NMR Inst 2012 - University of Georgiatesla.ccrc.uga.edu/.../lectures/pdfs/NMR_Inst_2012.pdf ·...

16
NMR Instrumentation BCMB/CHEM 8190 Biomolecular NMR

Transcript of NMR Inst 2012 - University of Georgiatesla.ccrc.uga.edu/.../lectures/pdfs/NMR_Inst_2012.pdf ·...

Page 1: NMR Inst 2012 - University of Georgiatesla.ccrc.uga.edu/.../lectures/pdfs/NMR_Inst_2012.pdf · Modern NMR Magnets are Super Conducting Solenoids •Materials: NbTi < 10T, NbSn

NMR Instrumentation

BCMB/CHEM 8190

Biomolecular NMR

Page 2: NMR Inst 2012 - University of Georgiatesla.ccrc.uga.edu/.../lectures/pdfs/NMR_Inst_2012.pdf · Modern NMR Magnets are Super Conducting Solenoids •Materials: NbTi < 10T, NbSn

Instrumental Considerations - Block Diagram of an NMR Spectrometer

B0

Magnet

Probe

Lock

Receiver

Transmit

Computer

Sample

Page 3: NMR Inst 2012 - University of Georgiatesla.ccrc.uga.edu/.../lectures/pdfs/NMR_Inst_2012.pdf · Modern NMR Magnets are Super Conducting Solenoids •Materials: NbTi < 10T, NbSn

Modern NMR Magnets are Super Conducting Solenoids

•Materials: NbTi < 10T, NbSn > 10T

•Max Field (2010): 23.5 T (1000 MHz)

•Advantages: high field, stability, homogeneity > 1 : 109

B0

i

Page 4: NMR Inst 2012 - University of Georgiatesla.ccrc.uga.edu/.../lectures/pdfs/NMR_Inst_2012.pdf · Modern NMR Magnets are Super Conducting Solenoids •Materials: NbTi < 10T, NbSn

Shim Coils

B0

Z

Inherent field profile

B0(z) = B0 + a1 z + a2 z2 + ….

Design coils to produce –a1 z, -a2 z2, etcai are set by adjusting current in each of 16-40 coil sets – x, y, z, powers and cross terms

ii

za linear z coil

Page 5: NMR Inst 2012 - University of Georgiatesla.ccrc.uga.edu/.../lectures/pdfs/NMR_Inst_2012.pdf · Modern NMR Magnets are Super Conducting Solenoids •Materials: NbTi < 10T, NbSn

Room Temperature Shim Assemblies

From Modern NMR Techniques for Chemistry Research, Andrew E. Derome

Page 6: NMR Inst 2012 - University of Georgiatesla.ccrc.uga.edu/.../lectures/pdfs/NMR_Inst_2012.pdf · Modern NMR Magnets are Super Conducting Solenoids •Materials: NbTi < 10T, NbSn

ShimmingOrigin: old electromagnets used shims under pole pieces

Interactive shimming

B0

Z

ν0

Auto shim: - based on amplitude of lock signalGradient shim: observing effect of imposed field gradient –

can deconvolute field inhomogeniety

Adjust z2

Page 7: NMR Inst 2012 - University of Georgiatesla.ccrc.uga.edu/.../lectures/pdfs/NMR_Inst_2012.pdf · Modern NMR Magnets are Super Conducting Solenoids •Materials: NbTi < 10T, NbSn

A Deuterium Lock Stabilizes the Field

X axis(absorptive)

Y axis(dispersive)

ω0ω0

Drift of field will produce positive and negative signalsDepending on direction when dispersive signal is observed

Page 8: NMR Inst 2012 - University of Georgiatesla.ccrc.uga.edu/.../lectures/pdfs/NMR_Inst_2012.pdf · Modern NMR Magnets are Super Conducting Solenoids •Materials: NbTi < 10T, NbSn

Detection of NMR Signals: Probe Coils

Ex

y

M

B’

E ∝ dB’/dt ∝ dM/dt ∝ γB0M0 = γ3B02h2I(I+1) / (12π2kT)

S/N ∝ (γC / γH)3 = 64-1

Page 9: NMR Inst 2012 - University of Georgiatesla.ccrc.uga.edu/.../lectures/pdfs/NMR_Inst_2012.pdf · Modern NMR Magnets are Super Conducting Solenoids •Materials: NbTi < 10T, NbSn

NMR Probe

xy

Mcoils: to B0

dual role:-generate B1-detect dMy/dt

solenoid coil:specializedapplications

Helmoltz coil:normalapplications

Page 10: NMR Inst 2012 - University of Georgiatesla.ccrc.uga.edu/.../lectures/pdfs/NMR_Inst_2012.pdf · Modern NMR Magnets are Super Conducting Solenoids •Materials: NbTi < 10T, NbSn

Coil Design: Needs/ImplicationsRequirements: 1). Maximize B1 from applied rf current

2). Maximize signal from M of sample

r

s

look at 2S∝ dB'

dt× s

B'∝ Mr3 s∝r2

S∝ Mr So:

-minimize coil size to increase S-maximize sample volume to increase M-these demands conflict one another(compromise)

surface areaof coil

Page 11: NMR Inst 2012 - University of Georgiatesla.ccrc.uga.edu/.../lectures/pdfs/NMR_Inst_2012.pdf · Modern NMR Magnets are Super Conducting Solenoids •Materials: NbTi < 10T, NbSn

Tuned Radiofrequency (RF) Circuits Improve Efficiency

Example: parallel LC (inductance/capacitance) circuit

tune

i R

-the circuit is resonant (tuned) when the impedance is purely resistive (χL= χC)

-the tuned resonance frequency is υ0

-Quality factors (Q) measure how much current is stored vs dissipated

– cryoprobes reduce resistance and loss Q ~ 1000

ν 0 =1

2π LC

χL

χC

Page 12: NMR Inst 2012 - University of Georgiatesla.ccrc.uga.edu/.../lectures/pdfs/NMR_Inst_2012.pdf · Modern NMR Magnets are Super Conducting Solenoids •Materials: NbTi < 10T, NbSn

What does an NMR Probe Look Like?

This is for a 7T magnet – 13C observe at 75 MHz

Page 13: NMR Inst 2012 - University of Georgiatesla.ccrc.uga.edu/.../lectures/pdfs/NMR_Inst_2012.pdf · Modern NMR Magnets are Super Conducting Solenoids •Materials: NbTi < 10T, NbSn

Probes are delicate – glass, teflon, ceramic

Page 14: NMR Inst 2012 - University of Georgiatesla.ccrc.uga.edu/.../lectures/pdfs/NMR_Inst_2012.pdf · Modern NMR Magnets are Super Conducting Solenoids •Materials: NbTi < 10T, NbSn

Receiver Functions

1. Amplify signals: 10 microV -> 1 VThree stages 30dB/stage dB = 10 x log(Pout/Pin) = 20 x log (Vout/Vin)

2. Shift Frequency: 100 MHz -> 1 KHzconvenient digitization in the “rotating” frameoften uses a “double-balanced mixer”

Signal in

Ref in

Signal out (low pass filtered)

Vout = a0Vin + a1Vin2 + …

2cos(ωs)cos(ωr) = cos(ωs-ωr) + cos(ωs+ωr)

Page 15: NMR Inst 2012 - University of Georgiatesla.ccrc.uga.edu/.../lectures/pdfs/NMR_Inst_2012.pdf · Modern NMR Magnets are Super Conducting Solenoids •Materials: NbTi < 10T, NbSn

Quadrature DetectionAllows distinction of +/- Frequencies

Sig

Ref + 90

Ref

Real out

Imaginary out

xy

xy= =

My

My

MxTwo detectors

One detector

Actually split signal And use two referenceFrequency phases

Page 16: NMR Inst 2012 - University of Georgiatesla.ccrc.uga.edu/.../lectures/pdfs/NMR_Inst_2012.pdf · Modern NMR Magnets are Super Conducting Solenoids •Materials: NbTi < 10T, NbSn

Why use Quadrature Detection?To put ωref in middle of spectrum.

ω0

No Quad

ω0

With Quad

Reduced band width of audio filter increases S/N by 1/√2