Nonlinear Dynamics of Neural Firing

16
Nonlinear Dynamics of Neural Firing BENG/BGGN 260 Neurodynamics University of California, San Diego Week 3 BENG/BGGN 260 Neurodynamics (UCSD) Nonlinear Dynamics of Neural Firing Week 3 1 / 16

Transcript of Nonlinear Dynamics of Neural Firing

Page 1: Nonlinear Dynamics of Neural Firing

Nonlinear Dynamics of Neural Firing

BENG/BGGN 260 Neurodynamics

University of California, San Diego

Week 3

BENG/BGGN 260 Neurodynamics (UCSD) Nonlinear Dynamics of Neural Firing Week 3 1 / 16

Page 2: Nonlinear Dynamics of Neural Firing

Reading Materials

E.M. Izhikevich, Dynamical Systems in Neuroscience, MIT Press,2007, Ch. 1-2, pp. 53-121.

C. Koch, Biophysics of Computation, Oxford Univ. Press, 1999, Ch.7, pp. 172-192.

BENG/BGGN 260 Neurodynamics (UCSD) Nonlinear Dynamics of Neural Firing Week 3 2 / 16

Page 3: Nonlinear Dynamics of Neural Firing

One Dimensional Systems

CmdVm

dt= Iext − gNam∞ (Vm) (Vm − ENa)︸ ︷︷ ︸−gL (Vm − EL)

INa,p persistent, fast Na+

(Izh. p.55)

m∞ =1

1 + e−(Vm−V1/2)/k

⇒ dV

dt= F (V )

V1/2

1

Vm

m∞(V)

V1/2

0Vm

INa,p

0Vm

F(V)

Iext

BENG/BGGN 260 Neurodynamics (UCSD) Nonlinear Dynamics of Neural Firing Week 3 3 / 16

Page 4: Nonlinear Dynamics of Neural Firing

Phase Portrait, Equilibria

dV

dt= F (V )

dFdV

< 0 dFdV

> 0 dFdV

< 0

Small-signal analysis:

V = V0 + v

dv

dt≈ αv with α =

dF

dV

∣∣∣∣V0

v ≈ v0e+αt stable for α ≤ 0 (decaying perturbation)

BENG/BGGN 260 Neurodynamics (UCSD) Nonlinear Dynamics of Neural Firing Week 3 4 / 16

Page 5: Nonlinear Dynamics of Neural Firing

Bistability and Hysteresis

Figure 3.16: Membrane potential bistability in a cat TC neuron in the presence of ZD7288 (pharmacological blocker of Ib).(Modified from Fig. 6B of Hughes et. al. 1999).

Figure 3.17: Bistability and hysteresis loop as I changes.

Izhikevich, pg. 66

BENG/BGGN 260 Neurodynamics (UCSD) Nonlinear Dynamics of Neural Firing Week 3 5 / 16

Page 6: Nonlinear Dynamics of Neural Firing

Saddle-Node Bifurcation

Figure 3.25: Bifurcation in the INa,p-model (3.5):The resting state and the threshold state coalesce

and disappear when the parameter I increases.

Figure 3.30 Bifurcation diagram of thesystem in Fig. 3.26.

Izhikevich, pg. 72, pg. 77

BENG/BGGN 260 Neurodynamics (UCSD) Nonlinear Dynamics of Neural Firing Week 3 6 / 16

Page 7: Nonlinear Dynamics of Neural Firing

Two-Dimensional Systems

Morris-Lecar

CmdVm

dt= Iext − gKw (V − EK ) − gCam∞ (V ) (V − ECa) − gL (V − EL)

dw

dt=

w∞ (Vm) − w

τw (Vm)

n (n = w)

n4

Na

m∞3 (1− n)

Na → INa,p + IK

ML

simplified HH

FitzHugh-Nagumo, etc.

{dVdt = F (V ,W )dWdt = G (V ,W )

Dynamic repertoire:

Stationary Points

Limit Cycles

Stable Attractors

No other limits in 2-D (since V and Ware bounded)

BENG/BGGN 260 Neurodynamics (UCSD) Nonlinear Dynamics of Neural Firing Week 3 7 / 16

Page 8: Nonlinear Dynamics of Neural Firing

Nullclines

{dVdt = F (V ,W )dWdt = G (V ,W )

Equilibrium

Stable ⇒ Stationary Point

Unstable?

BENG/BGGN 260 Neurodynamics (UCSD) Nonlinear Dynamics of Neural Firing Week 3 8 / 16

Page 9: Nonlinear Dynamics of Neural Firing

Stability

Equilibria: {F (V0,W0) = 0

G (V0,W0) = 0intersection of nullclines

Linear Analysis: {V = V0 + v

W = W0 + w

{dvdt = av + bwdwdt = cv + dw

witha = ∂F

∂V

∣∣V0,W0

b = ∂F∂W

∣∣V0,W0

c = ∂G∂V

∣∣V0,W0

d = ∂G∂W

∣∣V0,W0

Eigenanalysis:

U =

(vw

)A =

(a bc d

)dU

dt= AU, or U = c1U1e

λ1t + c2U2eλ2t with

AU1 = λ1U1

AU2 = λ2U2{Re λ1 < 0 and Re λ2 < 0 ⇒ stable fixed point

Re λ1 > 0 or Re λ2 > 0 ⇒ unstable

Jacobian

eigenvectors eigenvalues

BENG/BGGN 260 Neurodynamics (UCSD) Nonlinear Dynamics of Neural Firing Week 3 9 / 16

Page 10: Nonlinear Dynamics of Neural Firing

Stability (Continued)

Eigenanalysis:

AU = λU

det (A− λI) = 0∣∣∣∣ a− λ bc d − λ

∣∣∣∣ = 0

λ2 − τλ+ ∆ = 0 with

{τ = a + d : Trace (A)

∆ = ad − bc : det (A)

λ1,2 =τ ±√τ2 − 4∆

2

τ2 > 4∆ : real, distinct eigenvalues

τ2 = 4∆ : real, repeated eigenvalues

τ2 < 4∆ : complex conjugate eigenvalues

BENG/BGGN 260 Neurodynamics (UCSD) Nonlinear Dynamics of Neural Firing Week 3 10 / 16

Page 11: Nonlinear Dynamics of Neural Firing

Stability of 2-D Equilibria

Figure 4.15: Classification of equilibria according to the trace (τ) and the determinant (∆) ofthe Jacobian matrix A. The shaded region corresponds to stable equilibria.

Izhikevich, pg. 104

BENG/BGGN 260 Neurodynamics (UCSD) Nonlinear Dynamics of Neural Firing Week 3 11 / 16

Page 12: Nonlinear Dynamics of Neural Firing

Morris-Lecar and INa,p + IK

Persistent sodium and potassium(INa,p + IK

)is equivalent to Morris-Lecar (n = w).

V − nullcline :

F (V , n) =1

C

(Iext − gKn (V − EK )− gNam∞ (V ) (V − ENa)

− gL (V − EL))

= 0⇒

n =Iext − gNam∞ (V ) (V − ENa)− gL (V − EL)

gK (V − EK )

n− nullcline :

G (V , n) =n∞ (V )− n

τn (V )= 0⇒

n = n∞ (V )

V

n

V-nullcline

V

n

n-nullcline

BENG/BGGN 260 Neurodynamics (UCSD) Nonlinear Dynamics of Neural Firing Week 3 12 / 16

Page 13: Nonlinear Dynamics of Neural Firing

INa,p + IK (or ML) Nullclines

Figure 4.4: Nullclines of theINa,p + IK -model (4.1, 4.2) withlow-threshold K+current in Fig. 4.1b.(The vector field is slightly distorted forthe sake of clarity of illustration).

Izhikevich, pg. 93

BENG/BGGN 260 Neurodynamics (UCSD) Nonlinear Dynamics of Neural Firing Week 3 13 / 16

Page 14: Nonlinear Dynamics of Neural Firing

Graded Action Potentials

Figure 4.7: Failure to generate all-or-none action potentials in the INa,p + IK -model.

Izhikevich, pg. 95

BENG/BGGN 260 Neurodynamics (UCSD) Nonlinear Dynamics of Neural Firing Week 3 14 / 16

Page 15: Nonlinear Dynamics of Neural Firing

Variable Threshold

Figure 4.8: Failure to have a fixed value of threshold voltage in the INa,p + IK -model.

Izhikevich, pg. 96

BENG/BGGN 260 Neurodynamics (UCSD) Nonlinear Dynamics of Neural Firing Week 3 15 / 16

Page 16: Nonlinear Dynamics of Neural Firing

Stable Limit Cycle

Figure 4.10: Stable limit cycle in the INa,p + IK -model (4.1, 4.2) with low-threshold K+currentand I = 40.

Izhikevich, pg. 97.

BENG/BGGN 260 Neurodynamics (UCSD) Nonlinear Dynamics of Neural Firing Week 3 16 / 16