NSF/DOE Thermoelectrics Partnership: Thermoelectrics for ... · NSF/DOE Thermoelectrics...

40
Purdue University NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery Xianfan Xu (ME), Timothy Fisher (ME), Stephen Heister (AAE), Timothy Sands (MSE), Yue Wu (ChemE) Purdue University In Partnership with General Motors Global R&D and Oak Ridge National Laboratory

Transcript of NSF/DOE Thermoelectrics Partnership: Thermoelectrics for ... · NSF/DOE Thermoelectrics...

Purdue University

NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery

Xianfan Xu (ME), Timothy Fisher (ME), Stephen Heister (AAE), Timothy Sands (MSE), Yue Wu (ChemE)

Purdue UniversityIn Partnership with General Motors Global R&D

and Oak Ridge National Laboratory

Purdue University

NSF/DOE Targeted Areas

Focused areas of this proposal: • TE Materials• Heat sink - high temperature side heat exchanger• Thermal interface materials• Metrology

Purdue University

TE Materials• Skutterudite (GM) ~ 500oC – advanced characterization on

thermal conductivity reduction (Xu)• Nanowires - room-mid temperature PbTe, Bi2Te3; and high

temperature oxide nanowires (Wu)• Metal-semiconductor superlattice (Sands)

Purdue University

Advanced Characterization of TE Materials

- Commonly used approach to increase ZT of TE materials is to the reduce the lattice thermal conductivity

- We conduct femtosecond (10-15 s) time-resolved studies of phonon scattering in thermoelectric materials to understand the fundamentals of thermal conductivity reduction

Xianfan Xu

Purdue University

Phonon Detection – Coherent Phonon (coherent vibration of lattice)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 4 8 12 16

R (a

.u.)

Time delay t (ps)

Random thermal vibration

Optical signal when there is nocoherent lattice oscillation

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16

R (a

.u.)

Time delay t (ps)

With coherent oscillation

Coherent Phonon - LO

Coherent Phonon - TO

Purdue University

Coherent Phonon Dynamics in Bi

0

1

2

3

4

5

0 4 8 12 16

∆R/R

(%)

time delay t (ps)

0

1

2

3

4

5

-0.8 0 0.8 1.6 2.4 3.2 4 4.8 5.6

ExperimentFitting

0 1 2 3 4 5 6

Am

plitu

de o

f FT

Frequency (THz)

2.88 THz

- Rise of the signal: Photon – electron/exciton (charge) coupling- Decay of the envelope of the signal: electron/exciton (charge) – phonon

coupling - heating- Phonon oscillation and dephasing: Phonon interactions with charges,

other phonon modes, impurities, physical boundaries, etc. – all important for energy transport and conversion processes

Fouriertransform

50 100 150 200

Ram

an S

igna

l (a.

u.)

Raman Shift (cm-1)

98 cm-1 (2.94 THz)

Raman

Purdue University

Filled Antimony Skutterudites

Oscillation due to filling of guest materials

Co

Purdue University

Lattice Thermal Conductivity Calculation

Boundary scattering

Defect scattering

Umklappscattering

Resonant oscillation due to filling of heavy elements

Purdue University

Misch-metal Filled Antimony Skutterudites

Nominal representation

Composition

Co0.9 (unfilled) Co0.9Fe0.1Sb3

Mm0.55 Mm0.55Fe2.44Co1.56Sb11.96

Mm0.65 Mm0.65Fe2.92Co1.08Sb11.98

Mm0.72 Mm0.72Fe3.43Co0.57Sb11.97

Mm0.82 Mm0.82Fe4Sb11.96

Mm: Ce:La:Nd:Pr:Si:Fe:Al:O = 50.75:22.75:16.22:5.72:3.35:0.72:0.50

0

1

2

3

4

1 2 3 4 5∆R

/R (X

10-3

)

Mm0.82

(b)

Mm0.72

Mm0.65

Mm0.55Co

0.9

Delay (ps)

Purdue University

- Computation of κ based on resonant oscillation model and ultrafast measurement results agree well with k value measured from ~ 0 to 300 K.

- Role of filled material: resonant vibration vs. defect generation

(Phys. Rev. Lett, 2009)

Purdue University

Phonon Scattering in Bi2Te3, Sb2Te3 and Bi2Te3/Sb2Te3 Superlattice

(in collaboration with RTI)

Purdue University

Nanowire TE Materials

Yue Wu, School of Chemical Engineering

Purdue University

Synthesis of Molecular-scale Chalcogenide Nanowires

Scalable and high yield (93%)

Purdue University

TeNWs

PbTe-Te-PbTeNWs

PbTe-Bi2Te3-PbTe NWs

Se-Te-Se NWs

PbSe-PbTe-PbSeNWs

Bi2Se3-Bi2Te3-Bi2Se3NWsPbTe-Ag2Te-PbTe NWs

PbTe-Cu2Te-PbTe NWs

PbTe-SnTe-PbTeNWs

Purdue University

Bulk-like Thermionic Energy Conversion Device Fabricated from Laminated Nanostructured Metal/Semiconductor Superlattices

100 nm100-Si

HfN/ScN

Co-PI: Tim SandsResearch Associate: Jeremy SchroederGraduate Student: Bivas Saha

100 µm2 nm

Purdue University

Benefit of M-S superlattice

Differential Conductivity [(W-cm-J)-1]0 2000 4000

EF

ND= 1.61 x 1023 cm-3

11.2

10.8

10.6

11.0

10.4

0 50000 1e5

ND= 1.61 x 1023 cm-3

metal metal/semiconductorsuperlattice

D. Vashaee and A. Shakouri, Phys. Rev. Lett. 92, 106103 (2004)

hot e-

cold e-

EF

EF

metal metalsemi-cond.

eV

ΦB

hotside

conduction band minima profile

coldside

Thermionic transport

Ener

gy [e

V]

Zebarjadi et al., J Elect. Mat., (2009)

1

1.5

2

2.5

3

3.5

0.75 0.8 0.85 0.9 0.95 1 1.05

601 K700 K794 K900 K1000 K1100 K1200 K1300 K

ZT

dEc (eV)

ZT

knot conserved0

0.5

1

1.5

2

0.7 0.75 0.8 0.85 0.9

601 K700 K794 K900 K1000 K1100 K1200 K1300 K

ZT

dEc (eV)

ZT

k conserved

ZT predictions• Experimental data:

•κ = 1.8 W/m-K•ΦB = 280 meV• S = -820µV/K

280meV

900K

Purdue University

Laminates

Thermal propertiesκTE = 3 W/m-K κ Au = 300 W/m-KRc,thermal ≈ 7 x 10-8 K-m2/W

Electrical propertiesρc = 1 x 10-8 Ω-cm2

ρ TE = 1 mΩ -cm ρ Au = 25 µΩ -cm

Total thickness

TE layers 50µm

Au bonding layers 20µm

93% of total thermal impedance96% of total electrical impedance

Laminate bilayers

substrate

substrate

5µm polySL

5µm polySL

Bond Etch substrateDeposit metal

1µm bonding metal

70µm

TE layers

Process requires low metal-nitride/metal-bond contact resistance

Purdue University

Bulk-like laminate

1 mm

sewingpin

• 40 thermoelectric layers (5 µm each)• 80 gold layers (1 µm each)•~300 µm x 300 µm x 280 µm• diced and polished (3 µm diamond lapping disc)

FESEM

100 µm

100 µm

100 µm

100 µm

SEM of four sides of polished cube

Purdue University

Professor Steve Heister School of Aeronautics & Astronautics

Heat Exchangers for Automotive Exhaust Applications

Purdue University

Background• Rolls-Royce established a University Technology Center

(UTC) at Purdue in 2003 to study High Mach Propulsion for aerospace applications

• A key technology to enable high Mach flight is a heat exchanger that cools some compressor exhaust gases for use in turbine blade cooling- Air temps 1000-1200F (550-650 C) pressures to 40 bar- Fuel temps to 1000F (550 C) at pressures to 90 bar

• UTC has graduated roughly 10 students working in technologies to enable a fuel/air heat exchanger for operation in difficult environments• fuel coking/thermal stability• tube/shell HEX design• plate/fin HEX design• heat transfer augmentation

Purdue University

Foil Laminate Construction

21

Chemical etching produces microscale flow passages on individual foils. The foils are then stacked, aligned, and diffusion bonded under heat and pressure.

From “Compact Superalloy Heat Exchangers for Cooled Cooling Air Applications”, G. Campbell, J Fryer, Saddleback Aerspace, Turbine Symposium Presentation ca. 2002

Purdue University

Heat Exchanger for Waste Heat Recovery

Inflow Exhaust

Fin, or Integrated Fin/TE Assembly (IFTEA)

A A’B

B’

Inflow Exhaust

Fin, or Integrated Fin/TE Assembly (IFTEA)

A A’B

B’

Coolant

TE material

Hot gas

Hot gas

Coolant

TE material

Hot gas

Hot gas

Coolant

TE material

Hot gas

Hot gasInflow

Fins

: high-T TE material: low-T TE material

CoolantThermal interface materials

Hot side heatexchangerInflow

Fins

: high-T TE material: low-T TE material

CoolantThermal interface materials

Hot side heatexchanger

And many other possible topologies (cylindrical etc.)

Purdue University

CNT Array Thermal Interfaces Materials

Timothy S. Fisher, Mechanical Engineering

Purdue University

CNT Array Thermal and Electrical Interfaces

Solid 1

Solid 2

Solid 1

Solid 2

One-sided interface Two-sided interface

Solid 1

Solid 2

Cu foil

CNT/foil interface

One-sided (post test)

5 µm

copper

silicon5 µm 100 µm

Purdue University

1

10

100

1000

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Pressure (MPa)

Inte

rfac

e R

esis

tan

ce (

mm

2 K/W

) Bare Interface (1-D ref. bar)

1-Sided Interface

CNT/foil Interface

2-Sided Interface

Thermal Interface Results: Summary

References:

B.A. Cola, J. Xu, T.S. Fisher,Int J Heat Mass Transfer, 52, 3490-3503 (2009).

B.A. Cola, J. Xu, C. Cheng, H. Hu, X. Xu, and T.S. Fisher, J. Appl. Phys. 101, 054313 (2007).

B.A. Cola, X. Xu, and T.S. Fisher, Appl. Phys. Lett. 90, 093513 (2007).

J. Xu and T.S. Fisher, Int. J. Heat Mass Trans. 49, 1658 (2006).

J. Xu, T.S. Fisher, IEEE Trans. CPT, 29, 261 (2006).

silicon/copper substrates at room temperature

State-of-the-art commercial materials(non-bonded interfaces)

Target performance range

Purdue University

CNT Interfaces to Thermoelectrics

0

5

10

15

20

25

30

35

0 5 10 15 20 25

Res

ista

nce

(Ω)

Bi2Te3 film thickness (µm)

Ni - Bi2Te3structure

Ni - CNT - Bi2Te3 structure30 µm

TE film

MWCNT array

Ni - CNT - Bi2Te3 structure

Motivation• Parasitic electrical contact resistance can strongly degrade the efficiency of thermoelectric devices• Direct electrodeposited thermoelectric (Bi2Te3) on CNTs shows reduced interface resistance

Mishra et al., Adv Mat 21 4280, 2009

With Sands group

Purdue University

Improving Thermal Stability

Raidongia et al. (J. Mater. Chem. 2008, 18, 83-90) demonstrated large improvements in thermal stability of nanotubes by conversion to BC4N

Our recent work:

1 μm 1 μm

(a) (b)

MWCNT array B, N modified array

Purdue University

Thermal Property Characterization: Laser Thermal Reflectance Measurement

• To determine contact resistance and thermal conductivity

• Temperature up to 700oC• Use either a femtosecond

laser pulse or nanosecond laser pulse for different range of contact resistance- femtosecond laser for measuring Rct < 10-6 m2W/K - nanosecond laser for measuring Rct > 10-7 m2W/K

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

4.5 10-6 5 10-6 5.5 10-6 6 10-6 6.5 10-6 7 10-6 7.5 10-6 8 10-6

Exp Data

Model Data

4.5 10-6 5 10-6 5.5 10-6 6 10-6 6.5 10-6 7 10-6 7.5 10-6 8 10-6

Nor

mal

ized

Tem

p

Time (s)

Rct=2 x 10-6 m2W/K

Purdue University

TEG System-level Design and Testing• System level thermal/TEG design (TE modules, thermal

interface materials, heat sinks, constraints, etc.)• Durability• Cost• Test strategy, i.e., components vs. sub-systems vs. TEG

TE modules

Exhaust gas

Cooled by coolant

TE Generator

(Image courtesy: GM)

Purdue University

• Project started from Jan. 1st, 2011• Purdue/GM project kick-off meeting on Dec.

13, 2010, at Purdue

Purdue University

We thank the support from:NSF, PM: Dr. Ted BergmanDOE, PM: Dr. John Fairbanks, Dr. Tom Avedisian

Purdue University

Purdue University

Purdue University

Coherent Acoustic Phonon

-2

0

2

4

6

0 50 100 150 200 250 300

∆R/R

(10-4

)

Time delay t (ps)

(a)

0

50

100

150

1 2 3 4 5

PeaksPeakFitting

Pea

k (p

s)

Number of peak

0.1076+28.533t

-2

0

2

4

6

10 15 20 25 30 35 40 45 50

APFitting

∆R/R

(10-4

)

Time delay t (ps)

(b)

2

2 2 22

2 2 2

( ') / 4 | '|/( , ) 0

1

31 '

4z z t z

z t

Svt z z

S B T

T T e e dzt

α ξ

η ηρ

β

πα∞ − − −

−∞

∂ ∂ ∂= +

∂ ∂ ∂= − ∆

∆ = ∆ ∫

• Wave propagation equation:

• Driving source:

• Temperature increase:

Purdue University

Experimental Setup for Pump-and-probe Measurements

Pump-and-probe set-upPulse shaping apparatus

Purdue University

Bi2Te3, Sb2Te3 and Bi2Te3/Sb2Te3 Superlattice

Bi2Te3 Sb2Te3 Superlattice

Purdue University

Phonon Scattering in Bi2Te3/Sb2Te3 Superlattice• Scattering of phonon is due to phonon-charge, phonon-phonon, and

phonon-boundary/interface interactions.• Scattering rate of coherent phonon increases linearly with pump

fluence.• Phonon scattering in bulk Bi2Te3, bulk Sb2Te3 and Bi2Te3/Sb2Te3

superlattice is measured and compared.

Purdue University

Ultrafast Measurement vs. Raman

0

2

4

6

8

60 80 100 120 140 160 180 200

1.6 2.4 3.2 4 4.8 5.6In

tens

ity (A

rb. U

nits

)

Raman Shift ( cm-1)

Mm0.82

Mm0.72

Mm0.65Mm

0.55

Co0.9

Vibration Frequency ( THz)

• Raman measurement detects the Sb4 ring frequency: 4.6 THz• Ultrafast measured frequencies are different from the Raman

frequency, but approach that of Sb4 ring at high filling ratio, indicating strong interactions between the guest atoms and the lattice (Sb4 ring).

Red arrows:frequencies from ultrafast measurements

Purdue University

ZT ~ 1 in typical bulk thermal electric materials.

A good thermoelectric material means low electric resistivity ρ and low thermal conductivity κ (phonon glass electron crystal – PGEC)

Figure of merit:

• Carnot efficiency:

• ZT = 1 corresponds to η =10% • ZT = 4 corresponds to η = 30% • Home refrigerator: η ~ 30% • Bi2Te3/Sb2Te3 Superlattice: ZT = 2.4

cold

hot cold

TT T

η =−

Rowe, Thermoelectrics Handbook: Macro to Nano, CRC Press (2006).

Purdue University

- A systematic study of the effect of phonon scattering in TE materials, and the resulting thermal conductivity reduction.

- Effect of filling ratio of misch metal in different family of skutterudites.

- A theoretical understanding on the effect of the rattling behavior of the filled elements.