Notes 3 Translational Mechanical System Transfer Function

download Notes 3 Translational Mechanical System Transfer Function

of 13

Transcript of Notes 3 Translational Mechanical System Transfer Function

  • 8/10/2019 Notes 3 Translational Mechanical System Transfer Function

    1/13

    Translational mechanical system transfer function

    Table 2 Force-velocity, force-displacement, and impedance translational relationships

    for springs, viscous dampers, and mass

    Transfer function one equation of motion

    Problem:Find the transfer function, )(/)( sFsX , for the system of Figure 2.15 (a)

    Figure 2.!:a) Mass, spring and damper system b) block diagram

    "olution:

    egin the solution by dra!ing the free"body diagram sho!n in Figure 2.1#(a). $lace on the

    mass all forces felt by the mass. %e assume the mass is tra&eling to!ard the right. 'hus,only the applied force points to the right all other forces impede the motion and act to

    oppose it. ence, the spring, &iscous damper and the force due to acceleration point to the

    left.

    Figure 2.#* a) Free"body diagram of mass, spring and damper system b) transformed free"

    body diagram

  • 8/10/2019 Notes 3 Translational Mechanical System Transfer Function

    2/13

    %e no! !rite the differential e+uation of motion using e!ton-s la! to sum to ero all of

    the forces sho!n on the mass in Figure 2.1# (a)*

    )()()()(

    )()()(

    )(

    2

    2

    2

    2

    tftKx

    dt

    tdxf

    dt

    txdM

    tKxdt

    tdxf

    dt

    txdMtfF

    v

    v

    =++

    =

    +++=+

    'aking the 0aplace transform, assuming ero initial conditions,

    )()()()(2 sFsKXssXfsXMs v =++

    r )()()(2 sFsXKsfMs v =++

    ol&ing for the transfer function yields

    KsfMssF

    sXsG

    v ++

    ==2

    1

    )(

    )()(

    !hich is represented in Figure 2.15 (b)

    333333333333333333333333333333333333333333333333333333333333333333333

    "olution $$:

    %e could also sol&e the problem using the block diagram / signal flo! graph.4444 egin the

    solution by

    dra!ing the

    free"body

    diagram sho!n

    in Figure 2.Figure 2* Free"body diagram of mass, spring and damper system

    1) %rite the differential e+uation of motion using e!ton-s econd 0a!

    ( )( ) ( )

    ( )

    dt

    tdxftkxtf

    dt

    txdm v=

    +

    2

    2

    2) 'aking the 0aplace transform, assuming ero initial conditions,

    ( ) ( ) ( ) ( )ssXFsKXsFsXMs v=2

    or ( ) ( ) ( ) ( )sXsFKsFsXMs v+=2

    ) eparate the input signal (6 combination of other signal), system and output

    signal

    ( ) ( ) ( ) ( )[ ]sXsFKsFMs

    sX v+= 1

    2

    7) 8ra! the block diagram using the abo&e information

    ( ) ( ) ( ) ( )[ ]sXsFKsFMs

    sX v+= 1

    2

    utput ystem 9nput umming :unction

    ignal ignal

    %loc& diagram reduction:

    ( )

    KsFMssF

    sXsT

    v ++

    ==2

    1

    )(

    )(

    "ignal flo' graph ()ason *ule+:

    ( ) [ ][ ]

    ( ) KsFMsMsKsF

    MssT

    vv ++

    =

    +

    =22

    2 1

    /1

    1/1

    m

    x

    fkx

    xfv

  • 8/10/2019 Notes 3 Translational Mechanical System Transfer Function

    3/13

    Transfer function t'o degrees of freedom t'o linearly independent motion

    Problem: Find the transfer function, )(/)(2 sFsX , for the system of Figure 2.1; (a)

    Figure 2.:a) '!o"degrees of freedom translational

    mechanical system b) block diagram

    "olution:

    'he system has t!o degrees of freedom, since each mass can be mo&ed in the horiontal

    direction !hile the other is held still. 'hus, t!o simultaneous e+uations of motion !ill bere+uired to describe the system. 'he t!o e+uations come form free body diagrams o each

    mass. uperposition is used to dra! the free"body diagrams. For e

  • 8/10/2019 Notes 3 Translational Mechanical System Transfer Function

    4/13

    'he differential e+uation of motion using e!ton-s la! to sum to ero all of the forces

    sho!n on the mass*

    )()()(

    )()(

    )()(

    )()(

    )()()(

    )()(

    )(

    2522

    512

    2

    2

    2121

    5

    222

    51211

    512

    1

    2

    11

    txKK

    dt

    tdxff

    dt

    txdMtxK

    dt

    tdxfF

    txKdt

    tdxftxKK

    dt

    tdxff

    dt

    txdMtfF

    vvv

    vvvM

    +++++==+

    ++++++==+

    )()()(

    )()(

    )()(

    )()()(

    )()()(

    )()(

    2522

    512

    22

    2121

    5

    222

    51211

    512

    12

    1

    =+++++

    =++++

    txKKdt

    tdxff

    dt

    txdMtxK

    dt

    tdxf

    tftxKdt

    tdxftxKK

    dt

    tdxff

    dt

    txdM

    vvv

    vvv

    'he 0aplace transform of the e+uations of motion can no! be !ritten from Figures 2.1= (c)

    and 2.2 ( c) as

    [ ]

    )(

    )()()()()(

    )()()()()(

    25252

    2

    2125

    225121512

    1

    =

    =

    +++++

    +++++ sF

    sXKKsffsMsXKsf

    sXKsfsXKKsffsM

    vvv

    vvv

    ol&ing for the transfer function using the 0ramer1s rule:

    [ ][ ]

    =

    +++++

    +++++

    /

    )(

    )(

    )(

    )()()(

    )()()(

    2

    1

    5252

    2

    225

    252151

    2

    1 sF

    sX

    sX

    KKsffsMKsf

    KsfKKsffsM

    vvv

    vvv

    [ ] [ ])()()( )()()(

    )(

    )()()(

    )(

    5252

    2

    225

    252151

    2

    1

    25

    2151

    2

    1

    2

    KKsffsMKsfKsfKKsffsM

    Ksf

    sFKKsffsM

    sX

    vvv

    vvv

    v

    vv

    +++++ +++++

    +++++

    =

    [ ]

    [ ][ ])()()(

    )()()(

    )()()(

    5252

    2

    225

    252151

    2

    1

    25

    2

    KKsffsMKsf

    KsfKKsffsM

    KsfsFsX

    vvv

    vvv

    v

    +++++

    +++++

    +=

    [ ][ ] 225525222215121252

    )()()()()(

    )(

    )(

    )(

    KsfKKsffsMKKsffsM

    Ksf

    sF

    sX

    vvvvv

    v

    ++++++++++

    =

    From this, the transfer function, )(/)(2 sFsX is

    +

    ==)(

    )(

    )()( 252

    Ksf

    sF

    sXsG v

    >s sho!n in Figure 2.1; (b) !here

    [ ])()()()()()(

    5252

    2

    225

    252151

    2

    1

    KKsffsMKsf

    KsfKKsffsM

    vvv

    vvv

    +++++

    +++++=

    r2

    255252

    2

    22151

    2

    1 )()()()()( KsfKKsffsMKKsffsM vvvvv +++++++++=

  • 8/10/2019 Notes 3 Translational Mechanical System Transfer Function

    5/13

    Penyelesaian dalam &elas:

    1) egin the solution by dra!ing the free"body diagram

    2) %rite the differential e+uation of motion using e!ton-s econd 0a!

    ( )( ) ( )

    ( ) ( ) ( )( ) ( )( )

    ( )( )

    ( ) ( ) ( )( ) ( )( )txtxk

    dt

    tdx

    dt

    tdxf

    dt

    tdxftxk

    dt

    txdm

    txtxkdt

    tdx

    dt

    tdxf

    dt

    tdxftxktf

    dt

    txdm

    vv

    vv

    21221

    52

    2252

    2

    2

    2

    21221

    51

    1112

    1

    2

    1

    +

    +=

    +

    =

    +

    'aking the 0aplace transform, assuming ero initial conditions,( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

    ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )sXsXKsXsXsFssXFsXKsXsM

    sXsXKsXsXsFssXFsXKsFsXsM

    vv

    vv

    21221522252

    2

    2

    21221511111

    2

    1

    ++=

    +

    =

    +

    eparate the &ariables,

    ( )( ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) 25225

    2

    2125

    22515121

    2

    1

    =++++++

    =+++++

    sXsFsFKKsMsXKsF

    sFsXKsFsXsFsFKKsM

    vvv

    vvv

    >rrange it in a &ector"matri< form

    ( )( ) ( )( ) ( )( )

    ( )

    ( )

    ( )

    =

    +++++

    +++++

    /2

    1

    5225

    2

    225

    255121

    2

    1 sF

    sX

    sX

    sFsFKKsMKsF

    KsFsFsFKKsM

    vvv

    vvv

    ol&ing for the transfer function, )(/)(2 sFsX yields

    ( )

    ( )( ) ( )( )

    ( )( ) ( )( ) ( )( )sFsFKKsMKsF

    KsFsFsFKKsM

    KsF

    sFsFsFKKsM

    sX

    vvv

    vvv

    v

    vv

    5225

    2

    225

    255121

    2

    1

    25

    5121

    2

    1

    2

    +++++

    +++++

    +

    ++++

    =

    ( )

    ( )

    ( )

    ( )( ) ( )( ) ( )2

    2552252

    251212

    1

    25

    2

    2

    KsFsFsFKKsMsFsFKKsM

    KsF

    sF

    sX

    vvvvv

    v

    +++++++++

    +

    =

    1x2x

    f

    11xK

    11xf

    V

    ( )215 xxfV

    ( )212 xxK

    22xfV

    25xK

    9nput

    Force

    8isplacement

    utput 1

    8isplacement

    utput 2

  • 8/10/2019 Notes 3 Translational Mechanical System Transfer Function

    6/13

    %e could also sol&e the problem using the bloc& diagram signal flo' graph

    + %rite the differential e+uation of motion using e!ton-s econd 0a!

    ( )( ) ( )

    ( ) ( ) ( )( ) ( )( )

    ( )( )

    ( ) ( ) ( )( ) ( )( )txtxk

    dt

    tdx

    dt

    tdxf

    dt

    tdxftxk

    dt

    txdm

    txtxk

    dt

    tdx

    dt

    tdxf

    dt

    tdxftxktf

    dt

    txdm

    vv

    vv

    21221

    52

    2252

    2

    2

    2

    21221

    51

    1112

    1

    2

    1

    +

    +=

    +

    =

    +

    2+ 'aking the 0aplace transform, assuming ero initial conditions,

    ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

    ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )sXsXKsXsXsFssXFsXKsXsM

    sXsXKsXsXsFssXFsXKsFsXsM

    vv

    vv

    21221522252

    2

    2

    21221511111

    2

    1

    ++=

    =

    + eparate the input signal(6 combination of other signal), systemand output

    signal

    ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

    ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )sXsXKsFsXsFKsFsM

    sX

    sXsXKsXsXsFssXFsXKsFsXsM

    vv

    vv

    21251112

    1

    1

    21221511111

    2

    1

    1

    ++=

    =

    ystem 9nput umming ?unction

    ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )sXsXKsXsXsFssXFsXKsXsM vv 212215222522

    2 ++=

    ( ) ( ) ( ) ( ) ( ) ( )( )( )sXsXKsFsXsFKsM

    sX vv 212522522

    2 1

    +++=

    utput ystem umming ?unction

    3+ 8ra! the block diagram using the abo&e information

    ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )sXsXKsFsXsFKsFsMsXvv 21251112

    1

    1

    1

    ++=

    ( ) ( ) ( ) ( ) ( ) ( )( )( )sXsXKsFsXsFKsM

    sX vv 212522522

    2 1

    +++=

    2

    2

    1

    sM

    2X

    F1X

    2

    1

    1

    sM

    2XsFK V11 +

    sFK V52+

    sFKV2

    +

    sFK V52+connect

    connect

    umming :unction

  • 8/10/2019 Notes 3 Translational Mechanical System Transfer Function

    7/13

    %loc& 4iagram *eduction:

    ( )

    ( )

    ( )( )

    ( )( )( ) ( )[ ]sFKsMsFKsM

    sFKsMsFKsM

    sFK

    sFKsMsFKsM

    sFK

    sF

    sX

    VV

    VV

    V

    VV

    V

    11

    2

    125

    2

    2

    25

    2

    211

    2

    1

    52

    25

    2

    211

    2

    1

    52

    2

    2

    1

    +++++++++

    ++

    ++++

    +

    =

    ( )( ) ( )( ) ( )( ) ( )[ ]sFKsMsFKsMsFKsFKsMsFKsM

    sFK

    sF

    sX

    VVVVV

    V

    11

    2

    125

    2

    25225

    2

    211

    2

    1

    52

    2

    2+++++++++++

    +=

    "ignal Flo' 5raph ()ason *ule+:

    44 $lease !rite all the for!ard path

    gains, loop gains, non"touching loopgains and

    ( )

    ( )

    ( )

    ( )(

    (( )

    ( )(

    (( )

    ( )(

    ( 225

    2

    1

    52

    2

    2

    2

    2

    1

    11

    2

    2

    5

    2

    1

    11

    2

    2

    52

    2

    2

    25

    2

    1

    52

    2

    1

    11

    2

    2

    2

    1

    52

    1

    11

    sM

    FK

    sM

    sFK

    sM

    FK

    sM

    sFK

    sM

    FK

    sM

    sFK

    sM

    sFK

    sM

    sFK

    sM

    sFK

    sM

    sFKsMsM

    sFK

    sT

    V

    VV

    VV

    V

    V

    V

    V

    V

    ++

    ++

    ++

    +

    +

    +

    +

    +

    +

    =

    sFKsM v252

    2

    1

    ++

    2X

    F 1X

    sFKsM V112

    1

    1

    ++

    sFK V52+

    sFK V52+

    2X

    F

    sFK V52+

    sFKsM

    sFK

    v

    V

    25

    2

    2

    52

    +++

    sFK

    sFKsM

    V

    v

    52

    25

    2

    2

    +++

    sFKsM V112

    1

    1

    ++sFKsM V11

    2

    1 ++

    2X

    F

    sFKsM

    sFK

    v

    V

    252

    2

    52

    ++

    +

    ( ) ( )sFKsMsFKsM Vv 112

    125

    2

    2 +++++

    sFKsM V1121

    1

    ++

    2

    2

    1

    sM

    2X

    F1X

    2

    1

    1

    sM

    2XsFK V11 +

    sFK V52+

    sFK V2 +

    sFK V52+connect

    connect

    F

    ( )sFK 11 +

    2

    1

    1sM

    ( )sFK 2 +

    ( )sFK 2 +2

    2

    1

    sM

    ( )sFK 2 +

    1

  • 8/10/2019 Notes 3 Translational Mechanical System Transfer Function

    8/13

  • 8/10/2019 Notes 3 Translational Mechanical System Transfer Function

    9/13

    btain the transfer function model ( ) ( )sFsy1 of this system(@.)

    ( )( )

    ( ) ( )( ) ( )( )

    ( ) ( ) ( ) ( ) ( ) ( ) ( )( )tytykdt

    tdy

    dt

    tdyB

    dt

    tdyBtyk

    dt

    tydm

    tytykdt

    tdy

    dt

    tdyBtf

    dt

    tydm

    12212

    21

    1112

    12

    1

    12212

    22

    2

    2

    2

    +

    +=

    +

    =

    +

    ( ) ( ) ( ) ( )( ) ( ) ( )( )

    ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )sysyksysysBtsyBtyksysm

    sysyksysysBsfsysm

    12212211111

    2

    1

    1221222

    2

    2

    ++=

    +

    =

    +

    %loc& diagram reduction (from above diagram+:

    ( )( ) ( )( ) ( )( )222211

    2

    122

    2

    2

    22

    sMsBKsBKsMsBKsM

    sBK

    sF

    sy

    +++++++=

    "ignal flo' graph*

    6 mechanical system

    1K

    1B

    2y

    M2FForce,

    M1

    1y2K

    2B

    11yK

    11yB

    2y

    M2

    M1

    1y ( )122 yyK

    F( )122 yyB

    Free %ody 4iagram

    2

    1

    1

    sM

    1yF2y

    2

    2

    1

    sM

    sBK 22+

    sBK 11 +

    sBK 22+

    sBKsM11

    2

    1

    1

    ++1yF

    sBK 22+

    sBK 22+2

    2sM

    2

    2

    1

    sM

    sBKsM

    sBK

    11

    2

    1

    22

    +++ 1yF

    2

    2sMsBKsM 22

    2

    2

    1

    ++

  • 8/10/2019 Notes 3 Translational Mechanical System Transfer Function

    10/13

    ( ) ( )( )( )

    ( )

    ( )(

    ( )22

    11

    2

    1

    22

    2

    2

    11

    2

    2

    22

    2

    1

    22

    2

    2

    2

    122

    1

    /1/1

    sM

    sBK

    sM

    sBK

    sM

    sBK

    sM

    sBK

    sM

    sBK

    sMsMsBKsT

    +++

    +

    +

    +

    +=

    444 $lease !rite all the for!ard path gains, loop gains, non"touching loop gains and

    'o check the e+u.*

    ( )

    sBBsKBsBKKK

    sMBsMBsMBsMKsMKsMKsMM

    sBKsT

    21121212

    5

    21

    5

    22

    5

    22

    2

    21

    2

    22

    2

    12

    7

    21

    22

    ++++

    +++++++

    +=

    (d) btain the transfer function model ( ) ( )sUsY of this system

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

    ( ) ( ) ( ) ( )( ) ( ) ( )

    +=+

    =+

    dt

    tdy

    dt

    tdxBtytxk

    dt

    tydm

    tutxkdt

    tdy

    dt

    tdxk

    dt

    tdy

    dt

    tdxB

    dt

    txdm

    22

    2

    2

    122

    2

    1

    ( ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

    ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( ) ( ) ( )( ) ( ) ( )( )sYsXBssYsXKsYsM

    sXsUKsXsYKsXsYBssXsM

    sUsXKsYsXKsYsXBssXsM

    +=+++=

    =+

    2

    2

    2

    122

    1

    12

    2

    1

    or

    %loc& 4iagram *eduction:

    F

    2

    1

    1

    sM

    ( )sBK 22 +

    ( )sBK 22 + 22

    1

    sM

    ( )sBK 11 +

    1y

    1

    6 motorcycle suspension system

    2K B

    x

    M1

    M2

    y

    1Ku ( )uxK 1Free %ody 4iagram

    ( )yxK 2 ( )yxB

    xM1

    M2

    y

    2

    2

    1

    sM

    YU X2

    1

    1

    sM

    1K BsK +2

  • 8/10/2019 Notes 3 Translational Mechanical System Transfer Function

    11/13

    ( )( )

    ( )( ) ( ) ( )12

    1221

    2

    1

    2

    2

    21

    KsMBsKBsKKsMsMBsKK

    sUsY

    +++++++= Aefer to B. gata-s ook (pg 12)

    "ignal flo' graph:

    ( ) ( )( )[ ]

    ( )

    ( )

    ( )2

    2

    2

    2

    1

    1

    2

    22

    2

    12

    2

    11

    2

    22

    2

    11

    /

    /

    /

    1

    //

    sM

    BsK

    sM

    K

    sMBsK

    sMBsK

    sMK

    sMBsKsMKsT

    ++

    +

    +

    +=

    (e) btain the transfer function model ( ) ( )sXsX iO of this system

    'he differential e+uation of motion for the system*

    ( ) ( ) ( ) ( )

    ( ) ( ) yKyxB

    xxBxxKxxB

    O

    iOioiO

    22

    211

    ++

    ++

    'aking the 0aplace 'ransform (assuming ero initial condition), !e obtain

    2

    2

    1

    sM

    YU X

    1

    2

    1

    1

    KsM

    K

    +

    BsK +2

    1/1 K

    2

    2

    1

    sM

    YU X

    2

    1

    1

    sM

    K

    BsK +2

    1/1 K

    YU

    1/1 K

    1

    2

    1

    1

    KsM

    K

    +

    BsK +2 22

    1

    sM

    1

    1

    2

    1

    K

    KsM +

    YU

    ( )

    ( )BsKKsMBsKK

    +++

    +

    21

    2

    1

    21

    2

    2

    1

    sM

    1

    1

    2

    1

    K

    KsM +

    1

    1K ( )sBK 22 +2

    2/1 sM 1y

    1

    U2

    1/1 sM1

    6 mechanical system

    1K 1B

    Ox

    ix

    2K

    2B

    y

    Free %ody 4iagram

    ( )iO xxK 1 ( )iO xxB 1

    Ox

    yK2

    ( )yxB o 2

    y

  • 8/10/2019 Notes 3 Translational Mechanical System Transfer Function

    12/13

    ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

    ( ) ( )( ) ( )sYKsYsXB

    sYsXBsXsXKsXsXsB iOi

    22

    211

    =

    =+

    %loc& 4iagram *eduction:

    ( )

    ( )s

    K

    Bs

    K

    Bs

    K

    B

    sK

    Bs

    K

    B

    sX

    sX

    i

    O

    1

    2

    2

    2

    1

    1

    2

    2

    1

    1

    11

    11

    +

    +

    +

    +

    +

    = Aefer to B. gata-s ook (page 1)

    "ignal flo' graph:

    ( ) ( )[ ] ( )[ ]( )

    ( )211

    211

    211211

    /

    /1

    //

    KsBK

    sBsBKKsBKsBsBKsT

    +

    +

    +++=

    ( ) ( )

    ( ) ( ) sBsBKKsBKsBK

    sBKsBsBKK

    21121122

    112112+++++++

    =

    ( )( )

    ( )( )sBKsBKsBK

    sBKsBK

    221122

    2211+++

    ++=

    7quation of motion by inspection

    Problem: %rite but do not sol&e, the e+uations of motion for the mechanical net!ork of

    Figure 2.21

    OXiX ( )YXsB O 2

    +

    sBK 11+

    Y

    sB2

    1 ( )YXO

    2

    1

    K

    OXiX

    sBK 11+22

    11

    KsB+

    OXiX

    ( )( )

    sBK

    sBKsBK

    22

    2211 ++

    OXiX ( )( )( )( )sBKsBKsBK

    sBKsBK

    221122

    2211

    +++

    ++

    sBK 11 + sB2/1 X

    2/1 K

    1

    iX

  • 8/10/2019 Notes 3 Translational Mechanical System Transfer Function

    13/13

    Figure 2.2 :'hree" degrees of freedom translational mechanical system

    olution* 'he system has degrees of freedom, since each of the three masses can be

    mo&ed independently !hile the others are held still. 'he form of the e+uations !ill be

    similar to electrical mesh e+uations.

    6C um of impedances connected to the motion at