Nonadiabatic Couplings and Conical Intersections ...€¦ · Geometry...

31
Geometry Optimization Gradients Nonadiabatic Couplings Nonadiabatic Couplings and Conical Intersections: Algorithmic Details Felix Plasser Institute for Theoretical Chemistry, University of Vienna COLUMBUS in China Tianjin, October 10–14, 2016 F. Plasser NAC and Con. Ints 1 / 35

Transcript of Nonadiabatic Couplings and Conical Intersections ...€¦ · Geometry...

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Nonadiabatic Couplings and Conical Intersections:Algorithmic Details

    Felix Plasser

    Institute for Theoretical Chemistry, University of Vienna

    COLUMBUS in ChinaTianjin, October 10–14, 2016

    F. Plasser NAC and Con. Ints 1 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Potential Energy Surfaces

    I How to find minima?I How to find conical intersections?→ Geometry optimization

    F. Plasser NAC and Con. Ints 4 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Minima

    I Task: find a local minimum of the PES EI(R)with respect to the nuclear coordinates R = R1, . . . , Rn

    / We do not know the functional form of EI(R), We can compute EI(R) at individual geometries, We can compute the energy gradient 5EI(R)

    F. Plasser NAC and Con. Ints 5 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Minima

    Newton-Raphson MethodI Find a root of a one-dimensional function f(x)

    Taylor expansion

    f(x) = f(x0) + (x− x0)f ′(x0)

    I Try to find point x1 where f(x1) = 0

    x1 = x0 −f(x0)

    f ′(x0)

    I Iterate

    F. Plasser NAC and Con. Ints 6 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Minima

    Newton-Raphson MethodI Iterative procedure

    F. Plasser NAC and Con. Ints 7 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Minima

    Newton-Raphson MethodI Find a stationary point of a one-dimensional function f(x)

    Stationary point

    f ′(x) = 0

    I Apply Newton-Raphson to the derivative

    x1 = x0 −f ′(x0)

    f ′′(x0)

    I Iterate

    F. Plasser NAC and Con. Ints 8 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Minima

    Newton-Raphson MethodI Find a stationary point of a multi-dimensional function EI(R)

    Gradient vector

    g(R) = 5EI(R)

    gi(R) =∂

    ∂RiEI(R)

    Talyer expansion of the gradient

    g(R) = g(R0) + H · (R−R0)

    Hij =∂2

    ∂Ri∂RjEI(R)

    F. Plasser NAC and Con. Ints 9 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Minima

    Talyer expansion of the gradient

    g(R) = g(R0) + H · (R−R0)

    Hij =∂2

    ∂Ri∂RjEI(R)

    I Set the gradient to zero

    R1 = R0 −H−1g(R)

    I Iterate

    F. Plasser NAC and Con. Ints 10 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Minima

    Quasi-Newton-Raphson Method

    R1 = R0 −H−1g(R)

    I Estimate H−1

    I Initial guess: diagonal Hessian with respect to internal coordinatesintcfl file

    I Hessian update

    F. Plasser NAC and Con. Ints 11 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Minima

    Direct inversion in the iterative subspace (DIIS)I Consider all previous geometries in the optimizationI gdiis program

    F. Plasser NAC and Con. Ints 12 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    MXS optimization

    MXS optimization

    Task EI(R)+EJ(R)2 → minCondition EI(R) = EJ(R)

    / The surfaces are not differentiable at the conical intersection, We can compute the coupling vectorsI Idea: separate the intersection and branching spacesI Optimize the energy in the intersection spaceI Minimize the gap in the branching space

    F. Plasser NAC and Con. Ints 13 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    MXS Optimization

    Several methods availableI Gradient projectionI Lagrange NewtonI Penalty function

    F. Plasser NAC and Con. Ints 14 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    MXS Optimization

    Gradient projectionI Projected gradient in the intersection space

    Projected gradient

    gp =(1− gIJgIJT − hIJhIJT

    )5 EJ

    gIJ Gradient difference vectorhIJ Nonadiabatic coupling vector

    I Minimization of the gap in the branching space- Follow gIJ

    1 Beapark, Robb, and Schlegel 1994, .F. Plasser NAC and Con. Ints 15 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    MXS Optimization

    Lagrange NewtonI Introduce Lagrange multipliers for the degeneracy

    Lagrangian

    L(R, λ1, λ2) = EI(R) + λ1∆EIJ(R) + λ2HIJ

    I Optimize the Lagrangian using Newton-Raphson/GDIISI In COLUMBUS

    1 M. Dallos et al. J. Chem. Phys. 2004, 120, 7330.F. Plasser NAC and Con. Ints 16 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    MXS Optimization

    Penalty function

    f(R) =EI + EJ

    2c1c

    22 ln

    (1 +

    EI − EJc2

    )2I Minimize a penalty function- Optimize the energy- Minimize the gapI Optimization without nonadiabatic coupling vectors

    1 Ciminelli, Granucci, and Persico 2004, .F. Plasser NAC and Con. Ints 17 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Gradients

    Energy expectation value

    E = 〈Ψ| Ĥ |Ψ〉E(R) = 〈Ψ(k (R))| Ĥ(R) |Ψ(k (R))〉

    R Nuclear geometryk(R) Wavefunction parameters (e.g. orbital and CI coefficients)

    F. Plasser NAC and Con. Ints 19 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Gradients

    Energy expectation value

    E(R) = 〈Ψ(k (R))| Ĥ(R) |Ψ(k (R))〉

    Energy gradient

    ∂RxE(R) ≡ Ex = 〈Ψ| Ĥx |Ψ〉+ 2

    ∑i

    〈Ψ| Ĥ∣∣∣∣ ∂∂ki Ψ

    〉kxi

    Rx One nuclear coordinateEx Derivative of the energy with respect to Rxkxi Derivative of wavefunction parameter ki with respect to Rx

    Chain rule!

    F. Plasser NAC and Con. Ints 20 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Gradients

    Variational methods

    Energy gradient

    Ex = 〈Ψ| Ĥx |Ψ〉+ 2∑i

    〈Ψ| Ĥ∣∣∣∣ ∂∂ki Ψ

    〉kxi

    Variationally optimized wavefunction

    0 =∂

    ∂ki〈Ψ| Ĥ |Ψ〉 = 2 〈Ψ| Ĥ

    ∣∣∣∣ ∂∂ki Ψ〉

    I Generalized Hellman-Feynman theorem

    Energy gradient

    Ex = 〈Ψ| Ĥx |Ψ〉

    F. Plasser NAC and Con. Ints 21 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Gradients

    Variational methodsI State-specific MCSCF

    , VariationalI State-averaged MCSCF

    / Orbitals not variationalOrbitals are optimized for the average energy and not for the individual states

    I MR-CI/ Orbitals not variational

    F. Plasser NAC and Con. Ints 22 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Gradient

    State-specific MCSCF

    Energy gradient

    Ex = 〈Ψ| Ĥx |Ψ〉

    Practical stepsI Compute the 1- and 2-particle density matrices (DM)

    mcscf.xI Transform the DMs to the AO basis

    tran.xI Compute the AO integral derivatives and contract them with the DMs

    dalton.x “abacus”

    F. Plasser NAC and Con. Ints 23 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Gradients

    Non-variational methods

    Energy gradient

    Ex = 〈Ψ| Ĥx |Ψ〉+ 2∑i

    〈Ψ| Ĥ∣∣∣∣ ∂∂ki Ψ

    〉kxi

    = 〈Ψ| Ĥx |Ψ〉+∑i

    fikxi

    = 〈Ψ| Ĥx |Ψ〉+ f · kx

    f Wavefunction gradientHow does the energy change if I change the parameters? – easy

    kx Geometric parameter derivativesHow do the parameters change if I change the geometry? – difficult

    F. Plasser NAC and Con. Ints 24 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Gradients

    We know how the reference wavefunction was constructed!

    Reference wavefunction

    fref(R,k(R)) = 0

    fref Wavefunction gradient of the reference wavefunction, e.g. MCSCFVanishes since the reference wavefunction was optimized

    Geometric derivative

    fxref +∑j

    ∂kjfref · kx = 0

    fxref + Gkx = 0

    G Wavefunction Hessian of the reference wavefunction

    F. Plasser NAC and Con. Ints 25 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Gradients

    Geometric derivative

    fxref + Gkx = 0

    kx = −G−1fxref

    Energy gradient

    Ex = 〈Ψ| Ĥx |Ψ〉+ f · kx

    Ex = 〈Ψ| Ĥx |Ψ〉 − fTG−1fxref

    F. Plasser NAC and Con. Ints 26 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Gradients

    Energy gradient

    Ex = 〈Ψ| Ĥx |Ψ〉 − fTG−1fxref

    I Coupled perturbed MCSCF equationsI Trick: Precompute fTG−1 as an equation system1

    I Z-vector equation

    Z-vector equation

    λT = fTG−1

    λTG = fT

    I Independent of the geometric derivativeI cigrd.x program

    1 N. C. Handy, H. F. Schaefer III J. Chem. Phys. 1984, 81, 5031.F. Plasser NAC and Con. Ints 27 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Gradients

    I Convert the result into effective density matricesI Contract with the AO derivative integrals, as before

    F. Plasser NAC and Con. Ints 28 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Gradient

    State-averaged MCSCF, MR-CIPractical steps

    I Compute the 1- and 2-particle density matrices (DM)mcscf.x, (p)ciudg.x

    I Solve the coupled perturbed equationscigrd.x

    I Transform the effective DMs to the AO basistran.x

    I Compute the AO integral derivatives and contract them with the DMsdalton.x “abacus”

    F. Plasser NAC and Con. Ints 29 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Gradients

    In reality, it is more complicated ...

    I Two types of wavefunction parameters− CI-coefficients – variationally optimized for the individual states− MO-coefficientsI Redundant parameters- Orbital resolution can affect MR-CI energies and gradients

    1 H. Lischka, M. Dallos, R. Shepard Mol. Phys. 2002, 100, 1647.F. Plasser NAC and Con. Ints 30 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Nonadiabatic Couplings

    Nonadiabatic coupling

    h12 = 〈Ψ1|5Ψ2〉hx12 = 〈Ψ1|Ψx2〉

    I Measures changes in the wavefunctionI Is it related to the gradient?

    F. Plasser NAC and Con. Ints 32 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Nonadiabatic Couplings

    Schrödinger Equation

    Ĥ |Ψ2〉 = E2 |Ψ2〉Ĥx |Ψ2〉+ Ĥ |Ψx2〉 = Ex2 |Ψ2〉+ E2 |Ψx2〉

    〈Ψ1| Ĥx |Ψ2〉+ 〈Ψ1| Ĥ |Ψx2〉 = 〈Ψ1|Ex2 |Ψ2〉+ 〈Ψ1|E2 |Ψx2〉〈Ψ1| Ĥx |Ψ2〉+ E1 〈Ψ1|Ψx2〉 = E2 〈Ψ1|Ψx2〉

    Nonadiabatic coupling

    hx12 = 〈Ψ1|Ψx2〉 =〈Ψ1| Ĥx |Ψ2〉E2 − E1

    F. Plasser NAC and Con. Ints 33 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Nonadiabatic Couplings

    Nonadiabatic coupling

    hx12 = 〈Ψ1|Ψx2〉 =〈Ψ1| Ĥx |Ψ2〉E2 − E1

    I Wavefunction derivative converted into Hamiltonian derivativeI Equation similar to gradient→ Use similar methodology

    F. Plasser NAC and Con. Ints 34 / 35

  • Geometry Optimization Gradients Nonadiabatic Couplings

    Nonadiabatic Couplings

    Nonadiabatic couplings vs. gradients

    I Use transition density matrices instead of density matricesI Formalism somewhat more involved, two terms- CI coefficient derivative “DCI”- CSF coefficient derivative “DCSF”

    F. Plasser NAC and Con. Ints 35 / 35

    Geometry OptimizationGradientsNonadiabatic Couplings