NOC Hi Lab Video

22
June 2014 Pavement design and construction technique using high strength stone interlocked cemented aggregate low fines matrix. Gerhard van Blerk

Transcript of NOC Hi Lab Video

Page 1: NOC Hi Lab Video

June 2014

Pavement design and construction technique using high strength stone interlocked cemented aggregate low fines matrix.

Gerhard van Blerk

Page 2: NOC Hi Lab Video

2

2

Introduction:“More for Less”

• Global financial constraints and a steep increase in bitumen prices

• RCA’s are seeking alternative construction techniques (Hi-Lab)

• Embrace the origin of road construction (John Loudon McAdam, 1820) through modern pavement construction techniques

Page 4: NOC Hi Lab Video

4

4

Design Intent:High degree of aggregate interlock

Maximize stone packing, forcing “full” stone on stone interlock through a controlled process of:

• grading (percentage of large aggregate fraction)

• aggregate quality (crushing resistance)• small amount of cement (3%)• construction technique

Page 5: NOC Hi Lab Video

5

5

Material Selection and Properties: Aggregate Grading

0

10

20

30

40

50

60

70

80

90

100

Hi-Lab40 AP40 RCC

0.075 1.18 4.75 9.50 19.0 37.5 63.0

SIEVE SIZE (mm)

% P

ASSI

NG

Hi-Lab40 vs AP40 vs RCC Grading Envelope

Page 6: NOC Hi Lab Video

6

6

Hi-Lab Construction Technique: Aggregate Placing

Page 7: NOC Hi Lab Video

7

7

Hi-Lab Construction Technique: Placing and Grading

Page 8: NOC Hi Lab Video

8

8

Hi-Lab Construction Technique: Cement Spreading

Page 9: NOC Hi Lab Video

9

9

Hi-Lab Construction Technique: Subbase Stabilization (mixing process)

Page 10: NOC Hi Lab Video

10

10

Hi-Lab Construction Technique: Base Stabilization (mixing process)

Page 11: NOC Hi Lab Video

11

11

Material Selection and Properties: Aggregate Grading

Page 12: NOC Hi Lab Video

12

12

Hi-Lab Construction Technique: Compaction and Final Surface

Page 13: NOC Hi Lab Video

13

13

Hi-Lab Construction Technique: Compaction and Final Surface

Page 14: NOC Hi Lab Video

14

14

Hi-Lab Construction Technique: Engineering Properties (Strength)

• Indirect Tensile Strength (ITS)

Page 15: NOC Hi Lab Video

15

15

Hi-Lab Construction Technique: Engineering Properties (Strength)

• Beam Fatigue Tensile Strain

Page 16: NOC Hi Lab Video

16

Hi-Lab Construction Technique: Engineering Properties (Strength)

16

Page 17: NOC Hi Lab Video

17

Hi-Lab Construction Technique: Engineering Properties (Strength)

17

Page 18: NOC Hi Lab Video

18

Hi-Lab Construction Technique: Engineering Properties (Strength)

18

Page 19: NOC Hi Lab Video

19

19

Hi-Lab Construction Technique: Observed Performance

Benkelman Beam Deflections

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Tatuanui(SectionA)

Tatuanui(SectionB)

Tatuanui(SectionC)

Te Rapa(Section A)

Te Rapa(Section B)

Taupiri Orini

Project Name

Ymax

(Ave

rage

Val

ue)

Selected Sand Layer Hi-Lab65 (Subbase Layer) Hi-Lab40 (Base Layer)

Back-calculated Stiffness (MPa)

0

1000

2000

3000

4000

5000

6000

Selected Sand Layer Hi-Lab65 (Subbase Layer) Hi-Lab40 (Base Layer) Selected Sand Layer Hi-Lab65 + Hi-Lab40 (LayersCombined)

Project Name

Med

ian

Stiff

ness

(MPa

)

Tatuanui Te Rapa Orini

Page 20: NOC Hi Lab Video

20

2020

Case Studies: Cost Saving

• Substantial cost savings without sacrificing performance.

• Pavement construction cost savings between 30% to 40%.

• Base layer construction cost savings between 100% to 400% e.g. SAC ($100/m^2) – Hi-Lab ($25/m^2).

Page 21: NOC Hi Lab Video

21

2121

Conclusion/Summary:

• Realizing the proven performance associated with the Macadam design theory through modern stabilization equipment.

• Observed engineering properties are very promising.

• Case studies shows this technique to be a viable alternative to more costly options.

Page 22: NOC Hi Lab Video

22

22