Numerical Investigations on Ethanol Electrolysis for Production of Pure Hydrogen From Renewable...

download Numerical Investigations on Ethanol Electrolysis for Production of Pure Hydrogen From Renewable Sources

of 6

Transcript of Numerical Investigations on Ethanol Electrolysis for Production of Pure Hydrogen From Renewable...

  • 8/17/2019 Numerical Investigations on Ethanol Electrolysis for Production of Pure Hydrogen From Renewable Sources

    1/6

    Numerical investigations on ethanol electrolysis for production of pure

    hydrogen from renewable sources

    S. Mohsen Mousavi Ehteshami a,⇑, S. Vignesh b, R.K.A. Rasheed b, S.H. Chan a

    a Energy Research Institute at Nanyang Technological University, Singaporeb School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore

    h i g h l i g h t s

    Ethanol electrolysis process to produce hydrogen was investigated numerically.

     The model considers the transport phenomena and electrochemical reactions in the cell.

     Reasonable agreement was found between the experimental data and numerical results.

     Optimal operating potential for the electrolytic cell is proposed to be 0.94 V.

    a r t i c l e i n f o

     Article history:

    Received 16 September 2015

    Received in revised form 10 January 2016

    Accepted 2 March 2016

    Available online 11 March 2016

    Keywords:

    EthanolElectrolysis

    Hydrogen production

    Fuel cell

    a b s t r a c t

    Hydrogen and fuel cells have the potential to play a significant role in the energy-mix network and pro-

    viding a more sustainable future. Hydrogen is mainly produced from steam-reforming of natural gas and

    water electrolysis. However, it is suspected that the production of hydrogen through the electrolysis of 

    ethanol is more energy efficient and more environmentally friendly. In this study, to gain a good insight

    of ethanol electrolysis process, we have investigated the ethanol electrolysis in a polymer electrolyte

    membrane (PEM) reactor numerically. A two-dimensional, isothermal, and single phase ethanol elec-

    trolyzer numerical model, taking into account the transport phenomena and electrochemical reactions,

    has been developed for such purpose. Besides, a systematic parametric study is carried out to elucidate

    the effect of operating temperature, flow rate and the thickness of the membrane on the performance of 

    the electrolytic cell. A reasonable agreement is found between the numerical data and the experimental

    results available in the literature indicating the predictive capability of the model.

     2016 Elsevier Ltd. All rights reserved.

    1. Introduction

    The significant growth of demand for clean energy has moti-

    vated scientists in the field of energy science to pursue alternative

    methods for power generation [1–7]. Hydrogen has been consid-

    ered as a promising energy carrier as it possesses substantial

    energy density. Moreover, hydrogen is environmentally friendly

    and certainly can contribute to a clean and sustainable environ-

    ment [8–11]. There are several ways to produce hydrogen, prefer-

    ably from renewable energy sources. Currently, steam reforming of 

    hydrocarbons or alcohols is widely used for the mass production of 

    hydrogen   [12–17]. Nevertheless, there is a desire to develop

    renewable hydrogen production technologies. Hence, electrolysis

    has been explored as a potential method to produce hydrogen

    because the energy input to the electrolysis process can be derived

    from renewable energy sources [12]. In recent years, various stud-

    ies have been conducted on the electrolysis of water as a source of 

    pure hydrogen production   [18–23]. However, the amount of 

    energy required for the water electrolysis is significantly higher.

    The theoretical cell potential for hydrogen evolution through water

    electrolysis process is 1.229 V. Therefore, the electrolysis of alter-

    native liquids like alcohols has been explored to reduce the

    amount of energy needed [24,25]. Moreover, the electrolysis of 

    alcohols can be considered environmentally friendly if bio-

    alcohol is used as the fuel  [11,26]. There are several studies done

    on hydrogen generation through methanol electrolysis   [27–29].

    However, methanol is very toxic in nature. Among all the other

    alcohols, ethanol is a suitable candidate for transportation and sta-

    tionary applications, due to its high energy density and non-

    toxicity compared with methanol. The energy densities of ethanol

    and methanol (LHV) are 29 MJ/kg and 19.7 MJ/kg, respectively.

    http://dx.doi.org/10.1016/j.apenergy.2016.03.001

    0306-2619/  2016 Elsevier Ltd. All rights reserved.

    ⇑ Corresponding author at: 50 Nanyang Ave, Singapore 639798, Singapore. Tel.:

    +65 90386261; fax: +65 6694 6217.

    E-mail addresses:   [email protected],   [email protected]

    (S.M.M. Ehteshami).

    Applied Energy 170 (2016) 388–393

    Contents lists available at  ScienceDirect

    Applied Energy

    j o u r n a l h o m e p a g e :   w w w . e l s e v i e r . c o m / l o c a t e / a p e n e r g y

    http://dx.doi.org/10.1016/j.apenergy.2016.03.001mailto:[email protected]:[email protected]:[email protected]://dx.doi.org/10.1016/j.apenergy.2016.03.001http://www.sciencedirect.com/science/journal/03062619http://www.elsevier.com/locate/apenergyhttp://www.elsevier.com/locate/apenergyhttp://www.sciencedirect.com/science/journal/03062619http://dx.doi.org/10.1016/j.apenergy.2016.03.001mailto:[email protected]:[email protected]://dx.doi.org/10.1016/j.apenergy.2016.03.001http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2016.03.001&domain=pdf

  • 8/17/2019 Numerical Investigations on Ethanol Electrolysis for Production of Pure Hydrogen From Renewable Sources

    2/6

    Moreover, huge potential for easy production of ethanol through

    fermentation of sugar-containing materials   [30]   inspired us to

    choose ethanol electrolysis.

    The two half-cell reactions of the electrochemical reforming of 

    ethanol are presented in Eq.  (1).

    a:   CH3CH2OH þ 3H2O ! 2CO2 þ 12Hþ þ 12e

    b:   2Hþ þ 2e   ! H2ð1Þ

    with   DH  = +348 kJ/mole ethanol and   DG = +96.9 kJ/mole ethanol.

    The number of electrons transferred during the reaction is 12.

    Hence, the theoretical cell voltage for ethanol electrolysis, obtained

    from the Gibbs free energy equation   E EtOH = DG/n, has become

    0.08 V. This leads to less energy requirement compared to waterelectrolysis resulting in higher energy efficiency.

    All the studies performed in the past on electrolysis of ethanol

    for hydrogen production have been purely experimental in nature

    [31]. To-date, there is no mathematical modeling study on ethanol

    electrolysis found in the literature. This is, perhaps, the first com-

    putational fluid dynamics study on the ethanol electrolysis based

    on PEM electrolytic cell. This study formulates an isothermal,

    two-dimensional and single phase model of the electrolysis of 

    ethanol with detailed process of flow of the water–ethanol solu-

    tion, electrochemical reactions and species transport within the

    electrolytic cell. Furthermore, the effect of the feedstock flow rate

    and operating voltage on the species composition and cell perfor-

    mance is studied and discussed.

    2. Theory 

    The two-dimensional schematic of a PEM ethanol electrolyzer

    and the computational domain are shown in Fig. 1. The electrolyzer

    cell includes anode and cathode flow channels of straight type,

    anode and cathode electrodes and an electrolyte, which is sand-

    wiched by the electrodes. Pt/C is considered to be the electrocata-

    lysts used. Water–ethanol mixture is supplied to the anode side

    and hydrogen is generated in the cathode compartment. Ethanol

    molecules are oxidized in the presence of water molecules into car-

    bon dioxide and protons as presented in Eq. (1). Twelve electrons

    are involved in this electrochemical reaction. The electrons react

    with protons transported through the membrane and generate

    hydrogen at the cathode catalyst layer. The generated hydrogenmolecules diffuse out of the cathode electrode to the cathode flow

    channel. CO2 molecules produced at the anode side are transported

    out by the residual ethanol solution stream. The crossover of the

    ethanol molecules from the anode side to the cathode may also

    take place. Ethanol molecules transported to the cathode side are

    oxidized at the cathode. The current produced due to the oxidation

    of ethanol at the cathode side is considered as the parasitic current

    (i p). When this occurs, there is a mixed potential at the cathode due

    to concurrent oxidation and reduction processes.

    Because the flows in the channels of a PEM electrolyzer have

    small Reynolds number, they are assumed to be in laminar regime.

    In addition, the steady state condition is considered for the compu-

    tational fluid dynamics model. The charge balance is solved in the

    electrodes and the membrane with Eqs.  (2) and (3), respectively.

    r   rseff rus

    ¼ 0   ð2Þ

    r ðrmrumÞ ¼ 0   ð3Þ

    where  rseff ,   us,   rm, and   um   are the electric conductivity and the

    potential of the porous electrodes and the membrane, respectively.

    The membrane conductivity is a function of thewater content of the

    membrane k, i.e., the concentration ratio of water to sulfonic acid

    group in the membrane. The following experimental expression

    for the conductivity of Nafion membrane has been presented by

    Springer et al. [32].

    r30 ¼ 0:5139k 0:326;   for  k > 1   ð4Þ

    where  r30   and  k   are the membrane conductivity in S m1 (mea-

    sured at 30 C) and water content of the membrane, respectively.The conductivity at any given operating temperature can be calcu-

    lated using Eq. (5).

    rm  ¼ exp 1268  1

    303

    1

    r30   ð5Þ

    The flow in the porous media of the gas diffusion layers of the PEM

    fuel cell is modeled by Darcy’s law (Eq. (6)), where the pressure gra-

    dient is the driving force.

    r p ¼ lju þ

    le

    r2u   ð6Þ

    where u,  k p, l, e, and p  are the velocity vector, permeability of theporous media, viscosity of the fluid, porosity and pressure, respec-

    tively. The governing equations and the boundary conditions aresummarized in  Fig. 1b. The boundary condition for the mass and

    Nomenclature

    D   diffusivity (m2 s1)E    standard electrode potential (V)F    Faraday constant (96,487 C mol1)i   current density (A cm2)LHV low heating value

    M    molar mass (kg mol1)n   molar flux (mol s1)P    pressure (Pa)Q    electrical power (J s1)T    temperature (K)u   velocity vector (m s1)V    specific rate of generation/consumption

    Greek charactersr   conductivity (S m1)u   potential (V)e   porosityg   over-potential (V)

    k   membrane water contentl   viscosity (kg m1 s1)q   density (kg m3)x   weight fractionc   efficiency

    Subscripts and superscriptsa   anodeact    activationcath   cathodeE    ethanoleff    effectivem   membrane p   parasitics   gas distribution electrode

    S. Mohsen Mousavi Ehteshami et al./ Applied Energy 170 (2016) 388–393   389

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/17/2019 Numerical Investigations on Ethanol Electrolysis for Production of Pure Hydrogen From Renewable Sources

    3/6

    species at the anode membrane/catalyst layer interface are pre-

    sented in Eqs. (7) and (8).

    quE  ¼

      i

    12F   M H2O þ M E  M CO2ð Þ nH2O nE    ð7Þ

    quxE  qDE @ xE @  y

      ¼ i þ i p12F 

     M E    ð8Þ

    where the fluxes of ethanol and water through the membrane and i pare calculated by Eqs.  (9)–(11), respectively.

    nE  ¼iM E F   aH2OxE  þ

    qDE  xE  xcathE  t mem

    ð9Þ

    nH2O ¼iM H2OF   aH2O   ð10Þ

    i p  ¼ 12FnE M E ð11Þ

    The parameters used in the simulation of ethanol PEM electrolyzer

    are presented in Table 1. The relationship between the current den-

    sity and the cell potential are studied combining the electrochemi-

    cal and computational fluid dynamics. The electrochemical

    potential of the PEM ethanol electrolyzer can be calculated by Eq.

    (12).

    V  ¼ E þ gohmic  þ gact ;a þ gact ;   ð12Þ

    where   E ,  gohmic ,  gact ,a   and gact ,c  are the equilibrium potential, theohmic overpotential, the anode activation overpotential and the

    cathode overpotential, respectively. The activation overpotentials

    are dependent on the kinetics of the reactions at the anode and

    cathode electrodes. The relationship between the cell overpoten-

    tials and current density are expressed by Butler–Volmer equation

    [33]. The ohmic overpotential, representing the potential loss due

    to electrons and ions transport, is calculated using Ohm’s law.

    3. Numerical method

    The governing equations are solved numerically using finite ele-

    ment method. There is coupling between the flow velocity and the

    species transport and current distribution modules. Once the

    velocity field is obtained, the species transport and current distri-

    bution equations are solved. The former determines the concentra-

    tion of species at different components of the cell. The fluid

    properties including density, thermal conductivity and diffusivityare updated according to the calculated compositions at each iter-

    (a)

    Ethanol-water solution

    y

    sedor tcelE

    x

    Hydrogen

    (b)

     p=pref 

    = − =

    Anode Channel

    = 0

    Anode electrode

    = 0

    membrane Cathode electrode

    = 0

    Cathode Channel

    = 0

       p=pref 

    Membrane

    Cathode channel

    Anode channel

    Fig. 1.  (a) The schematic of the electrolyzer cell. (b) The computational domain and governing transport phenomena equations and boundary conditions.

     Table 1

    Properties and geometric parameters.

    Parameter (unit) Value Ref.

    Temperature (K) 303 –

    Pressure (atm) 1 –

    Length of the anode/cathode channels (cm) 2 –

    Ethanol solution flow rate (ml min1) 5 –

    Ethanol molar concentration at the inlet (M) 6 –

    Thickness of the diffusion layer (cm) 0.03 –

    Thickness of the membrane (cm) 0.0183 –

    GDL permeability (m2) 1.76 1011 –

    Ethanol diffusion coefficient (m2 s1) 0.84 109 [28]

    Porosity 0.7 –

    Faraday constant (A s mol1) 96,485 –

    Ethanol viscosity at 25 C (MPa s) 1.082   [29]

    Ethanol density (kg m3) 789 –

    Universal gas constant (J K1 mol1) 8.314 –

    Hydrogen density at stp (kg m3) 898 –

    Electro-osmosis water transport coefficient 0.25   [30]

    Hydrogen viscosity (MPa s) 0.009 –

    390   S. Mohsen Mousavi Ehteshami et al. / Applied Energy 170 (2016) 388–393

  • 8/17/2019 Numerical Investigations on Ethanol Electrolysis for Production of Pure Hydrogen From Renewable Sources

    4/6

    ation. It should be reminded that the local current density values

    obtained from current distribution module are used as the source

    terms in other modules. The iterations are continued till conver-

    gence is reached for the governing equations. The ethanol elec-

    trolyzer model was developed and solved using COMSOL 

    multiphysics. The grid independency has been checked in this

    study. It was concluded that the results do not change remarkably

    when the number of mesh elements is more than 14,000.

    4. Results and discussion

    4.1. Model validation

    To validate the numerical model, the results obtained from the

    modeling are compared with the experimental data obtained from

    the literature [31] under the same conditions. The simulations are

    carried out at 20 C and atmospheric pressure. The flow rate of 

    ethanol mixture is 2 ml min1. Fig. 2 presents the numerical results

    compared with the experimental data obtained from [31]. It can be

    seen that there is a reasonable agreement between the experimen-

    tal data and simulation results. The discrepancy between the sim-

    ulation and experimental data is more obvious in the high current

    density end. This could be due to the mass transport losses in the

    presence of carbon dioxide bubbles generated in the anode side.

    The dynamic of carbon dioxide bubbles is not taken into account

    in the simulation study.

    Fig. 3 shows the local current density distribution in the ethanol

    electrolyzer operating at potentials of 0.8 V and 1 V. It can be seen

    that the current density increases along the electrode length with

    the increase in operating potential. Also, the local current density

    decreases along the cell length. This is due to the consumption of 

    ethanol and formation of products (protons and carbon dioxide)

    according to Eq. (1). It should be noted that Eq. (1) is the ideal etha-

    nol oxidation reaction. In practice, it has been found, evidenced

    with in situ infrared spectroscopy and chromatography analysis,

    that ethanol oxidation in this potential domain produced mainlyacetaldehyde (2H+) and acetic acid (4H+)  [34,35].

    The effect of inlet flow rate on the local current density distribu-

    tions at operating potential of 1 V is presented in Fig. 4. In the case

    of different inlet flow rates, the local current densities along the

    electrode length do not show any remarkable differences. The local

    current density, at higher inlet flow rate, decreases less signifi-

    cantly along the cell length compared to that of lower inlet flow

    rate.

    Fig. 5   presents the ethanol mass fraction along the electrode

    length over diffusion layer/catalyst layer interface for ethanol inlet

    velocities of 0.005 m/s, 0.01 m/s, 0.03 m/s and 0.05 m/s. The mass

    fraction drop increases with decreasing the inlet velocity. This is

    due to higher consumption of ethanol at a lower velocity since

    the detention time of the ethanol would be higher at a lower inlet

    flow velocity.

    Current density/ (A.cm-2)

    0.00   0.02 0.04   0.06   0.08   0.10   0.12   0.14

       P  o   t  e  n   t   i  a   l   /   V

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    ExperimentalSimulation

    Fig. 2.  Comparison of the predicted polarization curve and the experimental datafrom [31].

    Position on the length of the cell/ m

    0.000 0.005   0.010 0.015   0.020

       L  o  c  a   l  c  u  r  r  e

      n   t   d  e  n  s   i   t  y   /   (   A .  m

      -   2   )

    0

    200

    400

    600

    800

    1000

    1200

    1 V0.8 V

    Fig. 3.  Distribution of local current density along the cell length.

    Position on the length of the cell/ m

    0.000 0.005 0.010 0.015 0.020

       L  o  c  a   l  c  u  r  r  e  n   t   d  e  n  s   i   t  y   /   (   A .  m

      -   2   )

    0

    200

    400

    600

    800

    1000

    3 ml.min-1-1

    2 ml.min-1

    Fig. 4.   The effect of inlet flow rate on the local current density distributions at

    operating potential of 1 V.

    Position on the length of the cell/ m

    0.000 0.005 0.010 0.015 0.020   E   t   O   H  m

      a  s  s   f  r  a  c   t   i  o  n  a   l  o  n  g   t   h  e  c  a   t  a   l  y  s   t

        l  a  y  e  r  a  x   i  s

    0.00

    0.01

    0.02

    0.03

    ...... 0.05 m/s  _ _ _0.01 m/s

     ___ 0.005 m/s  _ . _ . 0.03 m/s

    Fig. 5.   The ethanol mass fraction along the diffusion layer-catalyst layer interface

    for ethanol inlet velocities of 0.005 m/s, 0.01 m/s, 0.03m/s and 0.05m/s.

    S. Mohsen Mousavi Ehteshami et al. / Applied Energy 170 (2016) 388–393   391

    http://-/?-http://-/?-http://-/?-

  • 8/17/2019 Numerical Investigations on Ethanol Electrolysis for Production of Pure Hydrogen From Renewable Sources

    5/6

    The effect of the operating temperature on the electrolyzer cellperformance is presented in Fig. 6. Apparently, the increase in the

    operating temperature improves the performance of the cell. It can

    be seen that the activation overpotential reduces at higher temper-

    atures, which is due to the improvement of reaction kinetics at

    higher temperatures.

    The impact of membrane thickness on the electrolyzer perfor-

    mance was studied using three different thickness; Nafion 112

    (0.076 mm thickness), Nafion 115 (0.127 mm thickness), and

    Nafion 117 (0.174 mm thickness). From Fig. 7, the cell performance

    is found to follow the order: Nafion 117 > Nafion 115 > Nafion 112.

    The shapes of the polarization curves imply that the surface resis-

    tances corresponding to the three membranes used are close to

    each other. The difference in the performance is mainly due to

    the fact that thicker membranes reduce the ethanol crossover

    and, thereby reducing the parasitic losses and improving the cell

    performance. In other words, the parasitic loss due to ethanol

    crossover outnumbers the effect of reduced ohmic loss with thin-

    ner membrane. It is observed that there is a remarkable gap in per-

    formance between of the cell made of Nafion 115 and that of 

    Nafion 117. Applying Nafion 117 brings about a significant differ-

    ence in the cell performance as compared to Nafion 115.

    The rate of hydrogen generation and the productivity ratio

    defined by Eq. (13) are presented in Fig. 8.

    c ¼  V H2 LHV

    Q  þ V E  LHVE ð13Þ

    where V H2, V Et , Q , LHVH2, and LHVEt  are the specific hydrogen gener-ation/ethanol consumption rates (m3 s1 cm2), electrical power

    consumption (kJ s1), the low heating value of hydrogen at standard

    conditions (10,218 kJ m3), and heating value of ethanol

    (21,560 kJ m3), respectively. The specific hydrogen generation rate

    is the rate of the hydrogen generation per unit area of the elec-

    trolyzer cell. The energy consumption for the electrolysis process

    Q  is calculated by multiplying the applied potential by the current

    produced. The specific rate of hydrogen generation (calculated from

    the simulation results) and the productivity ratio are plotted versus

    the operating potential of the electrolytic cell operating at room

    temperature in   Fig. 8. The membrane is considered to be Nafion

    117. It can be seen that the productivity ratio increases with the

    increase in operating potential. However, it flattens at operating

    potential about 0.8 V. On the other hand, the specific rate of hydro-gen generation strictly increases with the increase of the operating

    potential. The operating potential of 0.94 V is considered to be the

    optimum cell potential leading to reasonable productivity rate

    and specific hydrogen generation rate of 1.5 cm3 min1 cm2. At

    potentials higher than 0.94 V, the hydrogen generation rate

    increases, while the productivity ratio does not improve and it is

    almost fixed at 1.48. This also should be noted that, practically,

    there is a potential limit over which the membrane electrode

    assembly may detach.

    5. Conclusion

    Computational fluid dynamics simulation of ethanol electrolytic

    cell has been carried out using finite element method. The modeldeveloped is the first numerical investigation of such electrolysis

    process. The simulation leads to a better understanding of the phe-

    nomena which occur in the ethanol electrolytic cell. The model is

    able to predict the polarization (current–potential) behavior of 

    the cell, and also the current density and species distribution along

    the cell at different operating conditions. The simulation results are

    in reasonably good agreement with the experimental data avail-

    able in the literature, especially in the low current density range.

    It was found out that: (1) the cell current density increases with

    increase in the operating potential; (2) the local current density

    decreases along the cell length; (3) the increase in the operating

    temperature improves the performance of the cell; (4) in the case

    of different inlet flow rates, the local current densities do not show

    any remarkable difference; (5) the cell performance was found tofollow the order: Nafion 117 > Nafion 115 > Nafion 112, which is

    Current density/ (A.cm-2

    )

    0.00   0.02 0.04 0.06 0.08 0.10   0.12 0.14 0.16

       P  o   t  e  n   t   i  a   l   /   V

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    20 °C40 °C60 °C80 °C

    Fig. 6.  The effect of operating temperature on the performance of the electrolyzer

    cell. The ethanol–water solution with concentration of 2 M is fed to the cell at

    2 ml min1.

    Current density/ (A.cm-2

    )

    0.00   0.02   0.04   0.06   0.08   0.10   0.12 0.14

       P  o   t  e  n   t   i  a   l   /   V

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Nafion 117

    Nafion 115

    Nafion 112

    Fig. 7.   Comparison of the performance of the electrolyzer cell with differentmembranes at room temperature.

    Potential/ V

    0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

       P  r  o   d  u

      c   t   i  v   i   t  y  r  a   t   i  o   (

       )

    0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

       H  y   d  r  o  g  e  n  g  e  n  e  r  a   t   i  o  n  r  a   t  e   /  c  m

       3 .  s

      -   1

    0.0

    2.0e-6

    4.0e-6

    6.0e-6

    8.0e-6

    1.0e-5

    1.2e-5

    1.4e-5

    1.6e-5

    1.8e-5

    γ 

     Vgen     η

    Fig. 8.  The rate of hydrogen generation and the productivity ratio vs the operating

    potential of the cell at room temperature.

    392   S. Mohsen Mousavi Ehteshami et al. / Applied Energy 170 (2016) 388–393

  • 8/17/2019 Numerical Investigations on Ethanol Electrolysis for Production of Pure Hydrogen From Renewable Sources

    6/6

    due to the fact that thicker membranes reduce the ethanol cross-

    over and, thereby reducing the parasitic losses thus improving

    the cell performance; (6) the productivity ratio increases with

    the increase in operating potential, however, it flattens at operat-

    ing potential of about 0.8 V. On the other hand, the specific rate

    of hydrogen generation strictly increases with the increase of the

    operating potential. (7) For the cell with Nafion 117 as the mem-

    brane, the operating potential of 0.94 V is seem to be the optimum

    cell potential leading to reasonable productivity rate and specific

    hydrogen generation rate of 1.5 cm3 min1 cm2.

     Acknowledgement

    The authors wish to gratefully acknowledge the Energy

    Research Institute at NTU (ERI@N) for supporting this research

    work financially.

    References

    [1]  Sampaio MR, Rosa LP, Dagosto MDA. Ethanol-electric propulsion as a

    sustainable technological alternative for urban buses in Brazil. Renew

    Sustain Energy Rev 2007;11:1514–29.

    [2]  Coronado CR, de Carvalho Jr JA, Yoshioka JT, Silveira JL. Determination of 

    ecological efficiency in internal combustion engines: the use of biodiesel. ApplTherm Eng 2009;29:1887–92.

    [3] Zoulias EI, Glockner R, Lymberopoulos N, Tsoutsos T, Vosseler I, Gavalda O,

    et al. Integration of hydrogen energy technologies in stand-alone power

    systems analysis of the current potential for applications. Renew Sustain

    Energy Rev 2006;10:432–62.

    [4] Omer AM. Energy, environment and sustainable development. Renew Sustain

    Energy Rev 2008;12:2265–300.

    [5] Chintala V, Subramanian KA. An effort to enhance hydrogen energy share in a

    compression ignition engine under dual-fuel mode using low temperature

    combustion strategies. Appl Energy 2015;146:174–83.

    [6]  Olateju B, Monds J, Kumar A. Large scale hydrogen production from wind

    energy for the upgrading of bitumen from oil sands. Appl Energy

    2014;118:48–56.

    [7] Xia A, Cheng J, Ding L, Lin R, Song W, Zhou J, et al. Enhancement of energy

    production efficiency from mixed biomass of  Chlorella pyrenoidosa and cassavastarch through combined hydrogen fermentation and methanogenesis. Appl

    Energy 2014;120:23–30.

    [8] Barbir F. Transition to renewable energy systems with hydrogen as an energycarrier. Energy 2009;34:308–12.

    [9]  Park CY, Lee TH, Dorris SE, Balachandran U. Hydrogen production from fossil

    and renewable sources using an oxygen transport membrane. Int J Hydrogen

    Energy 2010;35:4103–10.

    [10]   Ehteshami SMM, Chan SH. The role of hydrogen and fuel cells to store

    renewable energy in the future energy network – potentials and challenges.

    Energy Policy 2014;73:103–9.

    [11]  Marbán G, Valdés-Solís T. Towards the hydrogen economy? Int J Hydrogen

    Energy 2007;32:1625–37.

    [12]   Ni M, Leung DYC, Leung MKH, Sumathy K. An overview of hydrogen

    production from biomass. Fuel Process Technol 2006;87:461–72.

    [13]  Goltsov VA, Veziroglu TN, Goltsova LF. Hydrogen civilization of the future – a

    new conception of the IAHE. Int J Hydrogen Energy 2006;31:153–9.

    [14]   Ni M, Leung DYC, Leung MKH. A reviewon reformingbio-ethanol forhydrogen

    production. Int J Hydrogen Energy 2007;32:3238–47.

    [15]  Ercolino G, Ashraf MA, Specchia V, Specchia S. Performance evaluation and

    comparison of fuel processors integrated with PEMfuel cell based on steam or

    autothermal reforming and on CO preferential oxidation or selective

    methanation. Appl Energy 2015;143:138–53.

    [16]   Kim T, Jo S, Song Y-H, Lee DH. Synergetic mechanism of methanol–steam

    reforming reaction in a catalytic reactor with electric discharges. Appl Energy

    2014;113:1692–9.

    [17]   Song C, Liu Q, Ji N, Kansha Y, Tsutsumi A. Optimization of steam methane

    reforming coupled with pressure swing adsorption hydrogen productionprocess by heat integration. Appl Energy 2015;154:392–401.

    [18]   Takenaka H, Torikai E, Kawami Y, Wakabayashi N. Solid polymer electrolyte

    water electrolysis. Int J Hydrogen Energy 1982;7:397–403.

    [19]   Millet P, Andolfatto F, Durand R. Design and performance of a solid polymer

    electrolyte water electrolyzer. Int J Hydrogen Energy 1996;21:87–93.

    [20]  Andolfatto F, Durand R, Michas A, Millet P, Stevens P. Solid polymer electrolyte

    water electrolysis: electrocatalysis and long-term stability. Int J Hydrogen

    Energy 1994;19:421–7.

    [21]  Grigoriev SA, Porembsky VI, Fateev VN. Pure hydrogen production by PEM

    electrolysis for hydrogen energy. Int J Hydrogen Energy 2006;31:171–5.

    [22]  Carmo M, Fritz DL, Mergel J, Stolten D. A comprehensive review on PEM water

    electrolysis. Int J Hydrogen Energy 2013;38:4901–34.

    [23]   Sanz-Bermejo J, Muñoz-Antón J, Gonzalez-Aguilar J, Romero M. Optimal

    integration of a solid-oxide electrolyser cell into a direct steam generation

    solar tower plant for zero-emission hydrogen production. Appl Energy

    2014;131:238–47.

    [24]   Marshall AT, Haverkamp RG. Production of hydrogen by the electrochemical

    reformingof glycerol–water solutions in a PEM electrolysis cell. IntJ Hydrogen

    Energy 2008;33:4649–54.

    [25]   Sasikumar G, Muthumeenal A, Pethaiah SS, Nachiappan N, Balaji R. Aqueous

    methanol eletrolysis using proton conducting membrane for hydrogen

    production. Int J Hydrogen Energy 2008;33:5905–10.

    [26]  Silveira JL, Braga LB, de Souza ACC, Antunes JS, Zanzi R. The benefits of ethanol

    use for hydrogen production in urban transportation. Renew Sustain Energy

    Rev 2009;13:2525–34.

    [27]   Tuomi S, Santasalo-Aarnio A, Kanninen P, Kallio T. Hydrogen production by

    methanol–water solution electrolysis with an alkaline membrane cell. J Power

    Sources 2013;229:32–5.

    [28]  Sethu SP, Gangadharan S, Chan SH, Stimming U. Development of a novel cost

    effective methanol electrolyzer stack with Pt-catalyzed membrane. J Power

    Sources 2014;254:161–7.

    [29]   Take T, Tsurutani K, Umeda M. Hydrogen production by methanol–water

    solution electrolysis. J Power Sources 2007;164:9–16.

    [30]   Friedl J, Stimming U. Model catalyst studies on hydrogen and ethanol

    oxidation for fuel cells. Electrochim Acta 2013;101:41–58.

    [31]   Lamy C, Jaubert T, Baranton S, Coutanceau C. Clean hydrogen generation

    through the electrocatalytic oxidation of ethanol in a Proton ExchangeMembrane Electrolysis Cell (PEMEC): effect of the nature and structure of 

    the catalytic anode. J Power Sources 2014;245:927–36.

    [32]  Springer TE, Zawodzinski TA, Gottesfeld S. Polymer electrolyte fuel cell model.

     J Electrochem Soc 1991;138:2334–42.

    [33]   Bard AJ, Larry RF. Electrochemical methods: fundamentals and applications. 2,

    illustrated ed. Wiley; 2000.

    [34] Busó-Rogero C, Brimaud S, Solla-Gullon J, Vidal-Iglesias FJ, Herrero E, Behm RJ,

    et al. Ethanol oxidation on shape-controlled platinum nanoparticles at

    different pHs: a combined in situ IR spectroscopy and online mass

    spectrometry study. J Electroanal Chem.

    [35]  Vayenas CG, Gamboa-Aldeco ME, White RE. SpringerLink. Modern aspects of 

    electrochemistry. New York, NY: Springer Science+Business Media, LLC; 2008 .

    S. Mohsen Mousavi Ehteshami et al. / Applied Energy 170 (2016) 388–393   393

    http://refhub.elsevier.com/S0306-2619(16)30312-9/h0005http://refhub.elsevier.com/S0306-2619(16)30312-9/h0005http://refhub.elsevier.com/S0306-2619(16)30312-9/h0005http://refhub.elsevier.com/S0306-2619(16)30312-9/h0010http://refhub.elsevier.com/S0306-2619(16)30312-9/h0010http://refhub.elsevier.com/S0306-2619(16)30312-9/h0010http://refhub.elsevier.com/S0306-2619(16)30312-9/h0015http://refhub.elsevier.com/S0306-2619(16)30312-9/h0015http://refhub.elsevier.com/S0306-2619(16)30312-9/h0015http://refhub.elsevier.com/S0306-2619(16)30312-9/h0015http://refhub.elsevier.com/S0306-2619(16)30312-9/h0020http://refhub.elsevier.com/S0306-2619(16)30312-9/h0020http://refhub.elsevier.com/S0306-2619(16)30312-9/h0025http://refhub.elsevier.com/S0306-2619(16)30312-9/h0025http://refhub.elsevier.com/S0306-2619(16)30312-9/h0025http://refhub.elsevier.com/S0306-2619(16)30312-9/h0030http://refhub.elsevier.com/S0306-2619(16)30312-9/h0030http://refhub.elsevier.com/S0306-2619(16)30312-9/h0030http://refhub.elsevier.com/S0306-2619(16)30312-9/h0035http://refhub.elsevier.com/S0306-2619(16)30312-9/h0035http://refhub.elsevier.com/S0306-2619(16)30312-9/h0035http://refhub.elsevier.com/S0306-2619(16)30312-9/h0035http://refhub.elsevier.com/S0306-2619(16)30312-9/h0035http://refhub.elsevier.com/S0306-2619(16)30312-9/h0035http://refhub.elsevier.com/S0306-2619(16)30312-9/h0040http://refhub.elsevier.com/S0306-2619(16)30312-9/h0040http://refhub.elsevier.com/S0306-2619(16)30312-9/h0045http://refhub.elsevier.com/S0306-2619(16)30312-9/h0045http://refhub.elsevier.com/S0306-2619(16)30312-9/h0045http://refhub.elsevier.com/S0306-2619(16)30312-9/h0050http://refhub.elsevier.com/S0306-2619(16)30312-9/h0050http://refhub.elsevier.com/S0306-2619(16)30312-9/h0050http://refhub.elsevier.com/S0306-2619(16)30312-9/h0055http://refhub.elsevier.com/S0306-2619(16)30312-9/h0055http://refhub.elsevier.com/S0306-2619(16)30312-9/h0055http://refhub.elsevier.com/S0306-2619(16)30312-9/h0060http://refhub.elsevier.com/S0306-2619(16)30312-9/h0060http://refhub.elsevier.com/S0306-2619(16)30312-9/h0065http://refhub.elsevier.com/S0306-2619(16)30312-9/h0065http://refhub.elsevier.com/S0306-2619(16)30312-9/h0065http://refhub.elsevier.com/S0306-2619(16)30312-9/h0070http://refhub.elsevier.com/S0306-2619(16)30312-9/h0070http://refhub.elsevier.com/S0306-2619(16)30312-9/h0075http://refhub.elsevier.com/S0306-2619(16)30312-9/h0075http://refhub.elsevier.com/S0306-2619(16)30312-9/h0075http://refhub.elsevier.com/S0306-2619(16)30312-9/h0075http://refhub.elsevier.com/S0306-2619(16)30312-9/h0080http://refhub.elsevier.com/S0306-2619(16)30312-9/h0080http://refhub.elsevier.com/S0306-2619(16)30312-9/h0080http://refhub.elsevier.com/S0306-2619(16)30312-9/h0085http://refhub.elsevier.com/S0306-2619(16)30312-9/h0085http://refhub.elsevier.com/S0306-2619(16)30312-9/h0085http://refhub.elsevier.com/S0306-2619(16)30312-9/h0085http://refhub.elsevier.com/S0306-2619(16)30312-9/h0090http://refhub.elsevier.com/S0306-2619(16)30312-9/h0090http://refhub.elsevier.com/S0306-2619(16)30312-9/h0095http://refhub.elsevier.com/S0306-2619(16)30312-9/h0095http://refhub.elsevier.com/S0306-2619(16)30312-9/h0100http://refhub.elsevier.com/S0306-2619(16)30312-9/h0100http://refhub.elsevier.com/S0306-2619(16)30312-9/h0100http://refhub.elsevier.com/S0306-2619(16)30312-9/h0105http://refhub.elsevier.com/S0306-2619(16)30312-9/h0105http://refhub.elsevier.com/S0306-2619(16)30312-9/h0105http://refhub.elsevier.com/S0306-2619(16)30312-9/h0110http://refhub.elsevier.com/S0306-2619(16)30312-9/h0110http://refhub.elsevier.com/S0306-2619(16)30312-9/h0115http://refhub.elsevier.com/S0306-2619(16)30312-9/h0115http://refhub.elsevier.com/S0306-2619(16)30312-9/h0115http://refhub.elsevier.com/S0306-2619(16)30312-9/h0115http://refhub.elsevier.com/S0306-2619(16)30312-9/h0120http://refhub.elsevier.com/S0306-2619(16)30312-9/h0120http://refhub.elsevier.com/S0306-2619(16)30312-9/h0120http://refhub.elsevier.com/S0306-2619(16)30312-9/h0125http://refhub.elsevier.com/S0306-2619(16)30312-9/h0125http://refhub.elsevier.com/S0306-2619(16)30312-9/h0125http://refhub.elsevier.com/S0306-2619(16)30312-9/h0130http://refhub.elsevier.com/S0306-2619(16)30312-9/h0130http://refhub.elsevier.com/S0306-2619(16)30312-9/h0130http://refhub.elsevier.com/S0306-2619(16)30312-9/h0135http://refhub.elsevier.com/S0306-2619(16)30312-9/h0135http://refhub.elsevier.com/S0306-2619(16)30312-9/h0135http://refhub.elsevier.com/S0306-2619(16)30312-9/h0140http://refhub.elsevier.com/S0306-2619(16)30312-9/h0140http://refhub.elsevier.com/S0306-2619(16)30312-9/h0140http://refhub.elsevier.com/S0306-2619(16)30312-9/h0145http://refhub.elsevier.com/S0306-2619(16)30312-9/h0145http://refhub.elsevier.com/S0306-2619(16)30312-9/h0150http://refhub.elsevier.com/S0306-2619(16)30312-9/h0150http://refhub.elsevier.com/S0306-2619(16)30312-9/h0150http://refhub.elsevier.com/S0306-2619(16)30312-9/h0155http://refhub.elsevier.com/S0306-2619(16)30312-9/h0155http://refhub.elsevier.com/S0306-2619(16)30312-9/h0155http://refhub.elsevier.com/S0306-2619(16)30312-9/h0155http://refhub.elsevier.com/S0306-2619(16)30312-9/h0160http://refhub.elsevier.com/S0306-2619(16)30312-9/h0160http://refhub.elsevier.com/S0306-2619(16)30312-9/h0165http://refhub.elsevier.com/S0306-2619(16)30312-9/h0165http://refhub.elsevier.com/S0306-2619(16)30312-9/h0175http://refhub.elsevier.com/S0306-2619(16)30312-9/h0175http://refhub.elsevier.com/S0306-2619(16)30312-9/h0175http://refhub.elsevier.com/S0306-2619(16)30312-9/h0175http://refhub.elsevier.com/S0306-2619(16)30312-9/h0165http://refhub.elsevier.com/S0306-2619(16)30312-9/h0165http://refhub.elsevier.com/S0306-2619(16)30312-9/h0160http://refhub.elsevier.com/S0306-2619(16)30312-9/h0160http://refhub.elsevier.com/S0306-2619(16)30312-9/h0155http://refhub.elsevier.com/S0306-2619(16)30312-9/h0155http://refhub.elsevier.com/S0306-2619(16)30312-9/h0155http://refhub.elsevier.com/S0306-2619(16)30312-9/h0155http://refhub.elsevier.com/S0306-2619(16)30312-9/h0150http://refhub.elsevier.com/S0306-2619(16)30312-9/h0150http://refhub.elsevier.com/S0306-2619(16)30312-9/h0145http://refhub.elsevier.com/S0306-2619(16)30312-9/h0145http://refhub.elsevier.com/S0306-2619(16)30312-9/h0140http://refhub.elsevier.com/S0306-2619(16)30312-9/h0140http://refhub.elsevier.com/S0306-2619(16)30312-9/h0140http://refhub.elsevier.com/S0306-2619(16)30312-9/h0135http://refhub.elsevier.com/S0306-2619(16)30312-9/h0135http://refhub.elsevier.com/S0306-2619(16)30312-9/h0135http://refhub.elsevier.com/S0306-2619(16)30312-9/h0130http://refhub.elsevier.com/S0306-2619(16)30312-9/h0130http://refhub.elsevier.com/S0306-2619(16)30312-9/h0130http://refhub.elsevier.com/S0306-2619(16)30312-9/h0125http://refhub.elsevier.com/S0306-2619(16)30312-9/h0125http://refhub.elsevier.com/S0306-2619(16)30312-9/h0125http://refhub.elsevier.com/S0306-2619(16)30312-9/h0120http://refhub.elsevier.com/S0306-2619(16)30312-9/h0120http://refhub.elsevier.com/S0306-2619(16)30312-9/h0120http://refhub.elsevier.com/S0306-2619(16)30312-9/h0115http://refhub.elsevier.com/S0306-2619(16)30312-9/h0115http://refhub.elsevier.com/S0306-2619(16)30312-9/h0115http://refhub.elsevier.com/S0306-2619(16)30312-9/h0115http://refhub.elsevier.com/S0306-2619(16)30312-9/h0110http://refhub.elsevier.com/S0306-2619(16)30312-9/h0110http://refhub.elsevier.com/S0306-2619(16)30312-9/h0105http://refhub.elsevier.com/S0306-2619(16)30312-9/h0105http://refhub.elsevier.com/S0306-2619(16)30312-9/h0100http://refhub.elsevier.com/S0306-2619(16)30312-9/h0100http://refhub.elsevier.com/S0306-2619(16)30312-9/h0100http://refhub.elsevier.com/S0306-2619(16)30312-9/h0095http://refhub.elsevier.com/S0306-2619(16)30312-9/h0095http://refhub.elsevier.com/S0306-2619(16)30312-9/h0090http://refhub.elsevier.com/S0306-2619(16)30312-9/h0090http://refhub.elsevier.com/S0306-2619(16)30312-9/h0085http://refhub.elsevier.com/S0306-2619(16)30312-9/h0085http://refhub.elsevier.com/S0306-2619(16)30312-9/h0085http://refhub.elsevier.com/S0306-2619(16)30312-9/h0080http://refhub.elsevier.com/S0306-2619(16)30312-9/h0080http://refhub.elsevier.com/S0306-2619(16)30312-9/h0080http://refhub.elsevier.com/S0306-2619(16)30312-9/h0075http://refhub.elsevier.com/S0306-2619(16)30312-9/h0075http://refhub.elsevier.com/S0306-2619(16)30312-9/h0075http://refhub.elsevier.com/S0306-2619(16)30312-9/h0075http://refhub.elsevier.com/S0306-2619(16)30312-9/h0070http://refhub.elsevier.com/S0306-2619(16)30312-9/h0070http://refhub.elsevier.com/S0306-2619(16)30312-9/h0065http://refhub.elsevier.com/S0306-2619(16)30312-9/h0065http://-/?-http://refhub.elsevier.com/S0306-2619(16)30312-9/h0060http://refhub.elsevier.com/S0306-2619(16)30312-9/h0060http://-/?-http://refhub.elsevier.com/S0306-2619(16)30312-9/h0055http://refhub.elsevier.com/S0306-2619(16)30312-9/h0055http://-/?-http://refhub.elsevier.com/S0306-2619(16)30312-9/h0050http://refhub.elsevier.com/S0306-2619(16)30312-9/h0050http://refhub.elsevier.com/S0306-2619(16)30312-9/h0050http://-/?-http://refhub.elsevier.com/S0306-2619(16)30312-9/h0045http://refhub.elsevier.com/S0306-2619(16)30312-9/h0045http://refhub.elsevier.com/S0306-2619(16)30312-9/h0045http://refhub.elsevier.com/S0306-2619(16)30312-9/h0040http://refhub.elsevier.com/S0306-2619(16)30312-9/h0040http://refhub.elsevier.com/S0306-2619(16)30312-9/h0035http://refhub.elsevier.com/S0306-2619(16)30312-9/h0035http://refhub.elsevier.com/S0306-2619(16)30312-9/h0035http://refhub.elsevier.com/S0306-2619(16)30312-9/h0035http://refhub.elsevier.com/S0306-2619(16)30312-9/h0030http://refhub.elsevier.com/S0306-2619(16)30312-9/h0030http://refhub.elsevier.com/S0306-2619(16)30312-9/h0030http://refhub.elsevier.com/S0306-2619(16)30312-9/h0025http://refhub.elsevier.com/S0306-2619(16)30312-9/h0025http://refhub.elsevier.com/S0306-2619(16)30312-9/h0025http://refhub.elsevier.com/S0306-2619(16)30312-9/h0020http://refhub.elsevier.com/S0306-2619(16)30312-9/h0020http://refhub.elsevier.com/S0306-2619(16)30312-9/h0015http://refhub.elsevier.com/S0306-2619(16)30312-9/h0015http://refhub.elsevier.com/S0306-2619(16)30312-9/h0015http://refhub.elsevier.com/S0306-2619(16)30312-9/h0015http://refhub.elsevier.com/S0306-2619(16)30312-9/h0010http://refhub.elsevier.com/S0306-2619(16)30312-9/h0010http://refhub.elsevier.com/S0306-2619(16)30312-9/h0010http://refhub.elsevier.com/S0306-2619(16)30312-9/h0005http://refhub.elsevier.com/S0306-2619(16)30312-9/h0005http://refhub.elsevier.com/S0306-2619(16)30312-9/h0005http://-/?-