Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT...

42
Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher , Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt University of Technology; supported by DFG Heisenberg and Center For Advanced Security Research Darmstadt (CASED)

Transcript of Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT...

Page 1: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Notions of Black-Box Reductions, Revisited

ASIACRYPT 2013

Paul Baecher, Christina Brzuska, Marc Fischlin

Tel Aviv University & DarmstadtUniversity of Technology; supported byDFG Heisenberg and Center ForAdvanced Security Research Darmstadt(CASED)

Page 2: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Introduction

1

Page 3: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

The Cryptographic Zoo

OWF

PRGOWP

PRF

PKE

SIG

MAC

COM

CRHF

MPC

ZK

PRP

KA

• basic issues in cryptography• what can be built from what?• how (efficient)?

2

Page 4: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

A Typical Theorem in Cryptography

Theorem: Let f be a P

e.g. OWP

. Then construction G [f ] is a Q

e.g. PRG

.

f G [f ]constr.

(corollary: if P exists, then Q exists.)

Question 1: what is G [f ]?

• construction G uses f as an oracle (G f )

• construction G uses f in some constricted way

• construction G uses f ’s code

• ???

3

Page 5: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

A Typical Theorem in Cryptography

Theorem: Let f be a P

e.g. OWP

. Then construction G [f ] is a Q

e.g. PRG

.

f G [f ]constr.

(corollary: if P exists, then Q exists.)

Question 1: what is G [f ]?

• construction G uses f as an oracle (G f )

• construction G uses f in some constricted way

• construction G uses f ’s code

• ???

3

Page 6: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

A Typical Theorem in Cryptography

Theorem: Let f be a P

e.g. OWP

. Then construction G [f ] is a Q

e.g. PRG

.

f G [f ]constr.

(corollary: if P exists, then Q exists.)

Question 1: what is G [f ]?

• construction G uses f as an oracle (G f )

• construction G uses f in some constricted way

• construction G uses f ’s code

• ???

3

Page 7: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Proving the Theorem

Theorem: Let f be a P. Then construction G [f ] is a Q.

f G [f ]

S[A, f ] A

constr.

red.

• almost always: proof by reduction (show the contrapositive)

• transform an attack on G into an attack on f

• if algorithm A breaks G , then algorithm S[A, f ] breaks f

• S[A, f ] is the (constructive) reduction• Question 2: what is S[A, f ]?• Question 3: what is S[A, f ]?

4

Page 8: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Proving the Theorem

Theorem: Let f be a P. Then construction G [f ] is a Q.

f G [f ]

S[A, f ] A

constr.

red.

• almost always: proof by reduction (show the contrapositive)

• transform an attack on G into an attack on f

• if algorithm A breaks G , then algorithm S[A, f ] breaks f

• S[A, f ] is the (constructive) reduction• Question 2: what is S[A, f ]?• Question 3: what is S[A, f ]?

4

Page 9: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Why We Care About these Questions

• very important for impossibility results / separations• i.e., much weaker versions of P exists 6⇒ Q exists• what exactly is being ruled out?• . . . and what is left to try?• impossibility results are inspiring

• enforces precise definitions of primitives• “we separate xyz from OWFs. . . ”

• more black box, more efficient, more practical (usually)

• better understanding of a fundamental technique in our field

5

Page 10: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Notions of Reductionsf G [f ]

S[A, f ] A

constr.

red.

• Defined by Reingold, Trevisan, and Vadhan (TCC ’04,[RTV04])

• three∗ types of reductions:

fully black box. ∃S∀A: if A breaks G f , then SA,f breaks f .

semi black box. ∀A∃S: if Af breaks G f , then S f breaks f .

weakly black box. ∀A∃S: if A breaks G f , then S f breaks f .

6

Page 11: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Notions of Reductionsf G [f ]

S[A, f ] A

constr.

red.

• Defined by Reingold, Trevisan, and Vadhan (TCC ’04,[RTV04])

• three∗ types of reductions:

fully black box. ∃S∀A: if A breaks G f , then SA,f breaks f .

semi black box. ∀A∃S: if Af breaks G f , then S f breaks f .

weakly black box. ∀A∃S: if A breaks G f , then S f breaks f .

6

Page 12: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Notions of Reductionsf G [f ]

S[A, f ] A

constr.

red.

• Defined by Reingold, Trevisan, and Vadhan (TCC ’04,[RTV04])

• three∗ types of reductions:

fully black box. ∃S∀A: if A breaks G f , then SA,f breaks f .

semi black box. ∀A∃S:

order switched

if Af

f oracle

breaks G f , then S f

no A oracle

breaks f .

weakly black box. ∀A∃S: if A breaks G f , then S f breaks f .

6

Page 13: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Notions of Reductionsf G [f ]

S[A, f ] A

constr.

red.

• Defined by Reingold, Trevisan, and Vadhan (TCC ’04,[RTV04])

• three∗ types of reductions:

fully black box. ∃S∀A: if A breaks G f , then SA,f breaks f .

semi black box. ∀A∃S: if Af breaks G f , then S f breaks f .

weakly black box. ∀A∃S: if A

no f oracle

breaks G f , then S f breaks f .

6

Page 14: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Notions of Reductionsf G [f ]

S[A, f ] A

constr.

red.

• Defined by Reingold, Trevisan, and Vadhan (TCC ’04,[RTV04])

• three∗ types of reductions:

fully black box. ∃S∀A: if A breaks G f , then SA,f breaks f .

semi black box. ∀A∃S: if Af breaks G f , then S f breaks f .

weakly black box. ∀A∃S: if A breaks G f , then S f breaks f .

6

Page 15: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

In This Work

• even more, fine-grained notions• . . . derived in a systematic way

• consider, for example,• reduction makes non-black-box use of primitive, but black-box

use of adversary (think meta reductions)• efficient primitives and/or adversaries• black-box use, but partial information (run time, #queries,

. . . )

• [RTV04] too coarse to capture such differences

7

Page 16: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

In This Work

• even more, fine-grained notions• . . . derived in a systematic way

• consider, for example,• reduction makes non-black-box use of primitive, but black-box

use of adversary (think meta reductions)• efficient primitives and/or adversaries• black-box use, but partial information (run time, #queries,

. . . )

• [RTV04] too coarse to capture such differences

7

Page 17: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

CAP

8

Page 18: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Three Questions: A Short Encodingf G [f ]

S[A, f ] A

constr.

red.Q1: what is G [f ]?

C

Q2: what is S[A, f ]?

A

Q3: what is S[A, f ]?

P

• C ,A,P ∈ {N,B}• Non black box / Black box

9

Page 19: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Three Questions: A Short Encodingf G [f ]

S[A, f ] A

constr.

red.Q1: what is G [f ]?

CQ2: what is S[A, f ]?

A

Q3: what is S[A, f ]?

P

• C ,A,P ∈ {N,B}• Non black box / Black box

9

Page 20: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Three Questions: A Short Encodingf G [f ]

S[A, f ] A

constr.

red.Q1: what is G [f ]?

CQ2: what is S[A, f ]?

AQ3: what is S[A, f ]?

P

• C ,A,P ∈ {N,B}• Non black box / Black box

9

Page 21: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Three Questions: A Short Encodingf G [f ]

S[A, f ] A

constr.

red.Q1: what is G [f ]?

CQ2: what is S[A, f ]?

AQ3: what is S[A, f ]?

P

• C ,A,P ∈ {N,B}• Non black box / Black box

9

Page 22: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Three Questions: A Short Encodingf G [f ]

S[A, f ] A

constr.

red.Q1: what is G [f ]?

CQ2: what is S[A, f ]?

AQ3: what is S[A, f ]?

P

• C ,A,P ∈ {N,B}• Non black box / Black box

9

Page 23: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Obtaining Actual Definitionsf G [f ]

S[A, f ] A

constr.

red.

example: BBB

1. what is G [f ]? B “∃G” ≺ “∀f ”what is S[A, f ]? B

“∃S” ≺ “∀A”

what is S[A, f ]? B

“∃S” ≺ “∀f ”

2. “∃G”, “∃S”≺ “∀f ”, “∀A”

3. ∃G ,S ∀f ,A Af ,G fbreaks G f =⇒ SAf ,f breaks f

10

Page 24: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Obtaining Actual Definitionsf G [f ]

S[A, f ] A

constr.

red.

example: BBB

1. what is G [f ]? B “∃G” ≺ “∀f ”what is S[A, f ]? B “∃S” ≺ “∀A”what is S[A, f ]? B “∃S” ≺ “∀f ”

2. “∃G”, “∃S”≺ “∀f ”, “∀A”

3. ∃G ,S ∀f ,A Af ,G fbreaks G f =⇒ SAf ,f breaks f

10

Page 25: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Obtaining Actual Definitionsf G [f ]

S[A, f ] A

constr.

red.

example: BBB

1. what is G [f ]? B “∃G” ≺ “∀f ”what is S[A, f ]? B “∃S” ≺ “∀A”what is S[A, f ]? B “∃S” ≺ “∀f ”

2. “∃G”, “∃S”≺ “∀f ”, “∀A”

3. ∃G ,S ∀f ,A Af ,G fbreaks G f =⇒ SAf ,f breaks f

10

Page 26: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Obtaining Actual Definitionsf G [f ]

S[A, f ] A

constr.

red.

example: NBB

1. what is G [f ]? N “∀f ” ≺ “∃G”what is S[A, f ]? B “∃S” ≺ “∀A”what is S[A, f ]? B “∃S” ≺ “∀f ”

2. “∃S”≺ “∀f ”≺ “∃G” and “∃S”≺ “∀A”

3. ∃S ∀f ∃G∀A Af ,G fbreaks G f =⇒ SAf ,f breaks f

10

Page 27: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Obtaining Actual Definitions (cont’d)f G [f ]

S[A, f ] A

constr.

red.

Name Summary of definition

BBB ∃G ∃S ∀f ∀A ((G f ,Af ) ⇒ (f ,SA,f ))

BNB ∃G ∀A ∃S ∀f ((G f ,Af ) ⇒ (f ,SA,f ))

BBN ∃G ∀f ∃S ∀A ((G f ,Af ) ⇒ (f ,SA,f ))

BNN ∃G ∀f ∀A ∃S ((G f ,Af ) ⇒ (f ,SA,f ))

NBB ∃S ∀f ∃G ∀A ((G f ,Af ) ⇒ (f ,SA,f ))

NBN ∀f ∃G ∃S ∀A ((G f ,Af ) ⇒ (f ,SA,f ))

NNN ∀f ∃G ∀A ∃S ((G f ,Af ) ⇒ (f ,SA,f ))

see page 305 of the proceedings (Part I)

11

Page 28: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Basic Relations

BBB

BBN NBB

BBB

BBN

BNN

NNN

NNB

NBBBNB

NBN

imp

lication(strict)

imp

licat

ion

w.r

.t.

sep

arat

ion

s

12

Page 29: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Basic Relations

BBB

BBN NBB

BBB

BBN

BNN

NNN

NNB

NBBBNB

NBN

imp

lication(strict)

imp

licat

ion

w.r

.t.

sep

arat

ion

s

12

Page 30: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Basic Relations

BBB

BBN NBB

BBB

BBN

BNN

NNN

NNB

NBBBNB

NBN

imp

lication(strict)

imp

licat

ion

w.r

.t.

sep

arat

ion

s

12

Page 31: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

There is More. . .

• adversaries A can be PPT or inefficient• [RTV04]: mixed• here: inefficient up to now

• all previous notions can be considered for efficient adversaries

• shorthand: CAPa, restricted quantification ∀PPTA

13

Page 32: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Another Dimension

BBB

BBN

BNN

NNNa

NNBa

NBBa

NNN

NNB

NBBBBBa

BBNa

BNNa

BNB

NBN

BNBa

NBNa

fully

relativizing

semi

∀∃-semi

weakly

∀∃-weakly

free

note: not all CAPa implications are strict

14

Page 33: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Another Dimension

BBB

BBN

BNN

NNNa

NNBa

NBBa

NNN

NNB

NBBBBBa

BBNa

BNNa

BNB

NBN

BNBa

NBNa

relativizing (e.g., [IR89])

fully

relativizing

semi

∀∃-semi

weakly

∀∃-weakly

free

note: not all CAPa implications are strict

14

Page 34: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Another Dimension

BBB

BBN

BNN

NNNa

NNBa

NBBa

NNN

NNB

NBBBBBa

BBNa

BNNa

BNB

NBN

BNBa

NBNa

relativizing (e.g., [IR89])

fully

relativizing

semi

∀∃-semi

weakly

∀∃-weakly

free

note: not all CAPa implications are strict

14

Page 35: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Neither B nor N

15

Page 36: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Parameterized Reductions

• consider the Goldreich–Levinhardcore bit [GL89]

• reduction requires successprobability of adversary(but nothing else)

• black box? non black box?

BBB

BBN

BNN

NNN

NNB

NBBBNB

NBN

somewhere here?

• parameterized reduction

• here: par(A) := success probability

• BBB w/ param: Af ,G fbreaks G f =⇒ SAf ,f (par(A)) breaks f

→ parameters made explicit

16

Page 37: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Parameterized Reductions

• consider the Goldreich–Levinhardcore bit [GL89]

• reduction requires successprobability of adversary(but nothing else)

• black box? non black box?

BBB

BBN

BNN

NNN

NNB

NBBBNB

NBN

somewhere here?

• parameterized reduction

• here: par(A) := success probability

• BBB w/ param: Af ,G fbreaks G f =⇒ SAf ,f (par(A)) breaks f

→ parameters made explicit

16

Page 38: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Summary

• things I forgot to tell you• CAPp: efficient primitives• CAPap: efficient adversaries and efficient primitives• careful when defining primitives

• things to remember• given any reduction/separation, ask three (five) questions• “impossibility” rarely means impossible• look for hidden parameters

17

Page 39: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

Summary

• things I forgot to tell you• CAPp: efficient primitives• CAPap: efficient adversaries and efficient primitives• careful when defining primitives

• things to remember• given any reduction/separation, ask three (five) questions• “impossibility” rarely means impossible• look for hidden parameters

17

Page 40: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

The End

Thank you!

?

18

Page 41: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt

References

Oded Goldreich and Leonid A. Levin.

A hard-core predicate for all one-way functions.In STOC 1989 [STO89], pages 25–32.

Russell Impagliazzo and Steven Rudich.

Limits on the provable consequences of one-way permutations.In STOC 1989 [STO89], pages 44–61.

Omer Reingold, Luca Trevisan, and Salil P. Vadhan.

Notions of reducibility between cryptographic primitives.In Moni Naor, editor, TCC 2004: 1st Theory of Cryptography Conference, volume 2951 of Lecture Notes inComputer Science, pages 1–20, Cambridge, MA, USA, February 19–21, 2004. Springer, Berlin, Germany.

21st Annual ACM Symposium on Theory of Computing, Seattle, Washington, USA, May 15–17, 1989.

ACM Press.

19

Page 42: Notions of Black-Box Reductions, Revisited · Notions of Black-Box Reductions, Revisited ASIACRYPT 2013 Paul Baecher, Christina Brzuska, Marc Fischlin Tel Aviv University & Darmstadt