Nonlinear channel-shoal dynamics in long tidal embayments

10
Nonlinear channel-shoal dynamics in long tidal embayments H.M. Schuttelaars 1,2 , G.P. Schramkowski 1,3 and H.E. de Swart 1 ite amplitude behaviour of large scale alternating can be understood and modelled”

description

Nonlinear channel-shoal dynamics in long tidal embayments. H.M. Schuttelaars 1,2 , G.P. Schramkowski 1,3 and H.E. de Swart 1. “Finite amplitude behaviour of large scale alternating bars can be understood and modelled”. Observations on large scale alternating bars:. - PowerPoint PPT Presentation

Transcript of Nonlinear channel-shoal dynamics in long tidal embayments

Page 1: Nonlinear channel-shoal dynamics in long tidal embayments

Nonlinear channel-shoal dynamics in long tidal embayments

H.M. Schuttelaars1,2, G.P. Schramkowski1,3 and H.E. de Swart1

“Finite amplitude behaviour of large scale alternating bars can be understood and modelled”

Page 2: Nonlinear channel-shoal dynamics in long tidal embayments

Aim of this talk: to model and understand the observed dynamical behaviour of large scale alternating bars

Observations on large scale alternating bars:

• length scales ~ 20 km.• environments with strong tides• fine sand

Previous studies: Seminara & Tubino (1998), Hibma et al. (2002)

Page 3: Nonlinear channel-shoal dynamics in long tidal embayments

Model setup

• idealised model • straight channel • only bed erodible • depth-averaged SW eqns • suspended load transport • uniform M2 tidal forcing, velocity scale ~ 1 m/s

Length scales << channel length, tidal wavelength Typically: • channel width B • horizontal tidal excursion length ~ 7 km

Page 4: Nonlinear channel-shoal dynamics in long tidal embayments

Model approachUse a finite number of spatial patterns obtained from a linear stabilityanalysis to describe the finite amplitude bed behaviour:

h’ = Amn(t) cos (m kcx) cos (ny/B)m=0

M

n=0

N

Growth curves

kc

• kc: wavenr. of critical mode channel length c

c= ~ 60 km

• B ~ 5 km.• N,M: truncation numbers

kc

Page 5: Nonlinear channel-shoal dynamics in long tidal embayments

Model approachUse a finite number of spatial patterns obtained from a linear stabilityanalysis to describe the finite amplitude bed behaviour:

h’ = Amn(t) cos (m kcx) cos (ny/B)m=0

M

n=0

N

Growth curves

m=1,n=1

m=1,n=2

m=2,n=1

0

00

00

LcB

B

B Lc

Lc

Page 6: Nonlinear channel-shoal dynamics in long tidal embayments

Model approachUse a finite number of spatial patterns obtained from a linear stabilityanalysis to describe the finite amplitude bed behaviour:

h’ = Amn(t) cos (m kcx) cos (ny/B)m=0

M

n=0

N

Insert expansion in complete nonlinear equations.

equations describing the behaviour of Amn(t): • steady state solutions• cyclic behaviour

Page 7: Nonlinear channel-shoal dynamics in long tidal embayments

Example: channel width ~ 3.5 km.

• multiple steady state solns: • trivial soln. • nontrivial soln. • no steady equilibrium soln for r/H > 0.0213

periodic soln.

Page 8: Nonlinear channel-shoal dynamics in long tidal embayments

Steady state solution (r~0.0213)

Periodic solution (r~0.0214)

Page 9: Nonlinear channel-shoal dynamics in long tidal embayments

Sensitivity study: variation of bed friction and channel width

• R<rcr(B): horizontal bed• B<3.6 km: stable static solns. exist• B>3.6 km: no static solns. time-dependency• Small region of multiple stable steady states

Page 10: Nonlinear channel-shoal dynamics in long tidal embayments

Conclusions• existence of finite amplitude alternating bars explicitly demonstrated• qualitative behaviour depends on channel width and strength of bed friction• saturation mechanism: importance of destabilizing sediment fluxes decreases relative to bedslope effects

Present work• explore towards realistic values of bed friction• further identification of physical processes• comparison with more complex models