐.

𝜙𝜇(𝑅) ≡∫ 𝐷

−𝐷

𝑑𝜀√

1 − 𝑊 (𝜀,𝑅)𝑐𝜀𝜇 Φ𝜇(𝑅) ≡∑𝑛

𝛾𝑛𝑓𝑛

analytically

numerically

1

𝑇1=

(1

𝑇1

)𝜙𝜙⏟ ⏞

1−𝑊 2𝐹

+

(1

𝑇1

)ΦΦ⏟ ⏞

𝑊 2𝐹

+

(1

𝑇1

)Φ𝜙⏟ ⏞

(1−𝑊𝐹 )𝑊𝐹

cte

𝑘𝐹𝑅≪

1

𝑘𝐹𝑅

≫1

DULL

SMALL

𝑊𝐹 =sin(𝑘𝐹𝑅)

𝑘𝐹𝑅

WILSON, K. Rev Mod Phys, 47, 773 (1975).

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 5 / 11

Page 19: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

Friedel oscillations

Friedel oscillations

9.8 10.0 10.2 10.4 10.6 10.8 11.0 11.2kFRπ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10.5π

10π 10.25π

T=1.7569e−4

T=9.8711e−8

10.0 10.5 11.0

0.16

0.17

1T

1T(kFR

)2

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 6 / 11

Page 20: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

Relaxation rate - temperature dependence

𝑘𝐵𝑇𝐾 = 1.25× 10−5

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

kB T

0

1

2

3

4

5

6

7

(101+0.25)π

(102+0.25)π

(103+0.25)π

(104+0.25)π

(105+0.25)π

(106+0.25)π

(107+0.25)π

(kFR

)2

kBT

( 1 T1

)

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 7 / 11

Page 21: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

Interference relaxation rate

Interference relaxation rate

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-20

1

2

3

4

5

6

7

R≈RK

outside

inside

(kFR

)2

kBT

( 1 T1

)

kB T

kFR=(n+14)π

λB =2πvFkB T

de Broglie

n=102

n=105

n=107

n=102

n=105

n=107

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 8 / 11

Page 22: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

Friedel oscillations

Friedel oscillations

101 102 103 104 105 106 107 108

kFRπ

1.58

1.60

1.62

1.64

1.66

1.68

1.70

1.72

RK →TK =1.25e−05

(n+1/2)π

104 105 106

0.00010

0.00015

+1.6131

1T

1T(kFR

)2

T≈5.62e−11

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 9 / 11

Page 23: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

Conclusions

NMR to measure 𝑅𝐾 : OK!

Inside cloud, 𝑇 -dependent rate follows universal curve

Outside cloud, rate follows different curve

Phase of Friedel oscillations reverses around 𝑅 = 𝑅𝐾

Future prospects:

Other geometries

P-h symmetric case differs from assymetric ?

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 10 / 11

Page 24: Numerical Renormalization Group computation of magnetic relaxation rates

Introduction NRG calculations Numerical results Conclusions Acknowledgment

Acknowledgment

Thank you!

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 11 / 11

Page 25: Numerical Renormalization Group computation of magnetic relaxation rates

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 1 / 4

Page 26: Numerical Renormalization Group computation of magnetic relaxation rates

Additional results

Relaxation rate - 𝒢𝑠𝑖𝑑𝑒(𝑇 ) profile

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

kB T

0

1

2

3

4

5

6

7

(101+0.5)π

(102+0.5)π

(103+0.5)π

(104+0.5)π

(105+0.5)π

(106+0.5)π

(107+0.5)π

(kFR

)2

kBT

( 1 T1

)

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 2 / 4

Page 27: Numerical Renormalization Group computation of magnetic relaxation rates

Additional results

Relaxation rate - 𝒢𝑆𝐸𝑇 (𝑇 ) profile

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

kB T

0

1

2

3

4

5

6

7

101 π

102 π

103 π

104 π

105 π

106 π

107 π

(kFR

)2

kBT

( 1 T1

)

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 3 / 4

Page 28: Numerical Renormalization Group computation of magnetic relaxation rates

Additional results

Particle-hole symmetric case

Particle-hole symmetric case: 1/𝑇1 as function of 𝑇

𝑘𝐹𝑅 = 𝑛𝜋 and 𝑘𝐹𝑅 = (𝑛+ 12 )𝜋, 𝑛 = 10

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

kB T

0

1

2

3

4

5

6

7

10-9 10-8 10-71.4

1.6

1.8

2.0

(kFR

)2

kBT

( 1 T1

)

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 4 / 4

Page 29: Numerical Renormalization Group computation of magnetic relaxation rates

Additional results

Particle-hole symmetric case

Particle-hole symmetric case: 1/𝑇1 as function of 𝑇

𝑘𝐹𝑅 = 𝑛𝜋 and 𝑘𝐹𝑅 = (𝑛+ 12 )𝜋, 𝑛 = 103

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

kB T

0

1

2

3

4

5

6

7

10-8 10-71.4

1.6

1.8

2.0

(kFR

)2

kBT

( 1 T1

)

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 4 / 4

Page 30: Numerical Renormalization Group computation of magnetic relaxation rates

Additional results

Particle-hole symmetric case

Particle-hole symmetric case: 1/𝑇1 as function of 𝑇

𝑘𝐹𝑅 = 𝑛𝜋 and 𝑘𝐹𝑅 = (𝑛+ 12 )𝜋, 𝑛 = 105

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

kB T

0

1

2

3

4

5

6

7

10-7

1.6

1.8

2.0

(kFR

)2

kBT

( 1 T1

)

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 4 / 4

Page 31: Numerical Renormalization Group computation of magnetic relaxation rates

Additional results

Particle-hole symmetric case

Particle-hole symmetric case: 1/𝑇1 as function of 𝑇

𝑘𝐹𝑅 = 𝑛𝜋 and 𝑘𝐹𝑅 = (𝑛+ 12 )𝜋, 𝑛 = 107

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

kB T

0

1

2

3

4

5

6

7

10-91

2

3

4

(kFR

)2

kBT

( 1 T1

)

Zawadzki, K. de; Oliveira, L.N.; Pinto, J.W.M. NRG computation of nuclear magnetic relaxation rates 4 / 4