No. of Unitsfg Target

download No. of Unitsfg Target

of 8

Transcript of No. of Unitsfg Target

  • 7/29/2019 No. of Unitsfg Target

    1/8

    No.ofunitstarget Module:04 Lecture14

    Module 04:Targeting

    Lecture14: No.ofunitstarget

    KeyWords:HEN,Subset,Loop,Separatecomponent,MER designThefixedcostofaheatexchangernetwork(HEN)dependsuponthenumberofheatexchanger

    itemploys.

    Thus,

    there

    exists

    apossibility

    that

    aHEN

    with

    minimum

    no.

    of

    heat

    exchanger

    will

    cost less. Thus there exists a strong incentive to reduce the number of heat exchangers (

    matchesbetweenhotandcoldstreams)inaHEN.Thefirststeprequiredforthisprocessforits

    initiation isto identifythenumberofheatexchangersaHENwillrequirefromthenumberof

    Hot,ColdandUtilitystreamsithandles.

    Letusexplaintheproblemwithanexample.Fig.4.23showstheflowsheetofapalmoilrefinery

    [1,2].

    Fig.4.23Flowsheetofapalmoilrefinery

  • 7/29/2019 No. of Unitsfg Target

    2/8

    No.ofunitstarget Module:04 Lecture14

    Theflowsheetusesthreeheatexchangers,threecoolersandfourheatersmaking10units in

    all.Nowthequestioniswhether10unitsaretheminimumnumberofunits,oradesignercan

    reduceit withouthamperingthefunctionalityoftheprocess?

    ThestreamtablefortheaboveproblemisgiveninTable4.14:

    Table4.14 Streamdataforpalmoilrefinery(Fig.4.23)forTmin=10C

    Stream

    SerialNo.

    StreamType CP

    (KW/K)

    ActualTemperatures Enthalpy,H

    kW

    Ts(0

    C) Tt(0C)

    1 Hot1 10.99 120 86 373.66

    2 Hot2 6.04 260 160 604

    3

    Hot3

    13.13

    230

    702100.8

    4 Hot4 6.56 160 50 721.6

    5 Cold1 11.83 50 97 556.01

    6 Cold2 14.89 104 124 297.8

    7 Cold3 5.69 86 230 819.36

    PTAanalysisoftheproblemshowsthatitisathresholdproblemandneedsonlycoolingandno.

    heating. The minimum cooling load required for the above system computed using PTA is

    2126.89. The heat loads of different streams along with cold utility load is shown within the

    circles representing the streams in Fig.4.24. The predicted cold utility load is also shown

    similarly.

    Coldutility

    2126.89kW

    Hot1

    373.66

    kW

    Hot2

    604kW

    Hot3

    2100.8

    kW

    Hot4

    721.6

    kW

    Cold1

    556.01

    kW

    Cold2

    297.8

    kW

    Cold3

    819.36

    kW

    721.697.76

    297.8306.2249.81123.85

    2003.04

    HX2 HX1HX3HX4HX5HX6HX7

    Fig.4.24 Schematicmatchingofheatloadsforstreamtabledata,Table4.14

  • 7/29/2019 No. of Unitsfg Target

    3/8

    No.ofunitstarget Module:04 Lecture14

    Notethatthecomplete system is inenthalpybalance(i.e.thetotal loadofcoldstreamsplus

    cold utility is equal to the total load of hot streams). If we presume that temperature

    constraintswillallowanymatchtobemadebetweenhotstreamsandcoldstreams including

    cold

    utility,

    then

    we

    can

    match

    the

    whole

    of

    cold

    streams

    3

    (total

    819.36

    units)

    with

    Hot

    streams3&4, leavingaresidualheatloadof2003.04unitsonHot3.MatchingHot3&Hot4

    withCold3 andmaximizing the loadon thismatchso thatCold3& Hot4 istickedoff the

    2003.4residualheatavailablewithHot3 issent tocoldutilitywhichrequires2126.89units.

    Cold2 istickedoffbymatchingwithHot2 leaving306.2unitsofheat in it. Theremaining

    heatinHot2alongwith249.81unitsofheatfromHot1ispassedtoCold1toTickitoff. This

    leaves 123.85 units of heat with Hot1 which is passed to cold utility. This heat along with

    2003.04unitsofheatfromHot3ticksoffcoldutility.Sofollowingtheprincipleofmaximizing

    loads,that istickingoffstreamorutility loadsorresiduals, leadstoadesignwithatotalof

    seven matches (connections between streams and utilities show matches are denotedby HX

    withanumber).This is infact istheminimumforthisproblem.Noticethat it isone lessthan

    thetotal

    number

    of

    streams

    plus

    utilities

    in

    the

    problem.

    Thusitcanbeshownthat:

    umin=N1 .( 4.8)whereumin=minimumnumberofunits(includingheatersandcoolers)and

    N=totalnumberofstreams(includingutilities)

  • 7/29/2019 No. of Unitsfg Target

    4/8

    No.ofunitstarget Module:04 Lecture14

    Infact,itisusuallypossibleinheatexchangernetworkdesigntofindauminsolution.However,

    certain refinements toEq.4.8 are requiredasdiscussedbelow tobroaden itsapplicability. In

    Fig.4.25 (a), problem having two hot streams ( H1 & H2), two cold streams(C1& C2), Hot

    utility(HU)andColdutility(CU)isshown.Inthiscase,

    putting matches as before by ticking off loads or residuals leads to a design withN 1 unitswhich satisfy Eq.4.8 However, in Fig4.25(b) a design is revealed having one unit less. The

    justification for the fact that the number is less than minimum is not hard to find. Even as

    overalltheproblemisinenthalpybalance, thesubsetcontaining streamsH2,C1andCU are

    inenthalpybalance.SimilarlyHU, H1andC2areinenthalpybalance(thisisaknownfactas

    the total problem is in load balance).This means that for the given stream data set we can

    designtwo

    completely

    separate

    networks,

    employing

    the

    Eq.4.8

    to

    each

    subset

    individually.

    Thetotalnumberofunitsfortheoverallsystemistherefore(3 1)+(3 1)=4units,whichis one

    lessthanfoundinFig.4.25(a).Thisconditioniscalled subsetequality,thisappearswhenfora

    given stream data set it is possible to identify two subsets which are separately in enthalpy

    balanceandthuscanformseparatenetworks.Sincetheflowsheetdesigner,cancontrolofthe

    quantityoftheheatloadsinhisplanttosomeextent,itispossibletochangetheheatloadsso

    as to create subset equality and thus create an opportunity to save a unit. Finally, in

    Fig.4.25(c)amatchingscheme isshownwhichrequires oneunitmorethantheschemeshown

    Loop

    Fig.4.25 Subsetandloops duringmatching

    HU

    40

    H1

    80

    H2

    160

    C1

    90

    C2

    120

    CU

    70

    40 80 90 70

    (b)

    HU

    40

    H1

    80

    H2

    160

    C1

    90C

    2

    120

    CU

    70

    Y 30Y 90 70

    (c)

    40Y 50+Y

    HU

    40

    H1

    80

    H2

    160

    C1

    90

    C2

    120

    CU

    70

    5040 30 90 70

    (a)Matches=05 Matches=04

    Matches =06

  • 7/29/2019 No. of Unitsfg Target

    5/8

    No.ofunitstarget Module:04 Lecture14

    in Fig.4.25(a),thenewextraunithasbeenintroducedasthematchbetweenHUandC2 which

    introduces aloop in thesystem. It issobecauseonecan traceaclosedpath through the

    networkstartingfrom,sayHU,theloopcanbetracedtoC1,fromC1toH1,fromH1toC2,

    andfromC2backtoHU.Though,thepresenceoftheloopintroducesanelementofflexibility

    into the design it increases number of units in the system. Suppose the new extra match,

    betweenHUandC2,isassignedaloadofYunits,thenthroughenthalpybalance,the loadonthe

    match

    between

    HU

    and

    C1has

    to

    be

    40

    Y,

    between

    C1and

    H

    1,

    50

    +Y,

    and

    between

    H

    1

    andC2, 30Y.FromFig(c)itcanbeinstitutivelysaidthatYcanvaryfrom0toavalueof30.WhenY=0 thematchbetweenHUandC2vanishesand whenitis30thematchbetweenH1

    and C2 disappears. The flexibility introduced by loops is many times useful, particularly in

    revampstudiesandcleaningoperations.

    ThefeaturesdiscussedaboveandshowninFig.4.25(a),(b)&(c) canbeconvertedintoa

    formulatocompute numberofheatexchangeunits, usingtheEulersGeneralNetwork

    theoremappliedtoheatexchangernetwork:

    umin=N+LS (4.9)where;

    u=numberofheatexchangeunits(includingheatersandcoolers),N=numberofstreams(includingutilities),L=numberofindependentloops,andS=numberofseparatecomponentsNormallyadesigner wanttoavoidextraunitsbyreducingLtozero. Unlessoneislucky,there

    willbenosubsetequalityinthestreamdatasetandthusthevalueofswillbe1. Thisleadsto

    thenumberofunitstargetingequation:

    umin=N1 (4.8)

    Inthedesignofheatexchangernetworkstechniquesdiscussedabovewillbeusedtoreducethe

    number of heat exchangers by allowing small energy penalty at various sections of the

    networkfor tradingoffenergyagainstcapitalcost.

    Examples:Afivestreamproblemistakenupcomputeno.ofunitstarget.

    Table4.15Afivestreamproblemforno.ofunitstargetforTmin=10C

    Stream

    Number

    Stream

    Type

    Heat Capacity

    FlowRate

    Source

    Temperature

    Target

    Temperature

    H,kW

    (kW/

    0C)

    (0C)

    (0C)

    1 HOT1 147.74 70 10 8864.34

    2 HOT2 165.85 60 33 4478

    3 COLD1 50 57 60 150

    4 COLD2 215 41 60 4085

    5 COLD3 194.74 10 30 4479

    UsingPTA theminimumhotandcoldutilitiesarecomputedasgivenbelow:

  • 7/29/2019 No. of Unitsfg Target

    6/8

    No.ofunitstarget Module:04 Lecture14

    Hotutility(HU) =822.61kW

    Coldutility(CU) =5450.95kW

    HotPinchTemp. =60C

    Coldpinchtemp. =50C

    Fromthe

    table

    it

    appears

    that

    ifthe

    heat

    load

    of

    Cold

    3can

    be

    brought

    down

    to

    4478

    there

    is

    a

    chanceforsubsetequalityresultingS=2and therebydecreaseofno.ofunitsbyone.Forthis

    case:N=7(includingHUandCUstreams);L=0andS=2

    umin= N+LS=7+02=5

    IfsubsetequalityisnotcreatedthenN=7,L=0andS=1.Forthiscase

    No.ofunitsare:

    umin=7+01=6

    Targeting for the minimum number of units for a MER design

    HoweveriftheaboveequationEq.4.8isappliedtoamaximumenergyrecovery(MER)design

    the results will be somewhat different. For this purpose the problem of Table 4.15 is

    considered. In a MER design the pinch divides the problem into two heat balanced regions.

    Since these balanced regions are independent, numbers of units targeting should be applied

    separatelytoeachregionasshownbelow:

  • 7/29/2019 No. of Unitsfg Target

    7/8

    No.ofunitstarget Module:04 Lecture14

    Fig.4.26showsthestreamlayoutaboveandbelowthepinch.

    Thustotaluminforthenetwork=3+4=7

    IfPinch

    division

    is

    not

    considered

    then

    no.

    of

    streams

    including

    hot

    and

    cold

    utilities

    is

    =7,

    S=1andL=0.

    Thus,thetotalno.ofunitsfornonMERdesign=umin=7+01=6

    ThusitcanbeprovedthatuminuminMER

    Thenumberofunits obtained intargetingfortheMERdesignismorethatuminduetothefact

    that streamsthatcrossthepincharecountedtwiceinMERdesign.Theconclusionisthatthere

    isatradeoffbetweenenergyrecoveryandnumberofunitsemployedinaMERdesign.Howto

    reduceno.ofunitsinaMERdesignwillbeexplainedwhenMERdesignwillbediscussed.

    Fig.4.26 Process hotandcoldstreamsandutilitystream inaboveandbelowpinch

    1

    2

    3

    4

    5

    70C 10C

    33C

    33C

    57C60C

    60C

    10C

    60C 41C

    HotPinch=60C Cold Pinch=50CHU

    CU

    AbovePinch Below Pinch

    Umin=41=3 Umin=51=4

  • 7/29/2019 No. of Unitsfg Target

    8/8

    No.ofunitstarget Module:04 Lecture14

    References

    1. K.K.Trivedi,E.Fouche,K.E.Parmenter,ProcessEnergyEfficiency:PinchTechnologyinHandbookofEnergyEfficiencyandRenewableEnergy,CRCPress,BocaRaton,2007,pp.

    1511530.

    2. SharifahR.WanAlwi,ZainuddinA.Manan,STEPAnewgraphicaltoolforsimultaneous

    targeting

    and

    design

    of

    aheat

    exchanger

    network,

    Chemical

    Engineering

    Journal162(2010)106121