Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

19
Energy Systems and Technology Prof. Dr.-Ing. B. Epple Otto-Berndt-Str. 2 64287 Darmstadt / Germany Phone: +49 6151 16 2191 www.est.tu-darmstadt.de CFD simulation of 1 MW th Carbonator using DDPM-DEM model 6 th High Temperature Solid Looping Cycles Network Meeting Alexander Stroh, M. Sc., Dr. Jochen Ströhle, Prof. Bernd Epple 02.09.2015, Milan

Transcript of Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

Page 1: Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

Energy Systems and Technology

Prof. Dr.-Ing. B. Epple

Otto-Berndt-Str. 2

64287 Darmstadt / Germany

Phone: +49 6151 16 2191

www.est.tu-darmstadt.de

CFD simulation of 1 MWth Carbonator using DDPM-DEM

model

6th High Temperature Solid Looping

Cycles Network Meeting

Alexander Stroh, M. Sc.,

Dr. Jochen Ströhle,

Prof. Bernd Epple

02.09.2015, Milan

Page 2: Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

02.09.2015 | Alexander Stroh | CFD simulation of 1 MWth Carbonator using DDPM-DEM model 1

SCARLET Consortium

Page 3: Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

02.09.2015 | Alexander Stroh | CFD simulation of 1 MWth Carbonator using DDPM-DEM model 2

Outline

Introduction

Carbonate-Looping-Process

Discrete element method (DEM) model

Experimental & numerical boundary conditions

Results & model validation

Influence of parcels number

Drag-models and bed inventory on time averaged pressure profile along

reactor axis

Carbonation reaction implementation

Outlook

Page 4: Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

02.09.2015 | Alexander Stroh | CFD simulation of 1 MWth Carbonator using DDPM-DEM model 3

Carbonate-Looping-Process

Page 5: Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

02.09.2015 | Alexander Stroh | CFD simulation of 1 MWth Carbonator using DDPM-DEM model 4

Collision modelling of DDPM-DEM approach

DDPM can be used for any granular flow (e.g. fluidized bed, hoppers,

pneumatic solid transport applications)

Explicit particle tracking using Discrete Element Method (DEM)

based on the Euler-Lagrange approach

Soft-sphere contact model resolve particle-particle collisions

Computational expensive for more than 500,000 particle parcels and small

particle step size

Model simplification

Particles are represented by spherical parcels

Parcel collisions account for several particles with specific mass and volume

Collision force laws (spring, spring-dashpot, friction)

DDPM-DEM model description

Page 6: Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

02.09.2015 | Alexander Stroh | CFD simulation of 1 MWth Carbonator using DDPM-DEM model 5

Temperature and Inventory assumed to be constant during

steady-state operation

Experimental & numerical

boundary conditions

Isothermal

Temperature

908 [K]

Inventory 220, 240, 260, 280 [kg]

Mass flow (kg/s) Species Boundary Boundary type

0.210528 Air Air + CO2 inlet Mass flow inlet

0.039994 Carbon dioxide Air + CO2 inlet Mass flow inlet

0.009722 Air Solid inlet Mass flow inlet

- - Outlet Pressure outlet

Page 7: Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

02.09.2015 | Alexander Stroh | CFD simulation of 1 MWth Carbonator using DDPM-DEM model 6

Assumption bed mass constant over time

Particle injection implemented through User-Defined-Function

Ansys DDPM-DEM modeling

1. Determine bed

inventory in each

time step ?

2. Inject particles through

surface injection using

DEFINE_DPM_INJECTION_INIT

macro

Injection area

Outlet

Cooling

lances

Parcel number Nparc > 200,000

Parcel diameter dparc< 0.0116 m

Particle diameter dp = 91 µm

Drag models Syamlal O’Brien,

Gidaspow, Gibilaro,

Wen&Yu, EMMS

DEM collision model Spring dashpot for

normal forces &

friction-dshf model

for tangential forces

Fluid flow time step size <1e-3 s

Particle time step size <2e-4 s

Numerical mesh

investigation

structured coarse grid

with 31,207 cells & fine

unstructured grid with

91,031 cells

Page 8: Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

02.09.2015 | Alexander Stroh | CFD simulation of 1 MWth Carbonator using DDPM-DEM model 7

Ansys DDPM-DEM modeling

influence of bed inventory

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

So

lid

ma

ss

flo

w r

ate

(k

g/s

)

He

igh

t (m

)

Pressure (Pa)

Syamlal O'Brien drag model

220 kg solid inventory

240 kg solid inventory

260 kg solid inventory

Increasing inventory

Increasing solid flux

Page 9: Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

02.09.2015 | Alexander Stroh | CFD simulation of 1 MWth Carbonator using DDPM-DEM model 8

Ansys DDPM-DEM modeling

influence of drag models

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Heig

ht

(m)

Pressure (Pa)

Drag models comparison using 220 kg of bed inventory

Syamlal O'Brien

WEN & YU

Gidaspow

Gibilaro

EMMS

Drag overprediction

[1]

Page 10: Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

02.09.2015 | Alexander Stroh | CFD simulation of 1 MWth Carbonator using DDPM-DEM model 9

Ansys DDPM-DEM modeling

influence of parcels number

Pressure profile along carbonator axis

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

He

igh

t (m

)

Pressure (Pa)

Experiment

EMMS 300,000 parcels

Gidaspow 200,000 parcels

Gidaspow 300,000 parcels

Gidaspow 500,000 parcels

Page 11: Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

02.09.2015 | Alexander Stroh | CFD simulation of 1 MWth Carbonator using DDPM-DEM model 10

Ansys DDPM-DEM reaction

modeling

Applied reaction rate expression according Romano [2]

𝑑𝑋

𝑑𝑡= 𝑘𝑠𝑆𝑛 1 − 𝑋

2

3 ∗ (𝐶𝐶𝑂2 − 𝐶𝐶𝑂2,𝑒𝑞) with 𝑆𝑛 =𝑉𝑀𝐶𝑎𝐶𝑂3𝑋𝑀𝑎𝑥𝜌𝐶𝑎𝑂

𝑀𝐶𝑎𝑂ℎ

intrinsic rate

constant

specific available

surface area

Applied constants from

Abanades et al. [2,4]

𝑘𝑠 (m4/smol) 6.05*10-10

𝑉𝑀𝐶𝑎𝐶𝑂3(m³/mol) 36.9*10-6

𝜌𝐶𝑎𝑂 (kg/m³) 3320

ℎ (m) 50*10-9

According Charitos et al. [3]

𝑑𝑋

𝑑𝑡= 𝑘𝑠𝑆0 𝑋𝑚𝑎𝑥 − 𝑋

2

3 ∗ (𝐶𝐶𝑂2 − 𝐶𝐶𝑂2,𝑒𝑞)

Page 12: Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

02.09.2015 | Alexander Stroh | CFD simulation of 1 MWth Carbonator using DDPM-DEM model 11

Ansys DDPM-DEM reaction

modeling

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0 20 40 60 80 100 120 140 160

X (

co

nve

rsio

n d

eg

ree

)

Time (s)

Comparison of reaction rates Romano & Charitos

Charitos

Romano

CCO2 - CCO2eq ~ 0.220 mol/m³

XMAX = 0.10

Page 13: Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

02.09.2015 | Alexander Stroh | CFD simulation of 1 MWth Carbonator using DDPM-DEM model 12

Single particle experiment

- Injected parcel with 0.009 kg

- Particle velocity set to zero through UDF

- Gas inlet velocity 10 m/s

- Different CO2/N2 concentrations

Recording carbonation degree over time

in order to validate reaction model

Ansys DDPM-DEM reaction

modeling

Page 14: Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

02.09.2015 | Alexander Stroh | CFD simulation of 1 MWth Carbonator using DDPM-DEM model 13

Ansys DDPM-DEM reaction

modeling

Page 15: Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

02.09.2015 | Alexander Stroh | CFD simulation of 1 MWth Carbonator using DDPM-DEM model 14

Ansys DDPM-DEM reaction

modeling

0

0.01

0.02

0.03

0.04

0.05

0.06

0 2 4 6 8 10 12 14 16 18 20 22

CO

2 (

are

a w

eig

hte

d a

ve

rag

e k

g/k

g)

Time (s)

CO2 concentration at Carbonator outlet

Relative deviation of mean values ~ 10% Simulation

Mean value from

Experiment

Page 16: Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

02.09.2015 | Alexander Stroh | CFD simulation of 1 MWth Carbonator using DDPM-DEM model 15

Ansys DDPM-DEM reaction

modeling

- Local particle velocities

> 4 m/s

- dense region underpredicted with

conventional drag models

- CO2 gas concentration locally different

- at the outlet ~3 % [kg CO2/kg Gas]

(2.2 vol. %)

- CO2 mainly captured in the bottom zone of

Carbonator

Page 17: Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

02.09.2015 | Alexander Stroh | CFD simulation of 1 MWth Carbonator using DDPM-DEM model 16

Outlook

Further 3-D model validation with new designed cold flow experiments

Improve implemented reaction model

Extend reaction model for particle size classes

Validation with pilot plant data for different experimental conditions

Drag model development, implementation of filtered drag models in

DDPM-DEM

Sensitivity analysis (e.g. Bed inventory influence on capture efficiency,

Make-Up Flow, PSD)

Full-Loop simulation and experimental validation with 1MWth plant

Page 18: Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

02.09.2015 | Alexander Stroh | CFD simulation of 1 MWth Carbonator using DDPM-DEM model 17

The end

Contact

http://www.est.tu-darmstadt.de/

M.Sc. Alexander Stroh

L01/01 room 342

Tel. (06151)16-76834

Email: [email protected]

Thank you for your attention.

Page 19: Numerical CFD Simulation of the CFB Carbonator Using the Dense ...

02.09.2015 | Alexander Stroh | CFD simulation of 1 MWth Carbonator using DDPM-DEM model 18

References

[1] Nikolopoulos, A., et al. (2010). "An advanced EMMS scheme for the prediction of drag coefficient under a 1.2 MW th CFBC

isothermal flow—Part I: Numerical formulation." Chemical Engineering Science 65(13): 4080-4088.

[2] Romano MC. Modeling the carbonator of a Ca-looping process for CO 2 capture from power plant flue gas. Chemical

Engineering Science. 2012;69:257-69.

[3] Charitos A, Hawthorne C, Bidwe A, Sivalingam S, Schuster A, Spliethoff H, et al. Parametric investigation of the calcium looping

process for CO 2 capture in a 10kW th dual fluidized bed. International Journal of Greenhouse Gas Control. 2010;4:776-84.

[4] Abanades JC, Anthony EJ, Lu DY, Salvador C, Alvarez D. Capture of CO2 from combustion gases in a fluidized bed of CaO.

AIChE Journal. 2004;50:1614-22.