Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest...

36
Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest [email protected]

Transcript of Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest...

Page 1: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

Nonlinear methods in discrete optimization

László Lovász

Eötvös Loránd University, Budapest

[email protected]

Page 2: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

planar graph

Fáry-Wagner

Every simple planar graph can be drawnin the plane with straight edges

Exercise 1: Prove this.

Page 3: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

Rubber bands and planarity

Every 3-connected planar graph can be drawn with straight edges and convex faces.

Tutte (1963)

Page 4: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

Rubber bands and planarity

outer face fixed toconvex polygon

edges replaced byrubber bands

2( )i jij E

u uÎ

= -åEEnergy:

Equilibrium:( )

1i j

j N ii

u ud

Page 5: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

G 3-connected planar

rubber band embedding is planar

Exercise 2. (a) Let L be a line intersecting the outer polygon P, and let U

be the set of nodes of G that fall on a given (open) side of L. Then U

induces a connected subgraph of G.

(b) There cannot exists a node and a line such that the node and all its

neighbors fall on this line.

(c) Let ab be an edge that is not an edge of P, and let F and F’ be the two

faces incident with ab. Prove that all the other nodes of F fall on one side

of the line through this edge, and all the other nodes of F’ are mapped on

the other side.

(d) Prove the theorem above.

Tutte

Page 6: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

Discrete Riemann Mapping Theorem

Coin representation Koebe (1936)

Every planar graph can be represented by touching circles

Page 7: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

Can this be obtained from a rubber band representation?

Tutte representation optimal circles

i j i jx x r r- = +

Want:

2( | |)i j i jij E

r r x xÎ

+ - -åMinimize:

( | |) 0i j i jj

ij E

r r x x

Î

+ - - =åOptimum satisfies i:

Page 8: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

Rubber bands and strengths

rubber bands havestrengths cij > 0

2( )ij i jij E

c u uÎ

= -åEEnergy:

Equilibrium:( )

( )

ij jj N i

iij

j N i

c u

uc

( ) 0ij i jij E

c u uÎ

- =å

Page 9: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

Update strengths:

| |' i jij ij

i j

x xc c

r r

-=

+

The procedure converges to an equilibrium, where

i j i jx x r r- = +

Exercise 3. The edges of a simple planar map are 2-colored

with red and blue. Prove that there is always a node where the

red edges (and so also the blue edges) are consecutive.

Page 10: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

There is a node where

“too strong” edges (and

“too weak” edges) are

consecutive.

Page 11: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

( ) 2 arctan( )x

tx e dtj- ¥

= ò

A direct optimization proof [Colin de Verdiere]

Variables: ,Vx yÎ Î F

Set

log radii of circles

representing nodes

log radii of circles

inscribed in facets

minimize,

( ) ( )p i ip p ii V p

i p

y x y xj bÎ Î

Î

- - -åF

p

i

ipbFrom any Tutte representation

Page 12: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

Polar polytope

: 0polytope,dP P

* { : 1 }: polar polytoped TP y x y x P

Page 13: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

Blocking polyhedra Fulkerson 1970

* { : 1 }n TK x x y y K nK convex,ascending

* * *( ) ; facets of vertices ofK K K K

Exercise 4. Let K be the dominant of the convex hull of edgesets of

s-t paths. Prove that the blocker is the dominant of the convex hull of

edge-sets of s-t cuts.

Page 14: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

Energy

2 2( ) (0, ) min{| | : }K d K x x K= = ÎE

nK convex, ascending (recessive)

,x K y x y K

Page 15: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

*( ) ( ) 1K K =E E

x: shortest vector in K

x*: shortest vector in K*

*x x

Page 16: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

Generalized energy

{ }2( , ) min :i iK c c x x K= ÎåE

nK convex, ascending (recessive)

,x K y x y K

1

1 1, * ,...,n

n

c cc c+

æ ö÷ç ÷Î =ç ÷ç ÷çè ø

{ }( , ) min :i iK c c x x K= ÎåL

Page 17: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

* *( , ) ( , ) 1K c K c =E E

* *1 ( , ) ( , )K c K c n£ £L L

Exercise 5. Prove these inequalities. Also prove that they are sharp.

x: shortest vector in K

x*: shortest vector in K*

*i i ix Cc x

Page 18: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

Example 1.

1 1 2 2 3( ) ( )

3

1 1 2 2 3 3

{( : , , )},

{( : , , )}

( ) energy of rubber bands

iE G E

i

Gj

j

x x x a x a x aK K

y y y b y b y b

K

+ + = - = = =

´ - =

´

= =

=

Í

E

Example 2.

( ) ,

( )

E GK K

K+ =

=

Í

E

s-t flows of value 1 and “everything above”

electrical resistance between nodes s and t

Page 19: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

Example 3

Traffic jams (directed)

s t

time to cross e ~ traffic through e = xeN

N cars from s to t

average travel time:2

ex

(xe): flow of value 1 from s to t

Best average travel time = distance of 0 from the directed flow polytope

Page 20: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

3

3

3

3

2

2

2

5

4

1

10

10Brooks-Smith-Stone-Tutte 1940

0

3

4

5

67

9

Square tilings I

Page 21: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

3

3

3

3

2

2

2

5

4

1

10

10

Page 22: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

3

1

4

5

3

9

10

10

9

2

2

2

3

3

Square tilings II

Page 23: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

Every triangulation of a quadrilateral can be

represented by a square tiling of a rectangle.

Schramm

Page 24: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

3

1

4

5

3

9

10

10

9

2

2

2

3

3

Page 25: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

Every triangulation of a quadrilateral can be

represented by a square tiling of a rectangle.

Schramm

If the triangulation is 5-connected, then the

representing squares are non-degeenerate.

Page 26: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

K=convex hull of nodesets of u-v paths + +

n

u v

s

tx: shortest vector in K

x*: shortest vector in K*

*x Cx

x gives lengths of edgesof the squares.

Exercise 6. The blocker of K is the dominant of the convex

hull of s-t paths.

Exercise 7. (a) How to get the

position of the center of each square?

(b) Complete the proof.

Page 27: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

Unit vector flows

edge dijij" Îv

0ijj

=å v

1ij =v

ij ji=-v v skew symmetric

vector flow

Trivial necessary condition: G is 2-edge-connected.

Page 28: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

Conjecture 1. For d=2, every 4-edge-connected graph has

a unit vector flow.

Conjecture 2. For d=3, every 2-edge-connected graph has

a unit vector flow.

Theorem. For d=7, every 2-edge-connected graph has

a unit vector flow.Jain

It suffices to consider 3-edge-connected 3-regular graphs

Exercise 8. Prove conjecture 2 for planar graphs.

Page 29: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

[Schramm]

edge skew symmetric (parameter)dijij" Îa

node (vector variabl ) edii" Îx

minimize ij i jij

+ -å a x x

0kj k jij i j

ij jk kj k j

+ -¶+ - = =

¶ + -å å

a x xa x x

x a x x

unit vector flow?

Page 30: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

Conjecture 2’.

0ifor which the minimizing x satisfies ij ij i ja$ + - ¹a x x

Conjecture 2’’. Every 3-regular 3-connected graph can be

drawn on the sphere so that every edge is an arc of a large

circle, and at every node, any two edges form 120o.

Exercise 9. Conjectures 2' and 2" are equivalent to Conjecture 2.

Page 31: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

Antiblocking polyhedra Fulkerson 1971

* { : 1 }n TK x x y y K

* * *( ) ;K K K K facets of vertices of

nK convex corner

(polarity in the nonnegative orthant)

Page 32: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

conv{ :S }TAB( ) stable set inA GG A

: incidence vector of setA A

The stable set polytope

Page 33: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

Graph entropy

( )min log : STAB( , ) ( ){ }i i

i V GH p GG x xp

log consti ip x

Körner 1973

( , ) ( ) logn i iH K p H p p p

p: probability distribution on V(G)

Page 34: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

( )( ) .99

1lim mi( , ) n log ( [ ])t

t

t

U V GP U

t Gt

H G Up

connected iff distinguishable

Want: encode most of V(G)t by 0-1 words of min length, so that distinguishable words get different codes.

(measure of “complexity” of G)

Page 35: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.

( , ) ( , ) ( , )H F p H G p H F G p

: ( , ) ( , ) ( )p H G p H G p H p

G

is perfect

Csiszár, Körner, Lovász, Marton, Simonyi

( , ) ( , ) ( )H G p H G p H p

Page 36: Nonlinear methods in discrete optimization László Lovász Eötvös Loránd University, Budapest lovasz@cs.elte.hu.