NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS...

246
N PS ARCHIVE 1963 MCGUIGAN, D. TRANSIENT STUDIES IN VERTICAL TUBE EVAPORATORS fey DAVID BRANT MCGUIGAN, Lieutenant, United States Navy B.S., United States Naval Acadenty (1957) SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF NAVAL ENGINEER AND THE DEGREE OF MASTER OF SCIENCE IN NAVAL ARCHITECTURE AND MARINE ENGINEERING at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 1963 Thesis M1888

Transcript of NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS...

Page 1: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

N PS ARCHIVE1963MCGUIGAN, D.

TRANSIENT STUDIES IN VERTICAL TUBE EVAPORATORS

fey

DAVID BRANT MCGUIGAN, Lieutenant, United States Navy

B.S., United States Naval Acadenty

(1957)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF NAVAL ENGINEER

AND THE DEGREE OF

MASTER OF SCIENCE IN NAVAL ARCHITECTURE

AND MARINE ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1963

ThesisM1888

Page 2: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

V

.U.S. N-wl T"

Page 3: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

TRANSIENT STUDIES IN VERTICAL TUBE EVAPORATORS

by

DAVID BRANT MC GUIGAN

LIEUTENANT , UNITED STATES NAVY

B»S ., United States Naval Academy

(1957)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF NAVAL ENGINEER

AND THE DEGREE OF

MASTER OF SCIENCE IN NAVAL ARCHITECTURE

AND MARINE ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1963

Signature of AuthorDepartment of Naval Architectureand Marine Engineerings, May 17s 1963

Certified bysThesis Supervisor

Accepted by

s

Chairman^, Departmental Committeeon Graduate Students

Page 4: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

Th,

\(o*b \m&AC<bOI(bAN),*U

Page 5: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

Library

U. S. Naval Postgraduate School

Mo^gg^l^m

TRANSIENT STUDIES IN VERTICAL TUBE EVAPORATORS

by

Lieutenant David Brant McG,uigan 5 USN

Submitted to the Department ef Naval Architecture and MarineEngineering on May VJ 9 1963 in partial fulfillment of the re-quirements for the Master of Science degree in Naval Architec-ture and Marine Engineering and the Professional degree , NavalEngineer

.

A considerable amount of work has been accomplished in thepast in analyzing the steady state two-phase flow phenomena invertical tube evaporators. Little has been done in the treat-ment of non-steady state conditions in f orced-circula tion sys-tems. The transient responses in such systems have gained Im-portance with increasing application of the monotube forced-circulation concept to the field of steam generation,, A know-ledge of the dynamic behavior of the forced-flow evaporatorsystems is of considerable importance in the control of once-through forced-circulation boilers. Such behavior dictates thefeed control system and affects the design properties of theboiler as a whole.

To obtain a feeling for the transients involved in suchsystems a simplified test model was built. Steam of varyingquality was generated at 20 psia in an electrically heatedvertical evaporator constructed from 0.375" O.D. stainlesssteel tubing. Secured to the top of the evaporator , at theend of the uppermost heating unit 5 was a two foot length ofpyrex tubing In which the boiling phenomena could be observed.Heat flow rate was varied from 0.5 KW to 2.0 KW. Weight flowrate was varied from 10 ^hr to 25 ^/hr

.

A total of fifty-three runs were conducted. The responseof the system to four flow conditions was investigateds weight-flow rate constant, step changes in heat flow rate (positiveand negative) and heat flow rate constants step changes In weightflow rate (positive and negative).

Total interface movement between two steady state condi=tions was determined through a correlation with peak outsidewall temperature. Time and space variation in the commencementof nucleation and the end point of evaporation was related tothe variation of outside wall temperature at the end of thegenerating section. Visual observations of the regimes ofboiling under transient conditions were correlated with thistime variation in outlet generator temperature.

Page 6: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 7: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

Saturated and superheated Interface movement under tran-sient conditions In response to step change in both weight flowrate and heat flow rate were described by a general equationalforms

AL = AI^l - e~at

)

The time constant, ^a", of this equation is an indication ofthe time characteristics of the evaporator. It determines theinitial slope of the transient response and is a strong func-tion of weight flow rate and heat flow rate« Five regimes ofboiling could be visually recognized In vertical tube evapora-tions? bubble s slug* slug-annular * turbulent-annular* andsmooth annular.

In addition* the thesis introduces a method by which theempirical equations derived in the investigation can be employedin the development of transfer functions for use on the analogcomputer

.

Thesis Supervisors Ernst Go PrankelTitles Assistant Professor of Marine

Engineering

Page 8: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 9: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

ACKNOWLEDGEMENT

The author is sincerely grateful for the association he

has had with Professor E. G. Frankel, Thesis Supervisor » He

is deeply indebted for his continued interest and guidance in

the investiga tion.

This work could not have been successfully undertaken with-

out the understanding and co-operation of Captain Wo W. Braley,

USN, Director of the U.S° Naval Boiler and Turbine Laboratory

,

Philadelphia, and his able staff who were of tremendous aid

during the first phase of this investigation. The author is

especially appreciative of the assistance given to him in

Philadelphia by Mr. William I. Valentine in the development of

the temperature measurement instrumentation and Mr. P. H.

Wermuth in its construction. Mr. H . A. Szczepanski rendered

incalculable assistance in the design of the test unit at NBTLo

Acknowledgement is extended to the staff of the EPL Labora-

tory, M.I.T., and especially to Mr. J. A. "Tiny" Calogerro s for

without his assistance the construction of the apparatus for

the second phase of the project would have been impossible.

The author is most appreciative to Professor Peter Griffith

for his conversations on the topic and to Mr. Charles G.

McGuigan, Code 55&~B, David Taylor Model Basin for his assis-

tance in acquiring certain bibliographical material.

Lastly, the author is indebted to his wife, Kosh, who

during his years of post-graduate study was a supplier of

Page 10: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 11: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

5

encouragement and of under standing.. She cheerfully tolerated

a never-ending amount of inconvenience

»

It is doubtful that

this effort would have been accomplished without her continued

thoughtfulness

.

Page 12: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 13: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

TABLE OF CONTENTS

Page

I. INTRODUCTION 10

II. PROCEDURE 28

III . RESULTS 33

IV. DISCUSSION OP RESULTS 6ij.

V. CONCLUSIONS 69

VI. RECOMMENDATIONS 70

VII. APPENDICES 71

A. Development of Analog Transfer Functions 72

B. Summary of Data and Calculations 78

C. Sample Data and Work Sheets with Calculations 91

D. Original Data 96

E. Literature Citations 112

F. Supplementary Literature References 1 iJ|

G. Table of Symbols 118

Page 14: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 15: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

LOCATION OF TABLES

Pag©

TABLE I.

TABLE II.

TABLE III.

TABLE IV,

TABLE V.

TABLE VI

.

TABLE VII.

TABLE VIII.

Summary of Experimentally Determined AL 63

Summary of Pitted Curve Values , AT 79

Summary of Computed Curve Values, AL 87

Temperature Measurement Data Sheet 92

Temperature Work Sheet 93

Sample Calculation Sheet 9^

Transient Temperature and Visual Response 97Thermocouple 8

Temperature Variation 106Thermocouples 1 - 7 at Steady StateConditions for Each Run

Page 16: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 17: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

8

LOCATION OP FIGURES

FIGURE 1.

FIGURE 2.

FIGURE 3.

FIGURE Ij..

FIGURE £.

FIGURE 6.

FIGURE 7.

FIGURE 8.

FIGURE 9.

FIGURE 10.

FIGURE 11.

FIGURE 12.

FIGURE 13.

FIGURE li|..

FIGURE 15«

FIGURE 16.

FIGURE 17.

FIGURE 18.

FIGURE 19.

FIGURE 20.

Schematic Vertical Tube EvaporatorTest Installation, NBTL

TC Arrangement for Monotube Boiler

Platinum Resistance Thermometer for theMeasurement of Average Temperature Ina Region of Two-Phase Flow

Vertical Tube EvaporatorTest Installation, NBTL

Vertical Tube EvaporatorTest Installation, NBTL

Schematic Vertical Tube Evaporator,Test Installation EPL Laboratory, M.I.T.

Oblique Sketch Vertical Tube Evaporator

Generating Section Thermocouple Placement

Rotometer Calibration Curve

Temperature Increase From Step, Run lb-1

Location Peak Wall Temperature, Run lb-1

Total Derived Interface Movement, Run lb=l

Temperature Decrease From Step, Run lb=l

Location Peak Wall Temperature, Run lb-1

Total Derived Interface Movement, Run lb=l

Temperature Increase From Step, Run 2b

Location Peak Wall Temperature, Run 2b

Total Derived Interface Movement, Run 2b

Temperature Decrease From Step, Run 2b=3

Location Peak Wall Temperature, Run 2b=3

Page

17

18

19

20

20

23

?k

27

29

3k

35

3.6

37

38

39

kl

k*

k-3

Page 18: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 19: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

Pag©

Total Derived Interface Movement , Run 2b°3 h£

Temperature Increase Prom Step, Run 3-1 [^5

Location Peak Wall Temperature, Run 3-1 lj

Total Derived Interface Movement, Run 3=1 LQ

Temperature Decrease From Step, Run 3 D~2 h.9

Location Peak Wall Temperature, Run 3b=2 50

Total Derived Interface Movement, Run 3b°2 51

Temperature Increase Prom Step, Run lOI-b £2

Location Peak Wall Temperature, Run 101=b 53

Total Derived Interface Movement , Run 101-b Sh

Temperature Decrease From Step, Run 101-c 55

Location Peak Wall Temperature, Run 101°c £6

Temperature Increase Prom Step, Run 102°b 57

Location Peak Wall Temperature, Run 102-b 58

Total Derived Interface Movement, Run 102»b 59

Transient Saturated Interface Variation in 60Response to Step Changes in Heat Flow Rate,q, with Weight Flow Rate, W, Constant

Transient Saturated Interface Variation in 61Response to Step Changes in Weight PlowRate, W, with Heat Plow Rate, q, Constant

FIGURE 38. Variation of "a" with Weight Flow Rate, W 62

FIGURE 21.

FIGURE 22.

FIGURE 23c

FIGURE 2I4..

FIGURE 2^.

FIGURE 26.

FIGURE 27*

FIGURE 28.

FIGURE 29.

FIGURE 30.

FIGURE 31.

FIGURE 32.

FIGURE 33.

FIGURE 3I4. •

FIGURE 35.

FIGURE 360

FIGURE 37.

Page 20: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 21: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

10

CHAPTER I

INTRODUCTION

Ao Purpose and Scope of Work -

A monotube forced-circulation concept in which preheating,

evaporation, and superheating is a continuous process in either

single or parallel tubes offers promise in the marine propulsion

field. Such '* once -through** boilers possess most of the advan-

tages of forced-circulation boilers with the added attraction

of a steam generator in which the order of magnitude of the

thermal inertia is equal to that of the mechanical energy con-

version machinery. Although many types of this class of steam

generator have been recently installed in some large power sta-

tions, there is no real understanding of the transient response

within the two-phase flow area of the tubes. Profos [l] has

presented a combined graphical and .mathematical method by which

the transient characteristics can be determined from the design

data of the steam generator.

The dynamic control behavior of forced-flow evaporator

systems is of considerable importance in the control of once-

through forced-circulation boilers. It, likewise, plays a role

in drum-type boilers with steaming economizers (drum-type boilers

without economizers are designed under nucleate boiling condi-

tions). Dynamic behavior decides the character of the feed con-

trol system. It influences the properties of the boiler as a

whole, and as such can be used as a vital tool in boiler design*.

Page 22: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 23: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

11

A knowledge of the dynamic behavior of f orced-cicula tlon

systems under transient conditions would permit the development

of a transfer function for use on the analog computer (Appendix

A)o By employing control synthesis much could be learned con-

cerning the response of such systems without building and test-

ing large scale prototypes » The engineer could predict the

changes in boiler response that would be brought about by vary-

ing the basic parameters of the generating system

During operation evaporator systems are subject to various

disturbances in the form of Input variables . Changes in feed-

water flow* W s and heat flow of the evaporator surface* q* In-

fluence both the displacement of the commencement and the end

point of evaporation. This results In changes in the size of

the heating surface of the preheater (economizer )* evaporator*

and superheater o To predict these changes in the commencement

and end point of evaporation (hereafter referred to as the sa-

turated interface and superheat interface* respectively) an

experimental study of the two-phase region dynamics is requiredo

The drastic assumptions required in any analytical solution of

the partial differential equations involved limit their ability

in fully describing the boiling phenomenon under both steady

state and transient conditions o Usually* perturbation theory

centered on several selected operating points must be employed..

Experimental work done by Dengler [2] 9 Kozlov [3]* and

Armand [1|J describes boiling phenomenon In both natural-circu-

lation and forced-circulation units » Bergles and Rohsenow [5]

studied forced convection boiling heat transfer and tube burnout

Page 24: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 25: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

12

both experimentally and analytically . Wallis and Heasley [6]

and Stenning [7] analytically treat two phase oscillations and

instabilities. All of this work, however , is concerned with

steady state conditions. No published work other than that of

Profos [l] could be found which treats the transient two>=phase

flow problem.

It is the purpose of this thesis to experimentally deter-

mine interface movement under transient conditions

.

B. Discussion of Boiling; Mechanism in Tubes

Dengler [2] discusses five types of two-phase vertical

flow under forced circulation conditions s bubble , slug, slug-

annular , turbulent-annular and smooth annular. Slug-annular

and smooth annular dominate the range of vaporization of most

practical interest. He related the various flow phenomena to

fraction vaporiza tion s pressure, and mass flow rate. The type

of flow pattern had little effect on the heat transfer coeffi-

cient over the initial range of vaporization. Following

Dengler the regimes are described?

a Bubble Flow

Bubble flow is observed at extremely low weight per cent

vaporization. The bubbles are at first small and well dis-

tributed throughout the liquid phase. As vaporization increases

the bubbles grow in size, decrease in numbers , and occupy the

center of the tube. Bubble flow persists only over the initial

stages of vaporization. It disappears when less than 0.2 per

cent of the liquid is vaporized.

Page 26: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 27: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

13

b. Slug

With the vaporization of more liquid^ the bubbles coalesce

and form slugs of vapor which alternate with liquid along the

tube. The slugs then unite and displace liquid from the center

of the tube

,

c. Slug-Annular

The slug-annular flow regime is typified by a sector of

extreme agitation, Annuli of liquid^ temporarily held up on

the wall by the growing slugs of vapor s repeatedly collapse

and fall back into the center of the tube» Heavy rings of li-

quid travel up the tube wall and then tumble back down to tem-

porarily block the vapor . Pressure builds up s and the vapor

explodes through the fallen slug of liquid again forcing it up

the tube. The pressure falls and the cycle is again repeated..

Slug-annular flow is thus marked by severe pressure drop fluc-

tuations. At low flow rates slug-annular flow lasts until a

substantial portion of the liquid, 10 to 20 per cent 5 has been

vaporized.

d. Turbulent-Annular

In this regime 9 the agitation subsides and the vapor s now

moving at a high velocity ^ forces the liquid up the tube wall.

The central core of vapor is surrounded by a stable annulus of

rapidly moving liquid. The violent fluctuation of slug-annular

flow is replaced by a fine grained turbulence confined to the

area of the tube wall. Pressure fluctuations are greatly re-

duced and stability approaching that of one-phase flow is

achieved.

Page 28: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 29: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

Smooth-Annular

With still a greater weight per cent of vaporization the

flow at the tube wall becomes smoother, and apparently the

thickness of the wall film grows thinner. The transition be-

tween the two annular types takes place suddenly. In smooth-

annular flow it is quite possible that part of the liquid has

left the tube wall and entered the central core as spray,

Kozlov [3 J recognizes six basic types of flows bubble

flow, plug flow, plug-dispersion flow, emulsion flow, film-

emulsion flow, and drop flow. This description compares favor-

ably with that of Dengler. It differs in the respect that

Kozlov can differentiate two regimes, emulsion flow and film-

emulsion flow, in that area which Dengler describes as Turbu-

lent-Annular.

The author's observations during the experimental work of

the thesis justifies the acceptance of Dengler ' s definitions.

These are more visually descriptive of the occurrence within

the two phase region and can be detected quite easily.

The range of vaporization during which bubble and slug

flow exists is extremely narrow. Dengler' s data [2] indicates

that both disappear when less than 0.2 per cent of the liquid

has evaporated. He concludes that the effect of these mechan-

isms, if any, on evaporation of liquids in vertical tubes may

be ignored, since the local heat transfer coefficient changes

very little within these regimes.

Buchberg, et al. [8 3 conducted an investigation of condi-

tions required for the inception of boiling. Axial wall-

Page 30: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 31: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

15

temperature variation and wall temperature fluctuation were ob-

served to determine the incipient boiling point. The differ-

ence in temperature between a downstream location and a loca-

tion near the inlet was plotted versus heat flux for constant

pressure and flow, A sharp peak in the curve defined the heat

flux and the point of incipient boiling

.

The data of Swenson, et al. [9] indicates that wall tem-

perature peaks at a steam quality greater than 0, They indi-

cate that a transition has been made at this peak from nucleate

boiling to film boiling, Becker, et al, [10] in graphical form

present the relation of pressure, temperature (outside wall,,

T ^ 3 inside wall, T ,, and bulk temperature, T, ) and steamwo' wi b

quality distribution along uniformly heated test sections.

This data shows that T , T ., and Tfe

all peak within a 2 - 3

inch length of a 3120 mm heated vertical tube. It is significant

to note that the peak T „ corresponds to quality steam,WO -» v

Bergles and Rohsenow [<~>] believe that the peak wall tem-

perature indicates the start of fully-developed boiling rather

than the incipient boiling point. They further feel that it

is not necessary to determine the point of incipient boiling

at high pressures, as it is separated from fully-developed

boiling by only a few degrees of wall superheat.

It can, therefore, be concluded that there Is a direct

correlation in T . T , . T,, and the location of the commence-wo* wi* b*

ment of boiling. This correlation Is the key to the prediction

of interface movement under transient conditions.

Page 32: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 33: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

16

Co Apparatus and Equipment

Two distinct phases of study with their accompanying in-

stallations were employed to obtain the required background in

two-phase flow for the writing of this thesis..

1. ) First Installation

The first installation was constructed at the U.S. Naval

Boiler and Turbine Laboratory, Naval Shipyard, Philadelphia

,

Pennsylvania.. With laboratory assistance a fifteen foot mono-

tube boiler unit was erectedo The unit was equipped with the

required pumps, tanks* demineralizers s etc. that enabled it to

operate as a steam generator (FIG. 1)« It was instrumented

with thermocouples that extended into the flow regime to trace

the variance of bulk temperature, T, s with space and time. The

erection of such a test unit brought up subsidiary problems » A

simple yet effective constant refererence temperature junction

for use with one hundred and eighteen thermocouples was devel-

oped.. A means for obtaining ultrapure distilled water was

solved. A monitoring system for obtaining the time variation

in temperature of the one hundred and eighteen installed thermo-

couples was developed (FIG. 2). A platinum resistance thermo-

meter for the measurement of average temperature was developed

as an outgrowth of this program (FIG. 3). Additional views of

the installation are presented in FIG. l\. and FIG. £. Mechanical

problems caused a premature failure of the unit before the com-

pilation of the required data. The program is still an active

one at the laboratory and a new design is being contempla ted*

Page 34: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 35: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

*

FIGURE 1SCHEMATIC VERTICAL TUBE

EVAPORATOR TEST INSTALLATIONNBTL

17

o Jf

Ojs mi

ui

of

til

V,\T

2*f-

6

1of s

1

£ AC

Page 36: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 37: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

18

FIGURE 2

1

ii

§§

Page 38: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 39: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

19

(U.S. Navy Photo)

FIGURE 3

PLATINUM RESISTANCE THERMOMETER FOR THE MEASUREMENT OF AVERAGETEMPERATURE IN A REGION OF TWO-PHASE FLOW.

Page 40: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 41: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

20

FIGURE 4VERTICAL TUBE EVAPORATOR TEST INSTALLATION, NHTL

(From left: Constant Temperature Reference,TC Terminal Board, and Monotube Boiler)

FIGURE 5VERTICAL TUBE EVAPORATOR TEST

(Visible left foregroundwith accumulator; Right,condary Storage Tank)

INSTALLATION, NBTL2 cyl. R.E. PumpGlass-lined Se-

Page 42: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 43: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

21

2 ) Second Installation

The second phase of the program was conducted at the

Experimental Projects Laboratory, M„I.T. The author concluded

that any attempt to measure bulk temperature, T,, within a tube

by means of thermocouples , must be discarded.. An immense mechani-

cal-joining problem exists in the areas where the thermocouples

pierce the generating tube, since the tube must necessarily be

heated by some form of electrical device to obtain a uniform

heat distribution,. In addition, the flow disturbance resulting T '

from the protrusion of the thermocouples into the tube gives

data which can not be correlated to the geometry of boiler tube

f lOWo

In the second installation the use of ultrapure. distilled

water was discarded.. This experimenter felt that in using such

extreme refinements, conditions were being produced that were

too laboratory directed for extrapolation to general industrial

equipment., Carried to the extreme, within a liquid containing

no colloidal impurities, gaseous or solid, vaporization would

be impossible o Lastly, simplicity in design was a critical

factor considera tion D

a a ) General Description

The equipment consisted of the following component ss

(1

(2,

(3

(k

(5

(6,

Vertical Evaporator

Visual Observation Section

Condenser

Electrical Circuit

Plow System

Thermocouple Measuring System

Page 44: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 45: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

Z2

A Schematic of the installation is shown in PIG. 6,

b. ) Detailed Description

(1.) Vertical Evaporator

The vertical evaporator was constructed from a ten foot

section of Type No D 3 0I4. (18-8), stainless steel tubing* OoD.

0.375% wall thickness 0.028"' . To obtain a reasonable elec-

trical power input for steam generation the two electrical

heaters were installed in parallel,, Each heater consisted of

thirteen pyrex glass tubes 1|. feet in length and I), mm in diame-

ter (standard type , wall thickness 0.8 mm). The pyrex tubing

was firmly secured about the outside circumference of the stain-

less steel tubing forming an annular ringo In each section s

through the centers of the pyrex glass tubes in the longitudinal

direction, there was woven a continuous length of size 18 Chrome

^A* wire with a current rating of 23 amps s O.lj.12 Ohms/Poot re-

sistance rating (FIGo ?)» The heat generating area was lagged

with standard mineral wool piping insulation (sectional length

3 ft,). Power was supplied to the unit from a 23O volt D0C0

bus. Evaporator operating pressure was 20 psia

.

(2.) Visual Observation Section

Secured to the top of the evaporator , at the end of the

uppermost heating unit* was the visual observation section.

This section consisted of a 2 ft. length of standard Pyrex

Tubing, CD. 3/8**, wall thickness 5/6Jj* . Discharge piping to

the open condenser was attached to this section. Back pressure

was built up within the evaporator by the installation of an

orfice at the end of this discharge piping. The visual

Page 46: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 47: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

FIGURE 6

SCHEMATIC VERTICAL TUBE

EVAPORATOR TEST INSTALLATION

EPL LABORATORY, M.I.T.

23

Page 48: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 49: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

24

t£l.8 Chrome "A"Resistance Wire

l4.(mm) PyrexTubes

" O.D. StainlessSteel Tube

.i»» Mineral WoolPiping Insulator

FIGURE 7

OBLIQUE SKETCH VERTICAL TUBE EVAPORATOR

(A portion of the insulation is removed to

show interior evaporator construction)

Page 50: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 51: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

25

observation apparatus permitted observation of the two=phase

flow phenomena.

(3. ) Condenser

The condensing unit was an open trough type condenser.

Discharge from the condenser was led to a fresh water drain.

The steam cycle was operated as an open cycle.

( I4.0 ) Electrical Circuit

The steam within the vertical tube evaporator was gener-

ated by electricity. Electricity was adopted because of the

simplicity of inducing the required stop changes in heat flow

rate, q, during the experimental runs. Power was supplied from

a 23O Volt DoC. bus. Step changes in heat flow rate were ac-

complished through a variable resistor (8 pole switch stove

rated at [(.0 amps, 23O Volt D.C.) connected in series with the

parallel Chrome HA** heaters. Current input was measured by

means of a Weston D.C. Ammeter ( 0-lj.O amps rating). Voltage

across the generating unit was measured by means of a Weston

D.C. Voltmeter (3 scale, 0=300 volt rating). The electrical

circuit is illustrated schematically in PIG. 6.

(£. ) Flow System

The system of flow was as follows. Water was received

from Laboratory Fresh Water Piping (60 psi ) and passed through

a Mason-Neilan Regulator, Type 33=1, rating 200 psi, range 2

psi to 20 psi. This regulator isolated the feed water system

from any exterior water pressure variation. The total weight

flow rate, W, was measured by a Fischer-Porter Rotometer

(Scale 0-20). Flow rate was controlled through a 3/6'* needle

Page 52: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 53: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

26

valve and Input pressure was measured by means of a standard

pressure gauge (O-3O psi)o After undergoing boiling in the

test section, the steam passed through the visual observation

section. Vapor was condensed in the open trough condenser.

(6.) Thermocouple Measuring System

Eight thermocouples were secured to the outside wall of

the generating tube. Thermocouple placement is illustrated in

FIG. 60 Seven thermocouples and their leads were made of cop-

per-cons tantan. These were placed along the length of the gen-

erating tube and were used to measure steady state temperature

variation. The thermocouple leads were attached to a selector

switch. This switching arrangement permitted individual moni-

toring of each thermocouple on a Leeds and Northrup Millivolt

Potentiometer. The eigth thermocouple, ir on-constantan s was

secured to the wall at the uppermost heater outlet. It was

used to measure wall temperature variation under transient con-

ditions and was monitored individually by the Leeds and Northrup

Millivolt Potentiometer.

Page 54: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 55: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

FIGURE 8

GENERATING SECTIONTHERMOCOUPLE PLACEMENT

27

8

7f

6 f

k

3 f

o *

1

1'

1« 8«

Page 56: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 57: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

28

CHAPTER II

PROCEDURE

A. Experimental Procedure

Feedwater was introduced into the apparatus through the

rotometer and needle control valve- A curve of rotometer

reading versus weight flow rate had been prepared in a series

of calibration runs (Calibration Curve, FIG. 9). The weight

flow rate, W, was set. The electrical heating elements were

energized to obtain a given heat flow rate, q, and the system

was brought up to steady state conditions. At the end of this

process, which generally took approximately one hour, outside

wall temperature, T , was monitored on Thermocouple 8 to in-

sure that a steady state condition did exist (indicated by nor'

rise in T )•wo 7

When steady state conditions were established, wall temp-

eratures on Thermocouples 1 - 7 were recorded. The flow re-

gime existing in the visual observation section was recorded.

Any one of the four types of investigation runs was then com-

menced by the inducement of either step changes in flow rate,

W, or heat flow rate, q. Wall temperature variation was measured

on Thermocouple 8 at 15 second intervals. The existing flow re-

gime in the visual observation section was also recorded at

these times. Upon reaching a new steady state condition, wall

temperatures, on Thermocouples 1-7 were recorded along with

the final steady state flow regime. It required approximately

Page 58: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 59: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

29FIGURE 9

ROTOMETER CALIBRATION

CURVE :

o Vtvi

in

* - A* -

o V)

<0 CJ ^01 W

_LH 9 i 3 AA

Page 60: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 61: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

30

8-15 minutes to reach a new steady state condition in the

water and heat flow rates in which investigations were conductedo

The types of runs on which studies were undertaken were

as follows;

1.) System maintained at a constant weight flow rate 5

but heat flow rate increased (step change ) <»

2.) System maintained at a constant weight flow rate s

but heat flow rate decreased (step change )„

3o) System maintained at a constant heat flow rate,

but weight flow rate increased (step change )«

I4.0 ) System maintained at a constant heat flow rate s

but weight flow rate decreased (step change)..,

A sample data sheet (TABLE IV) and work sheet (TABLE V)

are illustrated in Appendix C.

B» Analytical Procedure

In the analytical procedure s the thermocouple readings

were converted to wall temperature readings <. At any given time

after the step change , the wall tempera ture , T , on Thermocouple

8 was subtracted from the initial wall tempera ture o The result-

ing AT values were plotted versus time<> Visual observations

were then correlated with time and temperature „ A curve was

fitted to these experimental points. The curve of

AT = AT^ f(t) (1)

was determined.. AT^ is defined as the difference in the two

steady state temperature readings (commencement of run and term-

ination of run),

AT.. = .!„ - Tj. (2)

Page 62: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 63: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

31

Since the positions of Thermocouples 1-7 were known along the

axial length of the tube, FIGr„ 8, it was quite simple to locate

the point of the commencement of evaporation by plotting wall

temperature, T _, versus thermocouple location curve . The peak

in the T „ curve corresponded to the location of the commence"wo

ment of evaporation. The heat flow rate, q, and the weight flow,

W, were so controlled in each run that at either the commencement

of the run or after the step change in the system variables, the

commencement of nucleation was just occurring at the end of the

generating section,, In other words, at one level a peak in T

(read on Thermocouples 1=7) was apparent and its position

along the length of the tube could be ascertained „ At the other

level, the T at each location showed a steady rise which gave

an indication of the heating of a subcooled liquid to a point

of the commencement of first boiling For any run the length

of the generating tube minus the distance down the tube at which

the peak occurred was equal to the total length of saturated

interface movement between two steady state operating levels,

AL^,-oo*

AL^ = L - Lp

(3)

Equation 1 was then related to AL^ and a curve

AL = AL^ f(t) (1|)

was obtainedo It was assumed that the f(t) for both tempera-

ture rise, AT, and interface movement, AL, was the same,, This

is justifiable from the fact that a general correlation giving

critical wall superheat as a function of pressure and heat flux

can be readily developed to predict the point of incipient

Page 64: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 65: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

32

boiling [£]. For a given system there is a critical wall super-

heat at which nucleation will commence. As system variables

(heat flow rate and weight flow rate) are changed the point of

incipient boiling will move in the tube. The given critical

temperature will move either up or down the length of the gen-

erating section. This critical temperature movement Is exactly

the movement of the saturated interface. If in an experimental

run a given critical temperature exists at the outlet of the

generating section and if nucleation bubbles are apparent , then

the time variation of temperature on Thermocouple 8, after a

change in system variables, is the same f(t) as the critical

temperature movement with time, except that it is opposite in

direction. For instance, if T „ at Thermocouple 8 rose to awo

new higher value (observation of the boiling phenomena in the

visual observation section would show a change from nucleation

bubbles to slug-flow, and thence to slug=annular flow), the

point of incipient boiling would be moving downward into the

evaporator.

For superheat interface movement, outlet temperature varia=

tion with time was correlated with visual observation for a

trend in the superheat interface movement. The wall tempera-

ture peaks have no value, however, In locating the end point

of evaporation. AL^ can not be obtained. More emphasis must

be placed upon visual observation.

Page 66: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 67: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

33

CHAPTER III

RESULTS

In the course of this study, fifty-three various types of

runs were conducted.. Nine representative ones have been pre-

sented here. A sample calculation for Run 3~1 is given in

TABLE VI, Appendix C.

The results are presented in graphical form (FIGURES 10-

38)0 For each run (except 101c), three graphs are given repre-

sentings

1. AT = AT^ f(t)

2. ATp= f (L)

3. AL = AL^ f(t)

The first type includes indications of the visual obser-

vations that were conducted,. The second graph in each series,

AT = f(L), gives the total interface movement between two

steady state levels for a particular run„ The last curve Is

the derived curve of interface movement <, A summary of original

data for all curves is presented In tabular form in Appendix D

(TABLES VII and VIII). Calculated data for the runs Is also

included (TABLES II and III, Appendix B).

Composite plots of saturated interface movement for W con-

stant (FIG. 36) and q constant (FIG. 37) are also presented..

A summary of AL^ for the various runs. can be seen in TABLE LTime constant, ""a

1*, variation with W for step changes in q is -

shown in FIG. 360

Page 68: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 69: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

AT m (T Ti>

FIGURE 103k

TEMPERATURE INCREASE FROM STEP

Runs lb-1Flow; 1^ 7#tanPower Level Steps 591 Watts to 12^.0 Watts

Afcj-i A.0 (1:

- e~ ^?6t)

SLUG°ANNULAR'

BUBBLE

©© ©

©© © © ©

loO 2e0 3«0 ^. e

TIME (MINUTES)

$o0 6 o c

-.- '.. .. ..'-„.;.. :. .:...; —..-- ..;x

Page 70: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 71: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

FIGURE 1135

LOCATION PEAK WALL TEMPERATURE

Rung lb-1Plows 15 ^RoPower Le¥el Steps 591 Watts to I2I4.O Watts

th^ * -2 065 Ft.

Scales 1" * l'i

= Conditions Before Step

<:>

OO

vt

OJ

to

zoH<OoJ

Ja,

6uo£

LU

Xh

^

3 «10

<9

N

lSo_L-*°_L)=

dJLV

Page 72: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 73: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

FIGURE 1236

-2*8

=2.6

=2.14-

-2.2

-2.0

AL -1.8

(FT.)

=1.6

-14

-1.2

-1.0

-0.8

-0.6

-0.1+

-0.2

Runs lb-1Flows 15 =#/HR.Power Level Steps 591 Watts to 121+0 Watts

AL - -2.65 (1 - e-0ȣ76t

}

5 lj. 5 6 7

TIME (MINUTES)

Page 74: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 75: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

FIGURE 1337

TEMPERATURE DECREASE PROM STEP

Run? lb-1Flows 15 ~$ta.Power Level Steps 12^0 Watts to 591 Watts

-62.0 (1 - e-0.560t

)

&T = (T - T±

)

SLUG-ANNULAR

SLUG

-"-BUBBLECOMMENCED t « 8*0

1.0 2.0 3o0 I|o0

TIME (MINUTES)

5«0 60O

Page 76: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 77: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

FIGURE H4 38

LOCATION PEAK WALL TEMPERATURE

Rung lb-1Flowg 15 #/HRePower Level Steps 12^0 Watts to £91 Watt;

2»6 FT,

/Scale? 1H * 1'

» Conditions Before Step

// •

//

//

/

fi

/

1

e/

I

1

1 /

p y' /1 /s /1 /1 /

& ©/

\ /

\ /

\ /

\ 1

\

\

in

oo 8 3

(f°j_~*°x:)=£Lv

Page 78: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 79: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

FIGURE 1£39

AL 1,;

(FT.)

1.6

1.2

1.0

0,8

0.6

O.q.

TOTAL DERIVED INTERFACE MOVEMENT

Rung lb°lFlows IS ^HR.Power Level Steps 121+0 Watts to 591 Watt;

AL - 2.6 (1 - e"0#*60t

)

TIME (MINUTES)

8

Page 80: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 81: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

9*

,

90

85

60

75

70

65

6b

55

50

1+5

l+o

35

30

25

20

15

10

5

AT = (T - T^

BUBBLE

FIGURE 16

TEMPERATURE INCREASE FROM STEP

SLUG-ANNULAR

I4.O

Runs 2bFlows 20 #fcR.iPower Level Steps 581^. Watts to

I2I4.O Watts

i*| 89;? U ;, ^'a"0,*l6t )

1.0 2.0

.J_.:U'. .•:

3.0 ij-.O

TIME (MINUTES)

5.0 6.0

Page 82: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 83: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

FIGURE 1?

LOCATION PEAK WALL TEMPERATURE

Rung 2bPlows 20 ^HR. / /Power Level Steps 581+. Watts to I2I4.O Watts /

j

AL„ * =2.50 PTo

Scale? 1" s 1» /3= Conditions Before Step /

/ /

/ /

/ /

/ /

f_L- 1.) =lV

i. J_

Page 84: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 85: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

FIGURE 18

TOTAL DERIVED INTERFACE MOVEMENT

k*

Run % 2bFlows 20*#/HR.Power LeYel Steps £8lj. Watts to

124.0 Watts

AL s »2„50 (1 -

TIME (MINUTES

Page 86: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 87: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

95

-90

=85

=80

=75

=70

.65

-60

-50

45

4o

=35

=30

=25

»20

=15

=10

»5

Runs .

PlowsPower

FIGURE 19

TEMPERATURE DECREASE FROM STEP

to

20 j#&R.Level Steps 12^0 Watts to 58lj- Watts

AT = «=81 o3 (1 - eVol+±±^)

— e

Ann -fT

it s^^ TBUBBLE r>T^

/T

>/^^>/ o

./^ /l*

y/

SLUG /( >

/ o

/ <S)

SLUGt-ANNULARj

/

7

/

7

A

3*0 i^oO 5e0 6o01.0 2 o

TIME ( MINUTES

)

Page 88: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 89: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

FIGURE 20

LOCATION PEAK WALL TEMPERATURE

Runs 2b-3Plow: 20 #^R.Power Level Steps 12)4.0 Watts to £8L|. Watts

AL_ * 2.^0 FTo00 <

Scale? 1" * 1'

Conditions Before Step

¥t

//

/

//

//

o3

/

/AD

/

\

\\

\\

/fr a

^

o

^ 8Jl

ui

_J

aDOoo\T)

V)

vil

KO S

fa.-"°J.>

)=dxv

too.

Page 90: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 91: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

k5

2.8

2.6

2J4.

2.2

2.0

AL 1.8

(FT.)

1.6

I ok

1.2

1.0

0.8

0.6

04

0.2

FIGURE 21

TOTAL DERIVED INTERFACE MOVEMENT

Runs 2b-3Flows 20 //HR.Power Level Steps 12^.0 Watts to £81^ Watts

AL = 2.50 (1 - e"00^11^)

3 t 5

TIME (MINUTES

^8

Page 92: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 93: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

FIGURE tZ SLUG-ANNULAR k&TEMPERATURE INCREASE PROM ST1IP

SLUG

(T - T±

)

BUBBLE Rung 3=1Plows 2£ #/HR.Power Level Steps 5>85 Watts

1218 Watts

AT * 98 oO (1 - 8°°^")

/o

/ w

1 ©

/ ®

1.0 2.0 5.0 i|.o0

TIME (MINUTES)5.0 6*0

Page 94: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 95: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

FIGURE 23

LOCATION PEAK WALL TEMPERATURE

Runs 3-1Plows 2£ #/HR*Power Level Steps £8£ Watts to 1218 Watts

&L m -2 .30 FT.

Scales 1" ~ 1** Conditions Before Step

kl

I

I1

f

!•

I

i

1

1

1

Oj

OH<C

iu

OO

h

Id

-J so00

ocj

e°x-x!D-iv

Page 96: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 97: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

-2.8

-2.6

-2jj.

-2,2

=2.0

AL -1.8

(FT.)

=•1 ©6

»i<4

=1.0

=0.8

-0*6

=0.l|,

=0o2

FIGURE 2^.

tOTAL DERIVED INTERFACE MOVEMENT

W

Runs 3-1Flows 25 # /HR,Power Level Steps 585 Watts to 1218 Watt;

AL m -2.30 (1 - e"00^1*)

12 3^56TIME (MINUTES)

-.:..:.;s:

Page 98: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 99: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

95

90

85

.80

-70

•65

=60

AT

FIGURE 25

TEMPERATURE DECREASE FROM STEP(T J?Tj)

1+9

Rum 3b-2Flows 2^ #/$R*<Power Level Stefcs 121+0 Watts to

591 Watts

95,6 (1 = e0„369t

1.0

till ill ih ::,:::::::::

2e0 3*0 k°®TIME (MINUTES)

5,0 6 ©0

Page 100: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 101: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

FIGURE 26

LOCATION PEAK WALL TEMPERATURE

50

Runs 3b-2Flows 2£ #/HR.Power Level Steps 12^0 Watts to 59 1 Watts

/

Scales 1" • 1«

- Conditions Before Step

&L = 2,30 FT00 -^

oO o00

//

/

/

0/

/

/

/

/

/

!

1

\

\Au

O O o

ft.-*!) -JiV

j 1 1 n~i i.ii i 1

Page 102: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 103: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

FIGURE 27

TOTAL DERIVED INTERFACE MOVEMENT

51

Run; 3b-2Flows 2£ #4m.

.

Power Level Steps 12lj.O Watts to £91 Watts

.2.30 (1 - &M&)

3^56?TIME (MINUTES)

Page 104: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 105: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

FIGURE 28

TEMPERATURE INCREASE FROM STEP

Runs 101-bPower Levels 986 WattsFlow Step? 25 #/HR to 16 $ $/KR.

>0 J4.3£t

52

AT - 12 e ? (1 - e )

llj..O

=. (T - T.

12 .0

10.0

1.0 2,0 3e0 I4..O 5o0 6„0 7,0 8.0 9.0 10 .0 11,0 12 oO 13 *0

TIME (MINUTES)

Page 106: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 107: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

FIGURE 29

LOCATION PEAK WALL TEMPERATURE

53

Runs 101-bPower Levels 986 WattsPlow Steps 25 #/B"R. to 16 .£ #/E

bh^ b »2«20 FT

Scales 1" s 1«

Conditions Before Step

$

\\

®\

oCD

o o

cJ

K-)

2

<ao

_l

a3OuoT.

if..

UiX5-

>}-

m

v£>

fcj__«Oj_) ,J|_V

Page 108: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 109: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

=2.8

•2,6

=2.2

-2.0

(FT.)

•1.6

»l.lf

1.2

•1.0

•0.8

»0.6

-0 4

-0.2

FIGURE 30

TOTAL DERIVED INTERFACE MOVEMENT

Runs 101-bPower Levels 986 WattsPlow Steps 25 #/HRo to 16 .£ #/HR

1 -o.I|.351mAL •2.2(

2 3 If 5

TIME (MINUTES

5lf

R e

Page 110: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 111: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

.llj-.O

•12.0

10.0

8.0

=6.0

=!+.0

=2.0

1.0

FIGURE 31

TEMPERATURE DECREASE PROM STEP

Run? 101-cPower Levels 966 Wattsi-j-ww ^\j^y Au 8p -^ynno yu c^ oV,1 -p/nn e

&T « (T -.T^)

*

/ ©

// c

BUBBLE /

SLUGannu:

I

!

1

1

EAR

SLUG

i

t

1

//©

P/

© ©© ( > 2 oO 3.0 I4.0O 5'eO 6e0 7.0 8.0 9e0 10 .0 11 o 12,0 13 oO

TIME (MINUTES)1T(T - T

±)

.J„, ...

.

Page 112: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 113: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

FIGURE 32

LOCATION PEAK WALL TEMPERATURE

Rung 101cPower Level? 96^ WattsFlow Steps 16o5'#/HR. to 25 .0 #/HR

Ah * 2,25 ^Scales 1" = 1«

- Conditions Before Step

56

o

O

_ja.3oU

H) O

orUi

^f

u-)

v9

f°±-*i) =iv

Page 114: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 115: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

FIGURE 33

TEMPERATURE INCREASE PROM STEP

57

Rung 102-bPower Levels 9^6 WattsPlow Steps 2£ #HR to 19 « 5 #HRAT^9.?(1= e

-0.£26tj

34.0 AT * (T - Ti

)

12.0

10.0

8.0

6.0

U-.o

2o0

1.0 2.0 3o0 1|..0 5,0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13 *0

TIME (MINUTES)

Page 116: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 117: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

FIGURE 3I4.

LOCATION PEAK WALL TEMPERATURE

Runs 102~bPower Levels 9^6 WattsFlow Steps 2£ #/HRo to 19 >$ #HRAL = -2,15 FT ,

Scales 1" * 1'~ Conditions Before Step

58

/ /

/ 1

/ 1

I 1

/

/

I

\ I

\ I

OS

H<UO

Lu_Jflu

3OJ

tu

h

4

V)

vS

o oCD

ov9

O o04

(so4.-*°-i) -IV

Page 118: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 119: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

FIGURE 3$

TOTAL DERIVED INTERFACE MOVEMENT

59

Runs 102-bFlow Steps 25 #/HR e to 19 «$ JtfER

L* -i-2 •;!$ {1— e~°^26t

)

1 I k 5 6

TIME (MINUTES)

8

Page 120: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 121: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

-AL

(FT,

FIGURE 36

TRANSIENT SATURATED INTERFACEVARIATION IN RESPONSE TO STEPCHANGES IN HEAT FLOW RATE, q p

WITH WEIGHT FLOW RATE, W r

CONSTANT

60

NOTES

BROKEN LINE CURVES INDICATE +Aq,

(A) Runs, Flow Rfcta = 15 ,#HR

.

B) Runs,, Flow Rate = 20 $fER P

(C) Runs, Flow Rate = 25' #1R.

3^5time (minutes;

t:... „..,..::„.....,>....,;. .'. ..,-,:. ,.„,;x:.:

Page 122: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 123: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

-2.6

-2.2

-2.0

ALL=1 .8

(FT .)

-1 .6

-1.1+

h

5

-1.2

-1.0

-0c8

-0.6

-0J4-

-0,2

FIGURE 37

TRANSIENT SATURATED INTERFACEVARIATION IN RESPONSE TO STEPCHANGES IN WEIGHT FLOW RATE, WWITH HEAT FLOW RATE, q, CONSTANT

/

,/

/

//

//

//

///

/

/

/

^^—

/

NOTE;

A) Curve, Flow e Steps 2^/WR t<

/

B) Curve, Flow Rate Steps 2£#/HR U16'.$#/HR

2 3^5TIME (MINUTES

fcs±tt

Page 124: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 125: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

0*6

FIGURE 38

VARIATION OP "a" WITH WEIGHTPLOW RATE, W.

62

0.^

"a"

o4

0«3

*

Curve a

\\

NOTE?

Curve a - Temperature Increase from Step s4-&q

Curve b - Temperature Decrease from Stepp =Aq

15 20

W(^/HR)

Page 126: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 127: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

63

TABLE I

SUMMARY OP EXPERIMENTALLY DETERMINED AL^

RUN W(#/HR) Aq( WATTS) AWPT)

lb-1 1^.0 591-12^0 2.65

2b 20.0 58I|.»12[j.O 2.50

3-1 25.0 565-1218 2.30

lb-1 15.0 12^0-591 2.60

2b-3 20.0 12ij.0-56I). 2.50

3b-2 25.0 121^.0-591 2.30

RUN q (WATTS) AW(#HR) AL^FT)

101b 986 2£. 0-16.5 2.20

102b 9^6 25o0-19.5 2.15

101c 966 16.5-25.0 2.25

Page 128: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 129: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

6k

CHAPTER IV

DISCUSSION OF RESULTS

The results of the tests show that in all runs except

those of Type 3 the saturated interface movement under tran=

sient conditions follows the general form of equations

AL - ALJ1 - e~at

) (5)

The time constant of this equation, "a"s

Is an indication

of the time characteristics of the evaporator <> In essence, it

determines the initial slope of the transient response. FIGURES

36 and 37 indicate that "a" is strongly a function of the weight

flow rate , W sheat flow rate, q, and the change in these two

variables. FIG. 38 illustrates this marked variation,. For a

positive step change In heat flow rate, +Aq9 W constant

(Curve a)sthe time constant shows almost a linear relationship

in the flows studied. In the case of negative step changes in

heat flow ratep~Aq

s W constants "a" follows a parabolic type

relationship (Curve b) • What is apparent in both Curve a and

Curve b is that as weight flow rate, W 9increases for both +Aq

and -Aq the time constant , "a"9 decreases in numerical value

o

Thus, at higher weight flow rates the initial slope is

less In response to the same Aq. Furthermore FIG„ 36 shows

that for a +Aq„ the Initial slope is greater than for a =»Aq

for the same weight flow rate9 Wo On the other hand p the sum-

mary in TABLE I shows that the final AL^ values for both +Aq

and -Aq are in close agreement. The values listed for all runs

Page 130: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 131: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

65

compare favorably with a simple steady state heat balance on

this type of system. It will be noted that the values Indicate

that the magnitude of AL^ In response to Aq (both positive

and negative) decreases with an increase in weight flow rate,,

We That section of TABLE I that is concerned with AW P q con-

stant, shows basically the same type of relationship* When

dealing with step changes in weight flow rate, AW S q constant^

to determine the similarity in AL^ the heat flow rate,, q pat

which the measurements were taken must be noted., This had to

be varied to maintain the desired conditions ( bubble=s lug-

annular) at the commencement and termination of each run.

As the step change in weight flow rate, AW S is decreased

for a constant heat flow rates q s the intial slope of the

AL = AL f(t) curve Is changed (FIG. 37). The exception to

this general form of response was found In Typ»e 3 runs (system

maintained at constant heat flow rate9 q p but weight flow rate,

W sincreased) . The temperature variation, T , on Thermocouple

8 for a run of this nature is shown in PIG. 31. An increase in

temperature can be noted for a period, fb'llowed by a reversal

,

and then a decrease in temperature. This would correspond to

a saturated interface movement in a direction to increase the

steam generating section of the vertical evaporator followed

by a reversal in the direction of the movement. This reversal

would cause an ultimate decrease in the length of the evapora=

tor section. Profos [1] predicts this form of response for all

run types that were studied in this investigation. He refers

to movement of the commencement of evaporation counter to the

*i

Page 132: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 133: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

66

direction of flow as- an flapparently paradoxical displacement,,"

The significant number of runs that were conducted during the

course of this investigation of Type 1, 2, and I4. show no indi-

cation of any displacement counter to the flow direction. It

is felt that there is no such motion. The apparent reversal

that was detected in the Type 3 run can be safely attributed

to an inadequacy In the experimental apparatus . A needle valve

was used to control the weight flow rate, W. A step change to

valve position was considered to be a step change In weight

flow rate, W. When such a valve is first grasped in attempting

to make a change in valve position to increase flow, a depres-

sion of the valve stem takes place. This depression and the

related seat movement causes a slight decrease in flow* As

the valve Is turned the flow rate then Increases to the desired

level. The increase in temperature on Thermocouple 8 Is attri-

buted to the flow disturbance resulting from valve posit ioningo

The knee portion of this curve does resemble one that has an

exponential basis. It is felt that If such Initial flow dis-

turbances could be removed, this type of run could be matched

to the general form presented in equation 5

«

Referring to FIGURES 10, 13, 16, 19 , 22, 25, 28, 31 , and

33, the relation of the various flow regimes to the total AT

rise in response to changes in weight-flow rate, AW, and heat-

flow rate, Aq, can be seen. The description of the flow mechan=

Isms reported here agree with the observations of Dengler [2]

o

The contention that interface movement follows the same rela-

tionship as T at Thermocouple 8 is now obvious. It can be

Page 134: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 135: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

67

noted that the flow mechanisms occupy the same proportional

part of each curve • The slug-annular region always occupies

=atthe knee portion of the (1 - e ) curve • Furthermore

9as

"a" decreases (signifying an increase in initial slope and a

higher weight flow rate) the time of nucleation increases,,

The relative portion of the curves occupied by a given regime

for the various weight flow ratesp W 9

and heat flow rates9 q 9

involved remain the same9 however

o

Profos [1] in his combined graphic al-mathematical treat-

ment of the dynamic behavior of forced flow evaporator systems

based upon the equations of steady state conditions9 derives

expressions for displacement of the commencement of evaporation

that are of an expotential nature <> The time constant in these

expressions;, termed by Profos transport time and identified by

the symbol j, T nJ) are not in numerical agreement with the time

constant "a" derived in this experiment

Profos, to simplify the basic equations which were used

to describe the movement of the steam-and-water mixture in the

forced-flow tube,, made several assumptions In developing his

equationsj,the pressure in the whole system was assumed con-

stantj,

the thermal loading Q, of the heating surface (heat flux)

was assumed to be the same over the whole evaporator system,,

.i

and the mixture of steam and water was considered homogeneous

at all points. Based on these assumptions9 the expression

T = A r.„

- (f>\iD UQ (.v

fV =.vn {0)

was obtained o The time constants derived experimentally are

not subject to the restraints of Profos « It is apparent from

Page 136: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 137: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

68

the lack of agreement that any solely analytical solution of

the momentum, energy 9 and continuity equations of forced-flow

fall short In describing the dynamics of the two phase flow

systems because of the assumptions that must be accepted to

arrive at a workable mathematical solution.

The superheat interface movement was investigated during

this series of experimental runs. It was found that T at* wo

Thermocouple 8 followed the same general relationship developed

for the saturated interface. The time constant "a" for the

superheat interface movement was smaller in numerical value

than that of its corresponding saturated interface movement.

Therefore, the slope of superheat interface movement is less

than that of saturated interface movement. Since no T peakswo v

are present In the superheat transition region, no experimental

determination of AL^ of the superheat interface was possible.

It is felt that the movement is less than that of the saturated

interface and that the variation in length of the superheater

section between two steady state conditions is less than that

of the evaporator section between the same two conditions. A

study of the superheat interface motion Is strongly dependent

upon visual observation of the boiling phenomena. The use of

a pyrex glass electrical conductivity tube would have assisted

in the visual observation of the movement of this Interface.

Page 138: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 139: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

69

CHAPTER V

CONCLUSIONS

1. Saturated and superheat interface movement under transient

conditions in response to step change in both weight flow rate,

W, and heat flow rate,, q s can be described by an equation of

the general form;

AL = Ai^d - e~at

)

2. The time constant, ^a'^s of this equation is an indication

of the time characteristics of the evaporator „ It determines

the initial slope of the transient response curve and itself

is a strong function of weight flow rate, W, and heat flow rate,

q. The slope of superheat interface transient response curve

is less than that of the saturated interface response

3. The total interface movement s AL^, is a function of the

evaporator characteristics, weight flow rate, W, and heat flow

rate, q<»

4. Five regimes of boiling can be visually recognized in

vertical tube evaporations 1 bubble, slug, slug-annular,

turbulent-annular, and smooth-annular

«

Page 140: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 141: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

70

CHAPTER VI

RECOMMENDATIONS

1. To reduce any interference that system geometry might im-

pose on such an experiment* a radiant heated generating element

is suggested in further studies of this nature. Another pos-

sibility is to employ pyrex glass electrical conductivity tubes.

With the use of such a system, the boiling phenomena under tran-

sient conditions can be visually observed. Motion pictures with

a time base could be employed to trace interface movement. An

analization of such a film record could yield the time and space

variation desired.

2. To reduce flow disturbance at the time of step changes in

weight flow rate, AW, a device easier to control than a hand

operated needle valve should be employed.

Page 142: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 143: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

71

CHAPTER VII

APPENDICES

Page 144: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 145: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

72

A, DEVELOPMENT OF ANALOG TRANSFER FUNCTIONS

Page 146: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 147: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

73

The problem of the development of an adequate function to

describe the complexities of two-phase flow is simplified greatly

if a mathematical-empirical approach is employed. In such a de-

velopment , the assumptions that are resorted to will not cause

serious inaccuracies in predicted results.

As discussed previously, the vertical tube evaporator can

be divided into three sections? preheater, evaporator, and

superheater. The outputs (temperature, pressure, mass flow

rate, etc.) of each section are the inputs into the following

section. A brief sketch of the manner in which the continuity

equation can be solved in the preheater section follows.

Applying a control volume to the preheater section, the

one—dimensional time-dependent continuity equation can be ex-

pressed

w_. = w<„ = 4r(Mj (a)

in which

out in dt v ee e

M = L A p (b)e e K e x

Substituting (b) into (a) and differentiating

dL dpw _ w , = A(p -rr5 + L -tt^) (c)out in Xf e dt e dt

e e

The average value of a function F(x) over the interval

a - b is defined by the integral

F(x) = F-i-i[ /

bF(x) dx

To obtain an expression for average density over the economizer

Page 148: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 149: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

Ikor preheater section, p(L ) must be integrated,

P 9 =T- 48p(Le'

dLe < d >

e

The difference p - p in a homogeneous fluid ( which applies

to the subcooled water of the preheater) is due to a correspond-

ing temperature difference. For any liquid

2 = i_U + p (Tb .T3)] (e)

s

in which £ is the coefficient of thermal volume expansion.

Choosing an average value of 0, £, between the design in-

let and outlet conditions of the preheater^ (e) can be expressed

P

p = p(L ) = ^ (f)e

[1 + p(Tb

- Tg)]

in which T, is the bulk temperature at x = LbeTb=T

b(L

e(t)) (g)

The differential equation of energy conservation governing

the temperature distribution in a solid body in an isotropic

stationary system can be expressed as

r 3r v dr r3 80 s dz* i r 3t

The above equation assumes the internal energy change may be

related to the temperature change by a specific heat.

With additional assumptions of symmetry in the 9=direction

no heat generation within the cylinder, and no temperature grad-

ients in the z-direction, (h) reduces to

Page 150: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 151: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

75

The solution of (I) involves the use of Bessel functions.

Such a solution does not lend itself to simple analog treatment.

On the other hand, assuming a negligible temperature gradient

within the generating tube, which is a justifiable assumption

since it is a hollow thin cylinder, a single value of tempera-

ture may be used to describe the thermal state of the tube*

The energy balance for a body of arbitrary shape with negli-

gible temperature gradients may be written

dQ = AQhs

(T - T)dt =Vp6dT ( j)

For the generating tube under consideration, (j) can be

expressed

2* rQ

L hs(T

g- T

wl)dt = 2w(r - r± )L pgt

Cp dT (k)

T and h are assumed constant. This is a reasonable assump-g s

tion for the firebox of a monotube boiler. Although specific

heat of a metal is a function of temperature

Gp = a^^ + a2t + at2 + ,,.

Gp is assumed constant. The value for Fe varies very little

from 1I4.OO F to 2500°F (expected operating range of subcritical

monotube boiler)

»

T llj.00 1600 1800 2000 22^0 2£00

Cp O.I67 0.170 O.I69 0,168 O.I67 O.I67

Expressing (k) in the form

roV Tg = T

wi)dt - <*o

= ri )pgt

QP d < Tg - V'

Page 152: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 153: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

76

and integrating

T = T . -r hg wi 2 /OS . v , , x

T - T " = exP < (r - rjp 7 Sp t} ^Dg wil v o i gt *

or-r h

T , = T - (T -T .,) exp ( , ° Sr^ =-t) (m)wi2 g g wil' * v (r

Q- r^p* .Op

Expressing

r hb a ° S

(ro - r

i)pgt

eP

and substituting into (m)

Twi2 = V 1

" ^^ +Twil U)

The total thermal resistance,, R s of the inner surface of

the tube to heat transfer can be expressed

B --i—" hlAl

According to the thermal circuit concept

or

Substituting

»-Vi<Twi-V (o:

A, = 2tt r.Li i e

and transposing^ (o) can be expressed

Tb * T

wi " h12rr r

±L (p)

T , and L are time dependent variables T „ is expressed bywi e c wi r J

(n) o The experimental work of this thesis showed that saturated

Page 154: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 155: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

77

Interface movement9

AL, could be expressed as

AL = ALJ1 - e"at

)

or L = L + ALJ1 - e"=at

) (q)e2

el

The heat transfer coefficient,, h.scan be expressed by

the standard McAdams expression for forced connection

(JLL) (GpJS' 6

= 0*023 <

^GpbG ;

* K ; b ,G DvOo^Ub

in which subscripts refer to the various temperatures at

which fluid properties are evaluated.

Substituting (q) and (n) into (p)

Tb

= Twi+ T(l-e-bt )~ £—

:H— (r)

the expression that was sought in (g) is obtained

Tb = T

b<Le(t)) (g)

Substituting (r) into (f) an expression for p(L (t)) is obtained6

p(Le(t) ) sf ^

S,bt ,

5 ,(s)

[1+| (T + T (l~e~bt

) - — -3— -Tj]

If (s) is substituted into (d) and the results integrated an

expression for p" is obtained,. Referring to (c)

dL dp"

wout - "in =^edr tLedT' <°>

e e

it is apparent that all variables and constants required to pre-

dict w . are available* Furthermore,, they are of a nature thate

yields to ready placement into analog form

Page 156: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 157: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

78

B. SUMMARY OF DATA AND CALCULATIONS

Page 158: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 159: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

79TABLE II

SUMMARY OP PITTED CURVE VALUES, AT

Run: lb-1Flow Rate: 1£ #/HRPower Level Step: 591 to I2I4.O Watts

AT = AT (1 - e"at

)

AT = 7I4..O

AT = 62.7 t = 3,25

a =

a =

AT^ - AT-ln( -^ )

QO

(la( 7^0-62.7)

3.25

a = O.576

AT - 7I4-.O (1 - e-°^?6t )

0.576t e-0.5?6t

(1 m Q«0.576t

)

0.5 0.291.0 0.592.0 1.1£3.05..0

1.732.30

5.0 2.886.0 3 45

k.037.08.0 I1.6O

AT

0.750 0.250 18.

5

0.562 O.L38 32.5-O.3I6 O.68I4. 50.50.177 0.823 60.90.100 0.900 65.50.056 0.91*1*- 69.70.032 0.968 71.50.018 0.982 72.60.010 0.990 73.1

Page 160: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 161: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

80TABLE II (CONT.)

Run: lb-1Flow Rates 15 ^/HRPower Level Step: 121+0 to 591 Watts

AT = AT (1 - e"at

)

AT = 62.0oo

AT = 55 .1+ t = k

AT^ - AT-ln( —^ )

00a = -—t

-ln(62'V S£A)nK 62.0 ;

a = 5

0.51.02.0.0.0

5.06.07.08.0

I

a = 0.56

AT =62.0 (1-0.56tx- e )

o.56t-o.56t

e ' (1 - e'-0.56tx

AT

0.28 0.756 0.21+1+ 15.20.56 0.571 0.1+29 26.61.12 0.326 O.67I+ 1+2.01.68 0.189 0.811+ 50.5

55 42.2I4- 0.106 O.89I+2.80 0.062 0.938 59.13.36 0.035 0.965 59.83.92 0.019 0.981 60.9

0.011 0.989 61.2

Page 162: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 163: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

Run: 2b

81TABLE II (CONT.)

Plow Rates 20 //HRPower Level Step: £8^ to I2I4.O Watts

AT = ATJ1 - e"at

)

AT^ = 89-7

AT =78,3 t = !(.

AT^ - AT>ln(—Af }

00

I

a =

a =-ln( 89 '? " ? 8 °?irn

89 «7

r^

a - 0,516

AT = 89.7 (1 - e~0-£l6t

)

0.*l6t e-°^l6t

1 - e-°^l6t

I

AT

0.5 0.268 0.765 °»235 21.11.0 0.516 0.596 O^olj. 36.22.0 1.030 0.357 0.6^3 57.6

1.550 0.212 O.788 70.6.0 2.065 0.127 0.873 78.If

6.0 3.100 O.0I4-5 0.955 85 068.0 1^.130 0.016 0.98l(- 88.1

Page 164: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 165: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

82

TABLE II (CONT.)

Run; 2b-3Flow Rate; 20 #/HRPower Level Step; I2I4.O to 58I4. Watts

AT = AT^l - e~at

)

0.51.02.0

5.06.07.08.09.0

I

AT = 81.3CO "

AT = 76.6 t = 7

AT^ - AT-ln( w—

)

OOa -

ib

-ln(61

a 81.3 '

7

a = 0J4.ll

AT = 81 .3 (1-0.I4.lltv

Jp-lt e-0.I|.llt , -0 41It

1 - e AT

0.205 0.811* 0.185 15.00J4.ll 0.662 O.338 27.14-

0.822 0.1^39 0.561 fe.61.2301.6fo

0.292 O.7O8 57.50.193 O.8O7 65-5

2.055 0.128 0.872 70 .92 J4.60 0.085 0.915 lk*k2.880 0.056 O.9I44 76.63.285 0.037 0.963 78.L3.700 0.025 0.975 79-1

Page 166: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 167: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

83TABLE II (CONT.)

Run: 3-1Flow Rate j 25 //HRPower Level Step: 585 to 1218 Watts

AT = AT (1 - e"at

)

*Too

:* 98.0

AT = 87.7 t := 5

&T

Q

-in I

00

;

a.t

Q =-ln( 98 «.0 -

9887.7)

.0 ;

a.

t

a ac 0.14.51

AT S) 98.0 (1 - e-0.l4.51t)

OJtflt e- ^ 1* 1 - e-°^lt

AT

0.5 0.226 0.798 0.202 19.81.0 0.I4.51 0.636 0.36I4. 35.72.0 0.903 O.I4.0I4. 0.596 58.53.0 1.355 0.258 O.7I4.2 72.65-.0 1.805 0.1614. O.836 82.05.0 2.260 O.IOI4- 0.896 88.06.0 2.710 O.O67 0.933 91.57.0 3.160 O.0I4.2 0.958 9ll-«0

8.0 3.610 0.027 0.973 95 «59.0 5_.060 0.017 0.983 96.I4-

Page 168: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 169: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

TABLE II (CONT.)

Run: 3b-2Plow Rate: 25 //HRPower Level Step: I2I4.O to £91 Watts

AT = AT (1 - e"at

)00

Woo 95.6

AT =75*6 t = I4-.25

AT - AT

-lal—flr—

)

00

a = r

a=Kfe

0.51.02.0

5..0

5.06.07.08.0

a = O.369

AT = 95-6 (1 m Q-0.369t

}

0.369t e-0.369t

1 - e"°•369t

AT

0.18^ O.832 0.168 16.1O.369 0.692 O.3O8 29.14-

0.738 0478 0.522 U-9 .9I.I05 0.331 O.669 63.9

0.229 O.77I 73.81.8I4.1 0.158 O.8I4-2 8O.52.210 0.110 0.890 85.02.580 0.076 0.921+ 88.22.950 0.055 0.9^5 90.1}.

Page 170: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 171: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

TABLE II (CONT.)

Run: 101b

85

Power Level: 986 WattsFlow Rate Step: 25 #/HR to 16 .^ /#/HR

AT = AT (1 - e"at

)00 *

AT « 12.700

AT =10,7 t = I4.

AT - AT-ln(—55 )

00a = r

0.51.02.0.0

.0g'.O

6.07*08.09.0

2

a =-ln(

12*V 10 »?)12.7 '

Ta = O.I4.35

AT = 12.7 (1 - e-^35t)

0.1^35t e-0.l4.35t

1 - a",l4-35t

AT

0.218 O.80I4. 0.196 2.14-9

o.l|-35 O.6I4.7 0.353 14-.14-9

0.871 O.I4.I8 0.582 7.391.305 0.271 0.730 9.291. 7*4-0 O.I76 O.82I4. 10452.180 0.113 0.887 11.302.610 O.076 0.920 11.703 .0I4.5 O.0I4.8 0.952 12.103.^80 O.03I 0.969 12.30

12.I4.53.920 0.020 0.980

Page 172: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 173: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

86TABLE II (CONT.)

Run: 102bPower Level;' 9^-6 WattsFlow Rate Step: 25 //HR to 19-5 //HR

AT AToo (1

-atx- e )

oo= 9.7

AT = 7.7 t = 3

a =

AT^ - AT-ln(

AT )

oo

t

a —m^'^j)

0.51.02.0.0

.0

5.06.07.08.09.0

I

a 0.526

3

AT = 9.7 (1 •m e-0.526t

}

.5,26t-0.526t

e 1 - e-°•526t

AT

0.26k O.768 0.232 2.250.526 0.590 Ojj.10 3.981.055 O.3I4.8 0.652 6.321.580 0.206 0.79^ 7.702.110 0.121 0.879 8.522.635 .oik 0.926 9.003.160 O.0I4-2 0.958 9.30

9.fa3.6905. .210

0.025 0.9750.015 0.985 9.55

t.7^-0 0.009 0.991 9.61

Page 174: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 175: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

87

TABLE III

SUMMARY OF COMPUTED CURVE VALUES, AL

Run: lb-1Flow Rate: 15 #/HRPower Level Step: £91 - I2I4.O Watts

AT = 7I4-.O (1 - e-°^76t

)

f(t) * (1 - e"0#576t

) AL^ = -2.65

AL AL^fCt)

AL = -2.«(1 - e"0#5?6t

)

t (1 - .-0.576%, AL

0.5 0.250 -0.6651*0 0.^.38 -1.1902.0 .68I4- -1.810.0 0.823 -2.180.0 0.900 -2.385

5.0 Q.91& -2.5006.0 O.968 -2.5607.0 0.982 -2.6008.0 0.990 -2.620

I

Runs lb-1Flow Rate: 15 #/ERPower Level Step: I2I4.O - 591 Watts

AT = 62.0 (1 - e"°^6t

) AL^ = +2.6

AL * 2.6 (1 - e~°-$6t

)

t (1 - e-°^6t

)

I

AL

0.5 0.2l^ O.6351.0 0.I4-29 1.1172.0 O.67I4. 1.755.0 0.8114- 2.120

^2 C

5.0 0.938 2^0.0 0.89]+ 2.325

6.0 0.965 2.5157.0 0.981 2.5558.0 0.989 2.575

Page 176: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 177: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

88

Run: 2b

AT = 69.7 (1

AL = -2.5 (1

- e

- e

TABLE III (CONT.

)

Flow Rate: 20 ^HRPower Level Step: 58I|_ - 121+.0 Watts

-0.516t) AL^ = -2.5

-0.5l6tj

(1 - e"°^16t

) AL

o.5 0.2 3 5 -O.5871.0 -1.0112.0 0.6k3

O.788-1.610

V.0k.o

-1.9720.873 -2.185

5.0 — — --

6.0 0.955 -2.3907.0 __ -_

8 .0 0.98^ -2.I4.6O

Run: 2b-3Plow Rate 2(

Pow«3r Level Step: 12ij.O - &k Watts

AT = 6I.3 (1-0,

- e4nt) a Lqo = 2.50

AL = 2.50 (1-0,

- e4nt»

t (1 - e" ^11*) AL

0.5 0.185 0.k6l|.

1 .0 O.338 0.814.6

2 .0 0.561 I.I4O5V.04 .0

O.7O8 1.775O.8O7 2.025

5 .0 0.872 2.1856 .0 0.915

0.91A2.290

7.0 2.3608 .0 0.963 2.IJ.10

Page 178: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 179: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

69

TABLE III (CONT.

)

Runs 3-1Plow Rates 25 //HRPower Level Step: 585 to 1218 Watts

AT - 98.0 (1 - e-°'kSlt

) AL^ = _2>30

AL = -2.^0 (1 - e- -^ lt:

)

t 1 - e ^v AL

0.5 0.202 -O.L.651.0 O.36I4. -0.8362.0 0.596 -1.3753.0 O.7I4.2 -1.710IJ..0 O.836 -1.9255.0 0.896 -2.0656.0 0.933 -2.1507.0 0.958 -2.2108.0 0.973 -2.2li.O

Run? 3b-2Flow Rates 25 #/HRPower Level Step: 12lj.O to 591 Watts

AT = 95.6 (1 - e"°' 369t ) AL,, = 2.3

AL = 2.3 (1 - e" -369t}

t (1 . a-0. 369t

) AL

0.5 0.168 O.3871.0 0.308 0.7092.0 0.522 1.2003.0 0.669 1.5k0Ij.oO 0.771 I.78O5.0 O.8I4.2 Io9if06.0 O089O 2.0507.0 0.92lj, 2.1258.0 0.91J-5 2.180

Page 180: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 181: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

90TABLE III ^CONT.)

Run : 101b

Power Level: 986 WattsFlow Rate Step: 25 ///HR to 16.5 #/HR

AT = 12.7 (1.27 (1 - e"°' 345t ) ALQ0

= -2.2

AL = -2.2 (1 - e- ' 34^)

-0.345t

0.5 O.1961.0 0.3532.0 O.5823.0 0.7304.0 0.8245.0 O.8876.0 0.9207.0 0.9528.0 O.969

Run: 102b

(1 - eu-^*) AL

-0.431-0.776-1.281-1.610-1.815-1.955-2.030-2.095-2.135

Power Level: 946 WattsFlow Rate Step: 25 #/HR to 19.5 #/HR

AT = 9.7 (1 - e~°' 526t ) ALC0= -2.15

AL = -2.15 (1 - e-°-526tj

(1 - e-°-526t

) AL

0.5 0.232 -0.4991.0 0.410 -0.8812.0 0.652 -1.4053.0 0.794 -1.7104.0 0.879 -1.8905.0 0.926 -1.9956.0 0.958 -2.0607.0 . 0.975 -2.1008.0 0.985 -2.120

Page 182: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 183: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

91

C. SAMPLE DATA AND WORK SHEETS WITH CALCULATIONS

Page 184: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 185: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

92

TABLE IV

TEMPERATURE MEASUREMENTS DATA SHEET

Rotometer Sotting - 19.5Equivalent Plow - 25 #/hr

Thermocouple Type - IG

Power Level = 585 Watts

Date: 2 1 Eeb. 1963Run : 3_i

Location - 8

V = 80 I = 7.3 Ref. Temp. = 75.0°F

STEP

Time pot- Reading Temperature Comments Time Pete Reading Temp

15, oo ».76 i9 5tQ 25.00 17.71 Sff. Sfl 29 3-0V= 1171=10.4

1^25-I5T50

..98 202.

j

209.7'26.002"7T<Oir T.

7.7q. Sff, SA' 293.3

P.L.=121fi 15.75 5-54 221.0 28.00 7.7T SA, SA 293»?

WATTS 16.0016.25

S-&L5.96

??h«3235-0

16. 50I6-T7S

6.12"oT^B-

B,B"BTB"

2k0.3

17,00 B.B17.25 6.63 B,B 257.0

17.50 6. 76 g.B.B $6^519.7S 6.88 B,B,B 265.3

18. OQ 6.98 B»B.B 266.518.25 ZflSit B,B,B 270.318.50 7.08 B,B,B 271.6

18.75 7- 16 S 271+019.00 7.20 ,27 5,. 719.25 7.28 s,s 278.3

,19. 50, 7.3U _SA_ -2fiP_a.

19-75 7 -.36

7.U1

SA 261.020.00 SA 282.720.2-=

20.5C ?48 SA.SA ..285,020.71 7 . 50 SA . SA 265 .721.0C21.25

7.52 SA.SA 266.3

21.5C21.722. 0(

22.2|22.5<i 7.64

23.OO

2,3.25

7^SA.SA 287.0SA.SA 267.

5

SA.SA 286.0

7.60

7T6TSA,SA

SA,SASA,SA

286.7290.0"

22.7:; 7.65SA,SA

.7.66 SA.SA

290.0290.3

290.723.50 7.70 SA,SA 292.0

23-75 7.71 SA t SA 292.324.00

jEE7.66 SA.SA 269-3

SA.SA

2|f-50 SA.SA2IJV75 7.72 SA,SA 292.3

TABLE IVTEMPERATURE MEASUREMENT DATA SHEET

Page 186: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 187: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

93

TABLE V

DATE" £l_E&k. 1963

"RUN*—^J-X.C. Loca-t\o»J« __8___

Power Level StepX 5&£ Watts to

FLOW- zs#M lb Watt3

Temp. X>iT£ A^cwe StepPo*lTW«

P.t.585 ,TIME

o ©o l^T^Ttf\C

e.3?

Povmvf

95-7

"VlKXE

0>Oi3

PLwe

TIME.

e-Pi"

PL.

O. 7!> 7.3 fi.-SO 97.0 _£^£ S.-fo

o.so 1^.7 &l£ 97.3 O,>0 9 75

SJ£1 .00

t.*T

±S0_

An£2&>.

JLZ£2,S°

fcZ£a-oo

26.0

31.3

[4.O.O

JfcSsl

50.0

56.2

$2.0

66ti

l£il21±1

<?,<><> 9U.3 <3-7v

^2L«?.s0

Lag

iLZil 970 f,!>'0

/0.00 96.0 1.7*

IQ'OC

lO.-ZO

!&•!<>

I 1. 00

H>*\

2,00

JhlL\A

Jl2£..as

Q.do

fr*T

**fl

4.1 ±

jQ.Od

/0«?i

/0'Sfl

/07S.

//.OO

If.^3.2T 75.1 It. -TO u£. /).s«

?.*-* 76.7 Ul21 ££L JiJi.

aac 79.3 I3.0Q if 7* n.o*

AiSO_ 30.7 +.00

4-ar SSLl 4.5?

4'iT<3 35.3 4>S0

4-7^ 86.0ffc2£

^Too 97-7 &SS^^"

S'3S*

«6'VQ

^.7^>

6.00

90.0

90.7

91.3

^^Q_^7V

A^fi-&..?r 92.0 jL2^_£.:Tt> 92.5 6..S'Q

_^Ii_7r^O

93-0

2ilA^i7.1^

JL2£ 95_i0 ^2£7">'0

7.7-T

6.0^

95-0

95.3

7r^2^:e^Q

TABLE VTEMPERATURE WORK SHEET

Page 188: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 189: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

TABLE VI

SAMPLE CALCULATION SHEET

Run: 3-1

Assuming an equation of the form

AT = AT(1 - e"at

)

From WORK SHEET

and

AT10

= AT^ = 98.0

AT^ = 87.7

Now AT = AT™ AT^ e"at

-at

'00 "^OO

AT_ - At

ATU J.QJJ

= e

In AT^ - AT

AT" -L oo

= -at

AT^ - AT-ln(—

a ="AT

t

-.,/ 98 - 87.7 ,~ lrH q^'

)

a = p

-ln(10.3/98.0).=

_ -In 0.105

a = 0.1|51

and AT = 98. (1 - e"0451tj

*

Page 190: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 191: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

95

TABLE VI (CONT.

)

TO OBTAIN POINTS OF COMPUTED CURVE

t o45it e-°45it ! _ e

-o45itAT

0.5 0.226 O.7981.0 0451 O.6362.0 0.903 0404,3.0 1.355 0.258J4.0O 1.605 0.1614.

5.0 2.260 O.lOlj.

6.0 2.710 O.O677.0 3. 160 0.01^28.0 3. 610 0.027

I9.0 I4..O6O 0.017

0.202 19.8O.36I4.

0.59635.758.5

O.7I4.2 72.6O.836 82.00.896 88.00.933 91.50.958 9I4-0O

0.973 95.5964O.983

Page 192: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 193: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

96

D. ORIGINAL DATA

Page 194: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 195: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

97

TABLE VII

TRANSIENT TEMPERATURE AND VISUAL RESPONSETHERMOCOUPLE 8

Rotometer Setting: I3.OEquivalent Plow: 15 #/hRThermocouple Type: I.C.Location: 8

t Potentiometer(Minutes) (M.V.)

Date: 26 Feb. 1963Run: lb-1Power Level Step: 591 Watts to

121+0 Watts

Visual Temperature At ATCode °P From Step From Step

I

0.000.250.500.751.001.251.501.752.002.252.502.753.003.253.50

• 75.00

1±.2$k.50

5.00

5.505.756.006.256.50$.757.007.257.507.T58.008.258.508.759.009.5010.00

5-96 B 235.0243.36.21 B

6.1+0 B 21J.9.36.68 S 258.76.9lf S 267.37.19 s 275.07.24 s 277.07.1j-2

7.60SA 283.OSA 288.7

7.67 SA 291.07.76 SA 291+.07.78 SA 2<3f.77.83 SA 296.37.87 SA 297.77.90 SA 298.77.9k. SA,SA 300.07-96 SA,SA 3OO.77.98 SA,SA 301.38.03 SA,SA 302.8

8.05 SA,SA 303.330I+.O8.07 SA,SA

8.08 SA,SA 3OI+.38.08 SA,SA 301+.380 10 SA S SA 305.O8. 11+ SA,SA 306.38.138.15

SA,SA 3O6.OSA,SA 306.3

8.13 SA,SA 3O6.O8.15 SA,SA 306.78.16 SA,SA 307.O8.16 SA,SA 3O7.O8.15 SA,SA 306.78.17 SA,SA 307.38.18 SA,SA 307.7

8.22 SA,SA 309.O8.22 SA,SA 309.O8.22 SA,SA 3O9.O

0.00 0.00.25 8.30.50 11+.30.75 23.71.00 32.3

1+0.01.251.50 1+2.0

1.75 1+8.02.00 53.72.25 56.02;50 59.02.75 59.73-0,0 61.

3

3.25 62.73.50 63.73.75L.00

65.065.7

k.25 66.3k.50 67*84.75 —5.00 68.36^S 69.05.50 69«35.75 69.36.00 70,06.25 71.36.50 71.06.75 71.37.00 71.07.25 71.77.50 72.07.75 72.08.00 71.78.25 72.38.50 72.78.75 -.

9.00 71+.0

9»50 7^.010.00 7k •

Page 196: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 197: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

98

TABLE VII (CONT.

)

Rotometer Setting: I3.O Date: 26 Feb. I963Equivalent Plow: 15 #/HR Run: lb-1Thermocouple Type: I.G. Power Level Step: I2I4.O Watts toLocation: 8 591 Watts

t(Minutes

)

16. 5016.7517.0017.2517.5017.7519.00I8e2518.5018.7519.0019.2519.5019.7520.0020.2520.5020.7521.0021.2521.5021.7522.0022.2522.5022.7523.0023.2523.5023.752IJ..002k. 252ii..50

24.7525.0025.2525.50

tentiometer Visual Temperature At AT(M.V.) Code Prom Step Prom Step

8.27 SA,SA,SA 310.7 0.00 0.08.09 SA , SA , SA 304.7 0.25 6.07.80 SA , SA , SA 295.3 0.50 15.47.57 SA,SA 287.7 0.75 23.07.32 SA,SA 279.7 1.00 31.07.29 SA,SA 278.7 1.25 32.07.17 SA,SA 274.7 1.50 36.07.08 SA,SA 271.7 1.75 39.0

4346.946.88

SA,SA 267.3 2.00SA 265.3

263.42.25 454

6.82 SA 2.50 47.36.71 SA 259.7 2; 75 51.06.71 SA 259.7 3.00 51.06.66 SA 258.0 3.25 52.76.62 SA 256.7 3.50 54»P6.58 SA 255.3 3.75

4.0055.4

6.58 SA ^ .3 55.46.56 SA 254.7 4.25 56.06.556.54

s,s 254.3 4.50 56.4S,S 254.0 4.75 56.7

6.52 s,s 253.3 5.00 57.46,^06.47

s,s 252.7 5.25 58.0s 251.7 5.50 59.Q

6.49 s 252.3 5.75 58.4.. s __ 6.00 «--

6.44 3 250.7 6.25 60.06.46 s 251.3 6.50 59.46.46 s 251.3 6.75 59.4-- s -_ 7.00 --__ s __ 7.25 —

6.42 s 250.0 7.50 60.7— s -- 7.75 --

6.42 B 250.0 8.00 60.

7

-- B _=. 8.25 —6.42 B 250.O

248.78.50 60.

7

6.38 B 8o75 62.06.37 B 248.7 9.00 62.0

Page 198: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 199: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

99

TABLE VII (CONT.

)

Rotometer Sotting: 16.5Equivalent Plow: 20 #/HRThermocouple Type: I.C.Location: 8

t Potentiometer Visual(Minutes) (M.V.) Code

Date: 26 Feb. I963Run: 2bPower Level Step: 58I4. Watts to

12^0 Watts

39.0039.2539.5039.754.0.00k0.2514.0.50

1^.0.75

41.00kl.2541.50{4-1-7542.00i^-2.25

k2.50^-2.7543.00

k3-50^3-7544.00kk.25^.50

45.00

I+5.25k5.5o^5«.7546.0046.254.6.50{1-6.7547.0048.0049.0050.0051.00

5.365.625.986.186406.626.827.137.227.3274o7.527497.647.67

7. 74

7.80

7.85

7.88

7.927. 9k7.967.91+

7.98

8.008.028.058.088.09

BBBBBBBBBBBBBBBBBSSSASASASASASASA,SASA,SASA,SASA,SASA,SASA,SASA,SASA,SASA,SASA,SASA,SASA,SASA,SASA,SASA,SASA,SASA,SASA,SASA,SASA,SASA,SA

TemperatureoF

215.0223.7235.72k2.3249.3256.7263.3273.3276.3279.7282.3286.3285-3290.0291.0

293.3

295.3

297.0

298.0

299.3300.03OO.7300.0

301.0

302.0302.5303.330k.

3

304.7

AtFrom Step

ATFrom Step

0.000.25

0.08.7

0.50 20.70.75 27.31.00 314..0

kl.71.251.50 48.31.75 53.52.00 58.32.ZS 614..7

2.50 67.32.75 70.33.00 72.53.25 75.03.50 76.03.754.00

-~

78.3k.25 —k.50 8O.3i|.75 —5.00 82.05.25 __

5.50 83.O5.75 --

6.00 BI4-. 36.25 85.06.50 85-76.75 85.07.00 —7.25 66.37.50 --

7.75 —8.00- 87.09.00 87.510.00 88.311.00 89.312.00 89.7

Page 200: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 201: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

100

TABLE VII (CONT.)

Rotometer Setting: 16.

5

Equivalent Flow: 20 //HRThermocouple Type: I.G.Location: 8

(Minutes

)

66.0066.25$6.5066.7567.0067.2567.5067.7568.0068.2568.5068.7569.0069.2569.5069.7570.00-70.25170.5070.7571.0071.2571.5071.7572.0072.2572.5072.7573.0073.2573.5073.7574.007S-25

Potentiometer(M.V.)

8.208.027.707.547.327.207.0k6.986.856.766.686.616.54

6.1+1

6.356.3O6.236.18

6.O7

6.0I4.

5-94

5.90

5.86

5.82

5.825.72

Date: 26 Feb. I963Run: 2b-3Power Level Step: I2I4.O Watts to

58i| Watts

Visual Temperature At ATCode op From Step From Step

SA 3O8.3 0.00 0.0SA 302.0 0.25 5.8SA 292.0 0.50 16.

3

SA 287.0 0.75 21.3SA 279.7 1.00 28.6SA 275.7 1.25 32.6S 27O.3 1.50 38.OS 268.5 1.75 39.8

44.OS 264-3 2.00s 261.3 2.25 47.0s 258.7 2.50 49.6BBB 256.3 2.75 52.0BBB 25^.0 3.00 54.3BBB -- 3.25 __

BB 21+9.6 3.50 58.7BB 247.6 3.75

4.0060.

7

B 246.0 62.3B 2k3.8 4.25 64.5B 242.3 4.50 66.0B — 4.75 —B 238.6 5.00 69.7B -- 5*z$ --

B 237.7 5.50 70.6B -- 5.75 --

B 243.3 6.00 65.OB -- 6.25 --

B 233.O 6.50 75.3B -- 6.75 --

B 231.7 7.00 76.6B -- 7.25 -„

B 23O.3 7.50 78.

C

B — 7.75 —B 2<30.

3

8.00 78 oOB 227.0 9.25 81.3

Page 202: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 203: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

101

TABLE VII (CONT.

)

Rotometer Sotting: 19.5 Date: 21 Feb. 1963Equivalent Flow: 2$ fflm Run: 3-1Thermocouple Type: I.C. Power Level Step: $&5 Watts toLocation: 8 1218 Watts

e At ATFrom Step From Step

0.000.25 7.3

t Potentiometer Visual Tempera 1

(Minutes

)

(M.V.) Code

15.00 U-.76 B 195 «o

15.25 M-.98 B 202 .3

15.50 5.20 B 209.715.75 *.# B 221.016.00 5.70 B 226.316.25 5.96 B 235.0

2I+0.316.50 6.12 B,B16.75 6.28 B,B 21+5.317.00 — B,B ._

17.25 6.63 B,B 257.017.50 6.76 B,B,B 261 .3

17.75 6.88 B,B,B 265.318.00 6.98 B,B,B 268 „518.25 7.0Ll- B,B,B 270.318.50 7.08 B,B,B 271.618.75 7. 16 S 271+.319.00 7.20 S 275.719.25 7.28 s,s 278.319.50 7.35- SA 280.319.75 7.36

7.tlSA 281.0

20.00 SA 282.720.25 — - -- --

20.50 7.^-8 SA,SA 285.020.75 7.50 SA,SA 285.721.00 7.52 SA,SA 286.321.25 7-55- SA,SA 287.021.50 7.56 SA,SA 287.521.75 7.58 SA,SA 288.022.00 7.60 SA,SA 288.722.25 7.61+ SA,SA 290.022.50 7.61+ SA,SA 290.022.75 7.65 SA,SA 290.323.00 „« — —23.25 7.66 SA,SA 290.723.50 7.70 SA,SA 292.023.75 7.71 SA,SA 292.32I4..OO 7.68 SA,SA 289.3

I

15-.726.0

0.500.751.00 31.31.25 IJ.0.0

1.50 1+5.31.75 50.02.00 56.22.25 62.02.50 66.32.75 70.33.00 73.53.25 75.33.50 76.7.75 79.3.00 80 .7

fi-.25 83.314-.50 85.31+.75 86.05.00 87.75.255.50 90.05.75 90.76.00 91.36.25 92.06.50 92.56 .75 93 .0

7.00 93.77.25 95.07.50 95.07.75 95.38.008.25 95.78.50 97.08.75 97.39.00 91+.3

Page 204: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 205: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

102

TABLE VII (CONT,

)

Rotometer Setting: 19.5 Date : 25 :Feb. 1963Equivalent Plow: 25 #HR Run: 3b-2Thermocouple Type J I.C. Power Leve 1 Step: 12^0 Watts toLocation: fl 591 Watts

t Potentiometer Visual Temperature At AT(Minutes

)

(M.V.) Code °F Prom Step Prom Step

32.00 8.ll+ SA 306,3 0.0032.25 7.89 SA 298.3 0.25 8.032.50 7.65 S 290.3 0.50 16.032.75 7.50 S 285 .7 0.75 20.633.00 7.18 S 275.0 1.00 31.333.25 7.10 S 272,3 1.25 3^.033.50 6.91+ BBB 267.3 I.56 39.033.75 — BB —

.

1.75 --6.67 B 258.3 2.00 1+8.0

3^.25 6.56 B 25^.7 2.25 51.63^.50 6.1J.8 B 2^2.0

2L6.72.50 514-.3

3^.75 6.32 B 2.75 59.635.00 6.18 B 21+2.3 3.00 6I+.0

35.25 «.- - -- 3.25 .<.

35.50 6.0I+ B 237.7 3.50 68.635.75 5.91+ B 231+.3 3.75

6-0072.0

36.OO -_ mm _- ....

36.25 5-835.71J-

B 230.7 k.2$ 75.636.50 B 227.7 k.50 78.636.75 B »- 1+.75 —37.00 5.70 B 226.3 5.00 80,037.25 — B — $*2$ __

37.50 5.59 B 222.7 5.50 83 .6

37.75 --, B -- 5.75 ..-

38.00 5.53 B 220.7 6.00 85,638.25 «.«. B „« 6.25 «.«,

38.50 5.50 B 219,7 6.50 86.638.75 c=_ B =.~ 6.75 ._

39.00 $*hh B ' 217,7 7,00 88.739.25 — B -» 7.25 -»

39.50 5.W- B 217.7 7.50 "88.6

39.751+0.00

~~ B ~c= 7.75 <--

5.I+0 B 216.3 8.00 90,0I+1.00 5.3k B 211+.3 9,00 92.0

J+2.50 5.27 B- 212.0 10.50 91+.3I+3.001+1+ .00

5.25 B 211.3 11.00 95.05.23 B 210,7 12.00 95.6

I+5.00 5.23 B 210.7 13.00 95.6

Page 206: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 207: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

103

TABLE VII (CONT.

)

Power Level: 986 Watts Date: 2 March 1963Thermocouple Type: I.G. Run: 101bLocation: 8 Plow Step: From 25 ;#/HR to

16. 5 j#/HR

t Potentiometer Visual Temperature At AT(Minutes) (M.V.) Code °P Prom Step Prom Step

0.000.250.500.751.001.251.501.752.002.252.502.753.003.253.503.754..00

1^.25

^-.5014-.75

5.005.255.505.756.006.256.506.757.007.257.507.758.008.258.508.759.009.50

7.89 B 298.37.92 B 299.37.96 B 300.57.99 B 301.58.02 S 302.58.08 S 30k .3

8.09 S 30I4-.6

8.12 S 305.78.1k s 306.38.lli SA 306.3„_ SA =»_

8.16 SA 307.08.18 SA 307.78.20 SA 308.38.20 SA 308.38.22 SA 309.08.22 SA 309.08.22 SA 309.08.23 SA 309.3

8.21}. SA 309.78.21J- SA 309.78.2l|- SA 309.7

8.25 SA 310.08.25 SA 310.08.26 SA 310.38.26 SA 310.38.26 SA 310.3

8.26 SA 310.38.26 SA 310.3

8.27 SA 310.7

8.27 SA 310.78.28 SA 311.08.27 SA 310.7

0.000.25 1.00.50 2.20.75

1:11.001.25 6.01.50

741.752.00 8.02.25 8.02.50 —2.75 8.73.00 9.03.25 10.03.50 10.03.75I4..OO

10.710.7

14-.25 10 .7k.50 11.01+.75 _=

5.00 1145.25 11.k5.50 11 4.

5.75 ...

6.00 11.76.25 11.76.50 12.06.75 12.07.00 12.07.25 -.

7.50 12.07.75 12.08.00 __

8.25 1248.50 „_

8.75 12 .I4.

9.00 12.79.50 12.4

Page 208: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 209: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

TABLE VII (CONT.

)

lOlj.

Power Level: 966 WattsThermocouple T$pe : I.C.Locations 8

Date: 11 March 1963Run: 101cFlow Step: From 16. 5 #/HR to

25 //HR

t Potentiometer Visual Temperature At(Minutes

)

(M.V.) Code Op From 2

0,00 8.12 SA 305.7 0.000.25 8.13 SA 306.0 0.250.50 8.13 SA 306.0 0.500.75 8.13 SA 306.0 0.751.00 8.13 SA 306.0 1.001.25 8 .11 S 305.3 1.251.50 8.10 S 305.0

30H-.7

1.501.75 8.09 S 1.752.00 8.06 S 303.7 2.002.25 _=, B -- 2.252.50 8.02 B 302.5 2.502.75 «,- B — 2.753.00 7-98 B 301.3 3.003.25 — B — 3.253.50 7.96 B 300.7 3.503.754 .00

7.9> B 300.0 3.75I4..OO7.* B 300.0

M$ 7.91 B 299.0 M*k.50 7.90 B 29*3.7 M°>4-.75 7.90 B 298.7 ^.755.00 7.88 B 298.0 5.005.25 7.87 B 297.7 ^^5.50 7.86 B 297.3 5.505.75 7.86 B 297.3 5.756.00 7.81+. B 296.7 6.006.25 7.85 B 297.0 6.257.00 7 083 B 296.3 7.008.00 7.81 B 295.7 8.009-00 7.80 B 295.3 9.0010.00 7.80 B 295.3 10.0011.00 7.80 B 295.3 11.0012.00 7.80 B 295.3 12.00

ATFrom I

0.0+0.3+0.3+0.3+0.30.5.

0.71.02.0

3.2

k"k

5.05.75.76.77.07.07.78.08.I4-

8 49.08.79.I4-

10.010 .I4.

10 J4.

10 410.14.

Page 210: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 211: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

105

TABLE VII (CONT.

)

Power Level: 9l+6 WattsThermocouple .Type : I.C.Location: 8

Date: 2 March 1963Run: 102bFlow Step: 2$ #/HR to

19.5 #/hr

t Potentiometer Visual Tempera ti

(Minutes

)

(M.V.) Code °F

0.00 7-98 B 301.30.25 8.00 B 302.00.^0 8.05 B 303.3

30^.30.75 B.08 B1.00 8.11 B 305.31.25 8.13 S 306.0l.^O 8.15 S 306.71.75 8.15 S 306.72.00 8.17 S 307.32.25 8.19 S 308.02.50 _„ S —2.75 — S —3.00 8.22 SA 309.03.25 .. SA ~_

3.50 8 .21+ SA 309.73.75\ .00

8.238.2k

SA 309.3SA 309.7

h-2$ 8.21+ SA 309.7k.50 8.25 SA 310.01+.75 __ -- ..

5.00 8.26 SA 310.35.25 8.27 SA 310.75.50 9.27 SA 310.75.75 ... — —6.00 8.26 SA 310.36.25 8.27 SA 310.76.50 8.27 SA 310.76.75 8.26 SA 310.37.00 8.27 SA 310.77.25 .. 03 CD .-

7.50 8.27 SA 310.77.75 .- — •=_

8.00 8.28 SA 311.08.25 =,. <=» <am =,»

8.50 8.28 SA 311.08.75 8.28 SA 311.09.00 8.28 SA 311.010.00 8.28 SA 311.0

AtFrom Step

ATFrom Step

0.00 0.00.25 0.80.50 2.00.75 3.0

&.o1.001.25 t..71.50 *Si1.75 SA2.00 6.02.25 6.72.50 —2.75 —3.00 7.73.25 ._

3.50 8.1+

3.75l+.oo

8.08.1+

1+.25 8.1+

k.50 8.7H-.75 ..

5.00 9.05.25 9.1+

5.50 9.1+

5.75 ..

6.00 9.06.25 9.}+6.50 9.1+

6.75 9.07.00 9.1+

7.25 ..

7.50 9.1+

7.75 .-

8.00 9.78.25 __

8.50 9.78.75 9.79.00 9.710.00 9.7

Page 212: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 213: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

I

106

TABLE VIII

TEMPERATURE VARIATION THERMOCOUPLES 1 - 7 AT STEADY STATECONDITIONS FOR EACH RUN

Runs lb-1

Before +Aq

Thermocouple M.V.

1 2.362 3.12

3.263.38

5 3-5-96 3.597 3-61+

After +Aq

Thermocouple M.V.

1 3.882 5.633 5.95k 6.095 6.106 • 5. 81+

7 5«4l

Runs ! 2b

Before +Aq

Thermocouple M.V,

1 2,382 2.9l} 3.085- 3 .175 3 .21+

6 3.27 'M

After +Aq

Thermocouple M.V.

1 3.872 5.213 5.51\ 5.675 5.696 5.517 5.05

T(°F) AT

135.5166 .5 31.0172.5 37.0

5-1.5177.0181 .5 1+6.0185 .5 50.0187 .5 52.0

T(°F) AT

197 .0

263.O 66.0275.O 78.0280.0 83.O280.5 83.5

7^.0271.0255.0 58.0

T(°F) AT

136.5159 4 23.0I65.O 28.5168.5 32.0171.5 35.0

3^.5171.0171.5 35-0

T(°F) AT

196.5214-7.5 51.0258.5 62.0261+ .5 68.0265.5 69.O256.521+1.5

60.01+5.

Page 214: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 215: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

i

I

107

TABLE VIII (CONT.)

Runs 3-1

Before +Aq

Thermocouple M.V.

1 2.3?2 2.81+

2.963.03

5 3.05-

6 3.137 3.13

After +Aq

Thermocouple M.V.

1 3.822 5- .99

5.21+

5-5-3

6 5.357 5.08

T(°P) AT

137.0 0.0155.0 18.0160. 23.0163 .0 26.0163.5 26.5167. 30.0I67.O 30.0

T(°P) AT

19l|.5 0.0239.525-9.6

5-5.055.i

255.5 61.0256.5 62.0252.525.2.5

58.05-8.0

Page 216: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 217: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

108TABLE VIII (CONT.)

Run t lb-1

Before -Aq

Thermocouple -M.V

1 3.892 5«%

I5.714-

5.865 5.886 5.714-

7 5.14-1

M.V,

12

56

7

2.I+I4-

3.233.14-3

3.613.733.773.8I4,

Runs 2b-3

Before -Aq

Thermbcouple M.V

1

2

7

3.875.295.635.805.835.585.11

After -Aq

Thermocouple M.V

12

I7

2.393.033.173.333.383.5-7

3 49

T(°F) AT

197.0 0.0256.0 59.0267.0 70.0271.5 7^.5272.0 75.0267.0 70.0255.0 58.0

T(°P) AT

139.0 0.0171.0 32.0

5-0.0179.0186.0 5-7.0190.5 51.5192.5 53.5195.0 56.0

T(°P) AT

196.5 0.0250.5 5I4..O

263.O 66.5269.5 73.0

7t.O270.5261.0 69.5214-3 .5 5-7 .0

T(°P) AT

137.0 0.0I63 .0 26.0168.5 31.5175.0 38.0177.0 5-0 #Q180 .5 5-3 .5181 .5 I44.5

Page 218: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 219: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

TABLE VIII (CONT.)109

Runs 3b-2

Before -Aq

Thermocouple M.V

1 3.815- .932

i5.275.5-2

5 5-U-76 5-367 5.07

After -Aq

Thermocouple M.V

1 2.362 2.82

I2.963.07

5 3.096 3.%7 3. It

T(°P) AT

19I1-.0 0.0237.0 I4.3 .0

25-9-5 55.5255.0 61.0257.0 63.O2^3.0 59.O2f|.2.0 5.8.0

T(°P) AT

135.5 0.0155- •£ 19.0160.0 2I4. .5161+ .5 29.0165 .5 30.0I67.5 32.0I67.5 32.0

Page 220: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 221: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

i

110

TABLE VIII (CONT.)

Run: 101b

Before-AW

Thermocouple M.V. T(°P) AT

1 3.12 166.5 0.02 3.88 196.5 30.03 5-.06 203.5 37.05. IJ..16 207.5 5-1.0

5 I|-.21 209.5 43.06 5- .25- 210.5 I44.O

7 U- .2i+- 210.5 55- .0

After -AW

Thermocouple M.V. T(°F) AT

1 3.26 172.0 0.02 t.30 215.. 1+2.0

H-.65 226.5 5J4..5

5-. 85 . 23I4..O 62.05 I4..85 234-.0 62.06 [J..80 232.0 60.07 t«56 223.0 51.0

Run : lp2b

Before -AW

Thermocouple M.V. T(°P) AT

1 3.2k2 5-. 25-

3 L.515- 5-.70

5 5-. 806 I4..83

7 5-. 83

After -AW

Thermocouple M.V.

1 3.272 IJ..58

3 5- .97t 5.25-

S 5.326 5.137 kM

171.5 0.0210.5 39.0

5-9.5221.0228.5 57.0231.5 60.0233*0 61.5233.0 61.

5

T(°F) AT

172.5 0.0223.5 51.023 8.525.8.5

66.076.O

2^579.072.0

219.0 5-6.5

Page 222: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 223: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

Ill

TABLE VIII (CONT.)

Jtun: 101c

Before +AW

Thermocouple M.V

1 3.26B-J4-02

I5.68I4..86

5 k.876 kM7 k-Kl

After +AW

Thermocouple M.V

1 3.21&.032

I t.395 k.506 k.507 f.50

T(°P) AT

172.0 0.0217.0 I4.5.O

227.5 55.523I4..O 62.023k •£ 62.^230.0 58.O219.5 5-7.5

T(°P) AT

170.5 0.0202.5 32.5211.0 tj.0.5

216 .5 lj.6.0

220.5 50.0220.5 50.0220.5 50.0

Page 224: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 225: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

112

E. LITERATURE CITATIONS

Page 226: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 227: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

113

LITERATURE CITATIONS

1* Profos, P», "Dynamic Behavior of Forced-Flow EvaporatorSystems," Sulaer Technical Review, Reserach Number l\. t i960,p. £.

2. Dengler, C.E., "Heat Transfer and Pressure Drop forEvaporation of Water in a Vertical Tube," Sc.D. Thesis,Massachusetts Institute of Technology, Cambridge, Massa-chusetts, 1952.

3. Kozlov, B.K., "Regimes and Types of Flow for an Air-WaterMixture in Vertical Tubes," Hydrodynamics and Heat TransferDuring Boiling in High Pressure Boilers, AEC-tr-l^O, p. 7.

I4., Armand, A.A., "The Flow Mechanism of a Two-Phase Mixturein a Vertical Tube," Hydrodynamics and Heat TransferDuring Boiling in High Pressure Boilers, AEC-tr4jl}.90, p . 19

.

5. Bergles, A.E., and Rohsenow, W.M., " Fore ed-Conxect ionSurface-Boiling Heat Transfer and Burnout in Tubes ofSmall Diameter," Technical Report No. 8767-21, Massachu-setts Institute of Technology, National Magnet Laboratory,Cambridge, Massachusetts, May, 1962.

6. Wallis, G.B., and Heasley, J.H., "Oscillations in Two-Phase Flow Systems," ASME Paper, 60-WA-209

.

7. Stenning, A.H., "Instabilities in the Flow of a BoilingLiquid," ASME Paper, 62-WA-l^^.

8. Buchberg, H., et al., "Studies in Boiling Heat Transfer*,"Final Report AEC Research Contract No, AT-11-l-GEN 9,Department of Engineering, University of California,March, 19^1

9. Swenson, H.S., Carver, J.R., and Szoeke, G., "The Effectsof Nucleate Boiling Versus Fibre Boiling on Heat Transferin Power Boiler Tubes," ASME Paper, 61-WA-201.

10. Becker, K.M., Hernborg, G., and Bode, M., "An ExperimentalStudy of Pressure Gradients for Flow of Boiling Water inVertical Round Ducts (Part 3)," Report AE-8£, AKTIEBOLAGETATOMENERGI, Stockholm, Sweden, 1962.

Page 228: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 229: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

uk

F. SUPPLEMENTARY LITERATURE REFERENCES

Page 230: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 231: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

115

SUPPLEMENTARY LITERATURE CITATIONS

1. Beecher, D .T . , "Dynamics of a Counter Plow Heat Exchanger,"ASME Paper, 61-WA-252.

2. Berenson, P. J., "Film Boiling Heat Transfer from a Hori-zontal Surface," ASME Paper, $0-WA-lli.7.

3. Bode, M., Becker, K.M., and Hernborg, G., "An ExperimentalStudy of Pressure Gradients for Flow of Boiling Water inVertical Round Ducts (Part 3)," AE 85, Stockholm, Sweden,1962.

I4.. Chang, Y.P., "Some Possible Critical Conditions in NucleateBoiling," ASME Paper, 62-HT-37.

5. Chein, K.L., Ergin, E.I., and Ling, C, "MathematicalAnalysis of Boiler Dynamics and a Non-Interacting TypeBoiler Controller," NRD Report.

6. Chein, K.L., Ergin, E.I., Ling, C, and Lee, A,, "DynamicAnalysis of a Boiler," Trans, ASME, Vol. 58, No. 1, 1958,pp. 1809-1819.

7. Daman, E., Phillips, H., Vail, J., and Ling, S., "OperatingResults of an Experimental Supercritical Steam Generator,"Journal of Engineering for Power, Trans. ASME, January1959, pp. 55-65.

8. Dillard, J.K., and Everett, J.L., "Simulation of the SteamPower Plant," Westinghouse Engineer, Vol. 21, No. 6, 1961,pp. I7l}.-179.

9. Enns, M., "Comparison of Dynamic Models of a Superheater,"ASME Paper 6I-WA-I7I.

10. Harvey, B.F., and Foust, A.S., "Two-Phase One-QImensionalFlow Equations and Their Application to Flow in EvaporatorTubes," Chemical Engineering Progress Symposium, Vol. I4.7,

1951, pp. 91-106.

11. Hatch, J.E., Schacht, R.L., Albers , L.U., and Saper, P.G.,"Graphical Presentation of Difference Solutions for Tran-sient Radial Heat Conduction in Hollow Cylinders with HeatTransfer at the Inner Radius and Finite Slabs with HeatTransfer at One Boundary," NASA Technical Report R-5&*1959.

Page 232: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 233: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

116

12, Hansen, P.D., "The Dynamics of Heat Exchange Processes,"Sc.D. Thesis in Mechanical Engineering, MassachusettsInstitute of Technology, i960.

13, Granet, I., "The Computation of Natural Circulation inLarge Boilers," M.S. Thesis in Mechanical Engineering,Brooklyn Polytechnic Institute, 19^8

lij.. Griffith, P., "The Prediction of Low Quality BoilingVoids," Report No. 7-7673-23, Department of MechanicalEngineering, Massachusetts Institute of Technology,January 1963 .

l^. Hayes, V.R., and Bartol, J.A., "Heat Transfer to WaterPlowing at Very High Velocity," M.S. Thesis in NavalConstruction and Engineering, Massachusetts Institute ofTechnology, 19^4-

16. Hotta, K., and Sutabutra, H., "Dynamics of Heat Exchangers,"M.S. Thesis in Mechanical Engineering, Massachusetts Insti-tute of Technology, i960.

17. Hsu, So, and Ing, P.W., "Experiments on Forced ConvectionSubcooled Nucleate Heat Transfer," ASME Paper, 62-HT-38.

18. Jichs , J.J., and Frank, S., "An Experimental Local BoilingHeat Transfer and Pressure Drop Study of a Round Tube," ASMEPaper, 62-HT-I4.8.

19. Kispert, E.G., "The Universal Pressure Boiler for Sub-critical and Supercritical Pressures," Bulletin BR-721A,The Babcock and Wilcox Co., 19 £9

.

20. Levy, S., "Prediction of Two Phase Pressure Drop andDensity Distribution from Mixing Length Theory," ASMEPaper, 62-HT-6.

21. Meyer, J.E., and Rose, R «P . , "Application of a MomentumIntegral Model to the Study of Parallel Channel BoilingFlow Oscillations," ASME Paper 62-HT-Ii-l.

22. Moissis, R., and Berenson, P.J., "On the HydrodynamicTransitions In Nucleate Boiling," ASME Paper, 62-HT-8.

23. Nishihara, H., and Nishara, H., "Investigation on Stabilityof a Boiling Heavy Water Reactor," AEC-tr-^078, July, 1962.

2I4-. Profos, P., "Dynamics of Pressure and Combustion Controlin Steam 'Generators," COMBUSTION, March, I96I.

2£. Rothemund, R.E., "The Development of the Universal PressureSteam Generator for Subcritical Operation," BulletinBR-7£5-£00-6-60, The Babcock and Wilcox Co., i960.

Page 234: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 235: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

117

26, Rowand, W.H., "Latest Development in the Universal PressureBoiler," E-IOI-3OI7-6M-3-62, the Babcock and Wilcox Co.,1962.

27. Svoboda, 0., and Tuma, J., "A Contribution to the Solutionof Transient Heat Transfer Problems by Means of ElectricAnalogy," ASME Paper, 62-HT-2.

Page 236: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 237: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

118

G. TABLE OF SYMBOLS

Page 238: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 239: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

119

TABLE OF SYMBOLS

A « inside cross-sectional area of tube, ft

A. = inside heat transfer area of tube, ft 2

2

A = outside heat transfer area of tube , fto

a = experimental time constant, min

2tx v

-1

B = bubble regime of boiling, repeating symbol signifiesincreasing intensity of phenomenon

C = specific heat, BTU lb"*1

°F"1

c ' m

Cp = specific heat at constant pressure, BTU lb ~°F""

* m

D = inside diameter of generating tube, ft.

-1 -2G = mass flow rate per unit area, lb hr ft

* m

h. = forced-convection heat transfer coefficient, BTU hr"1 ft-2 °F-1

h = firebox tube scale heat transfer coefficient, BTU hr"3 ft"2 °F-1

K = thermal conductivity, BTU hr"1

ft"1

°F"1

L = length of generating tube, ft

Lp length of generating tube at which peak outside walltemperature occurs, ft.

M = mass, lb• m

-1 -PQ, = heat flux for inside surface of tube, BTU hr ft

q a heat flow rate, WATTS

r = latent heat of evaporation, BTU lb

r. = inside tube radius, ft

r = outside tube radius, fto

S = slug regime of boiling, repeating symbol signifiesincreasing intensity of phenomenon

SA slug-annular regime of boiling, repeating symbolsignifies increasing intensity of phenomenon

m

Page 240: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 241: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

120

T temperature, P

t time, hr, min, sec

T_j = transport time, min"

TA = turbulent-annular regime of boiling, repeating symbolsignifies increasing intensity of phenomenon

U = inside circumference of tube, ft

V = volume of generating tube, ft-'

v» = specific volume of water at boiling point, ft-' lb^

v" = specific volume of saturated steam, ft-5 lbr ' m

W

m

= weight flow rate, lbfhr"

w = mass flow rate, lb hr"'m

W, = internal heat generation per unit volume and time,1 BTU ft-3 hr" 1

GREEK

P = coefficient of thermal volume expansion, °F~

J = average coefficient of thermal volume expansion, P~

M viscosity, lb hr" 1ft"

1J ' m

p = density, lb ft"^

p" = average density, lb ft"-*

SUBSCRIPTS

b = bulk

e = preheater, economizer

g = gas

gt = generating tube

i = inside

o = outside

p = peak

Page 242: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 243: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

121

s = at inlet of preheater section

w = wall

x = variable distance from inlet of preheater section

°° = final steady state value after step change

1 = steady state value before step change

2 transient value after step change

PREFIX

A = increment, step change

Page 244: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 245: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty
Page 246: NPS ARCHIVE 1963 MCGUIGAN, D.NPSARCHIVE 1963 MCGUIGAN,D. TRANSIENTSTUDIESINVERTICALTUBEEVAPORATORS fey DAVIDBRANTMCGUIGAN,Lieutenant,UnitedStatesNavy B.S.,UnitedStatesNavalAcadenty

thesM1888

Transient studies in vertical tube evapo

3 2768 001 89249DUDLEY KNOX LIBRARY

*