Nitrogen - UF/IFAS · 2 Learning Objectives Identify the forms of N in wetlands Nitrogen Understand...

52
1 Biogeochemistry of Wetlands Si dA li ti Si dA li ti Institute of Food and Agricultural Sciences (IFAS) Science and Applications Science and Applications Wetland Biogeochemistry Laboratory Soil and Water Science Department NITROGEN 6/22/2008 P.W. Inglett 1 6/22/2008 WBL 1 6/22/2008 1 6/22/2008 WBL 1 Instructor : Patrick Inglett [email protected] Soil and Water Science Department University of Florida Nitrogen Introduction N Forms, Distribution, Importance Basic processes of N Cycles Examples of current research Examples of applications 6/22/2008 P.W. Inglett 2 Key points learned

Transcript of Nitrogen - UF/IFAS · 2 Learning Objectives Identify the forms of N in wetlands Nitrogen Understand...

1

Biogeochemistry of WetlandsS i d A li tiS i d A li ti

Institute of Food and Agricultural Sciences (IFAS)

Science and ApplicationsScience and Applications

Wetland Biogeochemistry LaboratorySoil and Water Science Department

NITROGEN

6/22/2008 P.W. Inglett 16/22/2008 WBL 16/22/2008 16/22/2008 WBL 1

Instructor :Patrick [email protected]

Soil and Water Science DepartmentUniversity of Florida

Nitrogen

IntroductionN Forms, Distribution, Importance

Basic processes of N CyclesExamples of current researchExamples of applications

6/22/2008 P.W. Inglett 2

Key points learned

2

Learning ObjectivesIdentify the forms of N in wetlands

Nitrogen

yUnderstand the importance of N in

wetlands/global processesDefine the major N processes/transformationsUnderstand the importance of microbial activity

in N transformations Understand the potential regulators of N

6/22/2008 P.W. Inglett 3

processesSee the application of N cycle principles to

understanding natural and man-made ecosystems

Plant biomass NPlant biomass N

Nitrogen CyclingNitrogen Cycling

AEROBICAEROBIC

Organic N

Plantuptake

NO3-

Litterfall

Peataccretion

Nitrification Mineralization.

[NH4+]s

NH4+

[NH4+]s

NH4+NO3

-

N2 N2O (g)NH3

Volatilization

N2

Nitrogen Fixation

Water Water ColumnColumn

6/22/2008 P.W. Inglett 4

ANAEROBICuptake

Adsorbed NH4+

Denitrification

accretion

Organic N

[ 4 ]s[ 4 ]s

NN2, N2O (g)

MicrobialBiomass N

3

Forms of NitrogenForms of Nitrogen

Organic Nitrogen• Proteins• Amino Sugars• Nucleic Acids

U

Inorganic Nitrogen• Ammonium (NH4

+)• Nitrate N (NO3

-)• Nitrite N (NO2

-) Nit id (N O)

6/22/2008 P.W. Inglett 5

• Urea • Nitrous oxide (N2O)• Dinitrogen (N2)

Solid Phase:

Gaseous Phase:

N TransformationsN Transformations

Aqueous

Particulate N

Bound: NH4+

NO3- NO2

-

N2N2O

6/22/2008 P.W. Inglett 6

NH4+

NO3-

NO2-

Aqueous Phase:

DON

Particulate NDIN

4

Reservoirs of NitrogenReservoirs of Nitrogen

Lithosphere 163,600 x 1018 gAtmosphere 3,860 x 1018 gHydrosphere 23 x 1018 gBiosphere 0.28 x 1018 g

6/22/2008 P.W. Inglett 7

p g

Total Soil NForms of NitrogenForms of Nitrogen

Organic Inorganic

6/22/2008 P.W. Inglett 8

NH4+

Clay-fixed NH4+

ProteinAmino sugarsHeterocyclic N

5

1. Ammonification/Mineralization

Nitrogen TransformationsNitrogen Transformations

2. Immobilization3. Nitrification4. Denitrification5. Dissimilatory nitrate reduction to

ammonia (DNRA)

6/22/2008 P.W. Inglett 9

ammonia (DNRA)6. Nitrogen fixation7. Ammonia volatilization

NH4+

Organic N

8e-

1

5

2

Transformation of N SpeciesTransformation of N Species

NO3-

NO2-

N2O

NH3

2 e-

2e-

3e-

2e-

3

6

4NH2OH 4e-

2e-

7

4

33

6/22/2008 P.W. Inglett 10

+5+3+10

-3

N2

Oxidation Number

1e-

3e

+2 +4-1-2

4

6

Nitrogen CycleNitrogen Cycle

Plant/Algae

Nit ifi D it ifi

Org-N NH4+ NO3

-

N Fi

6/22/2008 P.W. Inglett 11

Nitrifiers Denitrifiers

N2/N2ON2

N-FixersMicrobial Biomass

Productivity Productivity

6/22/2008 P.W. Inglett 12

7

Greenhouse Gas Emissions Greenhouse Gas Emissions

6/22/2008 P.W. Inglett 13

Biological N2 fixationDry and wet depositionNon-point sourcesWastewaters

Nitrogen BudgetNitrogen Budget

Plant biomassMicrobial biomassSoil organic NPorewater (DIN, DON)Exchangeable N

6/22/2008 P.W. Inglett 14

VolatilizationOutflowGaseous lossesPlant harvest

Clay fixed NH4-N

8

Ammonium Ion Wet Deposition1985-2003

1985

2003

6/22/2008 P.W. Inglett 15

http://nadp.sws.uiuc.edu/isopleths/

Nitrate Ion Wet Deposition1985-20031985

2003

6/22/2008 P.W. Inglett 16

9

Inorganic N Wet Deposition1985-20031985

2003

6/22/2008 P.W. Inglett 17

Plant biomass NPlant biomass N

Biological Nitrogen FixationBiological Nitrogen Fixation

AEROBICAEROBIC

Organic N

Plantuptake

NO3-

Litterfall

Peataccretion

Nitrification Mineralization.

[NH4+]s

NH4+

[NH4+]s

NH4+NO3

-

N2 N2O (g)NH3

Volatilization

N2

Nitrogen Fixation

Water Water ColumnColumn

6/22/2008 P.W. Inglett 18

ANAEROBICuptake

Adsorbed NH4+

Denitrification

accretion

Organic N

[ 4 ]s[ 4 ]s

NN2, N2O (g)

MicrobialBiomass N

10

Type of fixation N2 fixed (1012 g yr-1)Non-biological

Nitrogen FixationNitrogen Fixation

Industrial about 50Combustion about 20Lightning about 10Total about 80BiologicalAgricultural land about 90F t d i lt l l d b t 50

6/22/2008 P.W. Inglett 19

Forest and non-agricultural land about 50Sea about 35Total about 175

Biological NBiological N22 FixationFixationN N + 8H+ + 8e- + 16ATP → 2NH3 + H2 + 16ADP + 16Pi

6/22/2008 P.W. Inglett 20

Nitrogenase

11

Biological NBiological N22 FixationFixation

Prokaryotes

AzotobacterBeijerinckiaKlebsiella

C anobacteria

Aerobic

ClostridiumDesulfovibrioCyanobacteria

Anaerobic

RhizobiumFrankia

Azospirillum

Associated w/ Plants

y

6/22/2008 P.W. Inglett 21

Cyanobacteria

Biological NBiological N22 FixationFixation

HeterocystsHeterocysts (cyanobacteria)Leghaemoglobin (rhizobium)ExopolysaccharidesTemporal isolation

6/22/2008 P.W. Inglett 22

Temporal isolation

http://www.bact.wisc.edu/Microtextbook/ images/book_4/chapter_2/2-53.jpg

12

y

Temporal IsolationTemporal Isolation

Nitr

ogen

ase

activ

ity

Non-heterocystous

Heterocystous

6/22/2008 P.W. Inglett 23

12:00Time (h)24:00 12:00

Biological NBiological N22 FixationFixationRegulators?Regulators?

LightLightConcentration of Oxygen Growth limitation

Macro nutrients (C, P) Co-factors (Fe, Mo)

6/22/2008 P.W. Inglett 24

Inc. Growth

Inc. N Demand Species

shiftInc. N2Fixation

13

Plant biomass NPlant biomass N

Nitrogen MineralizationNitrogen Mineralization

AEROBICAEROBIC

Organic N

Plantuptake

NO3-

Litterfall

Peataccretion

Nitrification Mineralization.

[NH4+]s

NH4+

[NH4+]s

NH4+NO3

-

N2 N2O (g)NH3

Volatilization

N2

Nitrogen Fixation

Water Water ColumnColumn

6/22/2008 P.W. Inglett 25

ANAEROBICuptake

Adsorbed NH4+

Denitrification

accretion

Organic N

[ 4 ]s[ 4 ]s

NN2, N2O (g)

MicrobialBiomass N

Organic NitrogenOrganic Nitrogen

ProteinsAmino acids (30-50% of total organic N)

Nucleic Acids 2-5 % of total organic N

Amino Sugars3-13% of total organic N

6/22/2008 P.W. Inglett 26

3-13% of total organic N

Urea

14

Proteins

A i idPeptides

Protein DecompositionProtein Decomposition

Amino acidsPeptides

Proteases PeptidasesAla

Phe

Asp

L

Pro

Arg

Pro

Ala

Phe

Asp

Lys

Pro

Arg

6/22/2008 P.W. Inglett 27

Pro

Lys

N - C - C - OHOR1

HH

HN - C - C - OH

OR2

HH

HN - C - C - OH

OR3

HH

H

N - C - C - NOR1

- C - C - N

OR2

- C - C - OHOR3H

- 2H2O

6/22/2008 P.W. Inglett 28

HH HH HH

Peptide Bonds

15

N - C - C - OHOR1

HH

HN - C - C - OH

OR2

HH

HN - C - C - OH

OR3

HH

H

HH HH HH

N - C - C - NOR1

- C - C - N

OR2

- C - C - OHOR3H

+ 2H2O

6/22/2008 P.W. Inglett 29

HH HH HH

Peptide Bonds

EnzymeHydrolysis

Detrital MatterComplex PolymersCellulose, Hemicellulose,

Proteins, Lipids, Waxes, Lignin

MonomersSugars, Amino Acids

Fatty Acids

Leaching

Amino acidsElectron Acceptors:O2, NO3

-, Mn4+, Fe3+, SO4

2-, CO2

Uptake

Bacterial Cell

6/22/2008 P.W. Inglett 30

Products:CO2, H2O,

NH4+, Mn2+,

Fe2+,S2-,CH4

ATPEnergy

NH4+

NH4+

16

Urea DecompositionUrea Decomposition

C = O + H2O CO2 + 2NH3

NH2

NH2

Urease

6/22/2008 P.W. Inglett 31

Urea DecompositionUrea Decomposition

Urease activity (14C Tracer)

6/22/2008 P.W. Inglett 32

[Thorén (2007)]

17

AmmonificationAmmonification[Mineralization]

Organic N Ammonium N[B kd f O i M tt ][Breakdown of Organic Matter]

ImmobilizationImmobilization

Inorganic N Organic N

6/22/2008 P.W. Inglett 33

Inorganic N(NH4-N and NO3 -N)

Organic N

[Buildup of Organic Matter]

Ammonification/NAmmonification/N--MineralizationMineralizationOrganic N

AmmoniumRR

NN--ImmobilizationImmobilizationInorganic N Organic N

NH4+

NH2C

H

-HOOC NH2C

H

-HOOC

RR

6/22/2008 P.W. Inglett 34

NH4+

NO3-

NH2C

R

H

-HOOC NH2C

R

H

-HOOC

18

y = 10.7 x + 2.2R2 = 0.78 25

Microbial Biomass C & NMicrobial Biomass C & N[Everglades[Everglades-- WCAWCA--2A]2A]

0

5

10

15

20

crob

ial b

iom

ass

C(g

C k

g-1 )

6/22/2008 P.W. Inglett 35

0

0 0.5 1.0 1.5 2.0

Microbial biomass N (g N kg-1)

Mic

White and Reddy, 2000

Decomposition Decomposition Microbial Biomass

C/N ratio = 10Effi i f b i il tiEfficiency of carbon assimilation

Aerobic = 20-60% Anaerobic = 10%

Plant Detritus [100 units]40% carbon (dry weight basis) = 40 units CAmount of C assimilated during decomposition

6/22/2008 P.W. Inglett 36

Amount of C assimilated during decompositionAerobic = 16 units [40% efficiency]Anaerobic = 4 units [10% efficiency]

19

Carbon/Nitrogen RatioCarbon/Nitrogen Ratio

Nitrogen Demand?Mi bi l Bi C/N ti 10Microbial Biomass C/N ratio = 10

Aerobic = 1.6 unitsAnaerobic = 0.4 units

Critical Plant Detritus Nitrogen?Aerobic = 1.6 %Anaerobic = 0.4%

6/22/2008 P.W. Inglett 37

Critical Carbon/Nitrogen Ratio?Aerobic = [40% C]/[1.6% N] = 25Anaerobic = [40% C]/[0.4% N] = 100

Carbon/Nitrogen RatioCarbon/Nitrogen Ratio

Mineralization [M] vs. Immobilization [I]

Aerobic I > M = C/N ratio > 25M > I = C/N ratio < 25

AnaerobicI M C/N ti 100

6/22/2008 P.W. Inglett 38

I > M = C/N ratio > 100M > I = C/N ratio < 100

20

C/N = 15ease

N Mineralization/ImmobilizationN Mineralization/Immobilization[Aerobic][Aerobic]

C/N = 35

C/N = 100norg

anic

N R

ele

6/22/2008 P.W. Inglett 39

Decomposition (days)

In

Immobilization

n R

atio 40

N Mineralization/ImmobilizationN Mineralization/Immobilization[Aerobic][Aerobic]

Mineralization

arbo

n/N

itrog

en

10

20

30

6/22/2008 P.W. Inglett 40

Ca

0

Decomposition Period [days]0 150

C/N ratio of soil humus/microbial biomass

21

Regulators of AmmonificationRegulators of Ammonification

Substrate qualityC/N ratio of the substrateC/N ratio of the substrateSecondary compoundsN forms (soluble vs. structural compounds)

Microbial ActivityExtracellular enzyme activity

6/22/2008 P.W. Inglett 41

Extracellular enzyme activitySupply of electron acceptors (Redox)TemperaturepH

400

Mineralizable NitrogenMineralizable Nitrogen[Everglades[Everglades--WCAWCA--2A]2A]

y = 0.317 x + 52.4R2 = 0.76

100

200

300

400

Min

eral

izat

ion

Rat

e(m

g N

kg-

1d-

1 )

6/22/2008 P.W. Inglett 42

00 100 200 300 400

Extractable NH4+ (mg N kg-1)

M

22

Plant biomass NPlant biomass N

Fate of AmmoniumFate of Ammonium

AEROBICAEROBIC

Organic N

Plantuptake

NO3-

Litterfall

Peataccretion

Nitrification Mineralization.

[NH4+]s

NH4+

[NH4+]s

NH4+NO3

-

N2 N2O (g)NH3

Volatilization

N2

Nitrogen Fixation

Water Water ColumnColumn

6/22/2008 P.W. Inglett 43

ANAEROBICuptake

Adsorbed NH4+

Denitrification

accretion

Organic N

[ 4 ]s[ 4 ]s

NN2, N2O (g)

MicrobialBiomass N

Nitrogen Uptake by Rice (Nitrogen Uptake by Rice (1515N)N)

T t l N t kTotal N uptake

Added 15N uptake

N-uptake fromNitr

ogen

upt

ake

6/22/2008 P.W. Inglett 44

upta e oSoil organic N

Growing season

23

NH +

Ammonium AdsorptionAmmonium Adsorption-- AerobicAerobic

---

- Ca2+

K+NH4

+

Mg2+

Ca2+

NH4

K+

Mg2+

Ca2+

Ca2+

K+

-

-

-

--

--

-

--

------

-

-

- K+

K+

Ca2+ NH4+

NH4+ Mg2+

6/22/2008 P.W. Inglett 45

Adsorbed [Solids]

Dissolved[Pore water]

-- - Ca2+Mg2+

K+K+

Ammonium AdsorptionAmmonium Adsorption-- AnaerobicAnaerobic

NH4+

C 2+----

- -K+

Ca2+

Mg2+

Fe2+

Mn2+Fe2+

4

K+

Mg2+

Ca2+

Ca2+

K+

-

-

--

--

-

--

- ------

-

-K+

NH4+

NH4+ Mg2+

Mn2+

Fe2+

Fe2+

Mn2+

Mn2+

6/22/2008 P.W. Inglett 46

Adsorbed [Solids]

Dissolved[Pore water]

K- - Ca2+Mg2+

K+Fe2+

24

6/22/2008 P.W. Inglett 47

Ammonium Fixation Ammonium Fixation Illite Illite -- Clay MineralClay Mineral

NH4+K+NH4

+Mg2+ ---

--

---

- --NH4

+K+

Mg2+

Ca2+ K+ Al-O-OH layerSi-O layer

Si O layer

Ca2+

NH4+K+NH4

+Mg2+ -- --- - --NH4

+NH4+

NH4+

Fixed Ammonium

NH4+K+NH4

+Mg2+ ---

--

--- - -

- --

-NH4

+

NH4+

NH4+

NH4+

- - -Interlayer Space

Si-O layer

NH +

Interlayer Space

6/22/2008 P.W. Inglett 48

Mg2+

Mg2+

NH4+

Ca2+K+

K+

--- - - -NH4

+

25

Adsorption/Desorption EquilibriumAdsorption/Desorption Equilibrium

NH +NH4

+

SoilNH4

+

NH4+ 4

NH4+NH4

+

NH +

NH4+

NH4+

6/22/2008 P.W. Inglett 49

NH4+NH4

+ NH4

Fixed Exchangeable Solution

Adsorption/Desorption EquilibriumAdsorption/Desorption Equilibrium

NH4+

NH4+

NH4+

NH4+

NH4+

NH4+

6/22/2008 P.W. Inglett 50

NH4+

NH4+

NH4+

26

(+)

NH4+

ads = K × [NH4+] + NH4

+fixed

S = K × C + S0

K, Partition Coefficient

E NH4-C0

mm

oniu

m A

dsor

bed

(mg

N k

g-1 )

( )

6/22/2008 P.W. Inglett 51

Porewater ammonium (mg N l-1)

Am

(-)S0

Ammonium Adsorption Ammonium Adsorption -- SalinitySalinity

6/22/2008 P.W. Inglett 52

27

Increasing salinityIncreasing salinity

6/22/2008 P.W. Inglett 53

NH3(g)

Ammonia FluxAmmonia Flux

(Volatilization)(Volatilization)

Water

2H+ + CO32- CO2 + H2O

Photosynthesis

Respiration

O2 + CH2O CO2 + H2O NH3(g)

NH4+NH3(aq) + H+

6/22/2008 P.W. Inglett 54

Soil

Water

NH4+

(adsorbed)

28

Diel pH changes in the Diel pH changes in the Water ColumnWater Column

7

8

9

10

pH

System with high photosynthesis

System with low photosynthesis

6/22/2008 P.W. Inglett 55

12:00

6

7

Time (h)

24:00 12:00

Ammonia VolatilizationAmmonia Volatilization(assuming high pH)(assuming high pH)

SAV/Periphyton DensityFloodwater depth Plant density

6/22/2008 P.W. Inglett 56

Temperature Wind speed Soil CEC

29

Ammonia VolatilizationAmmonia Volatilization

NH + = NH + H+ TemperatureNH4 = NH3 + HHigh floodwater pH High soil pHHigh algal activityPlant density

TemperatureCation exchange capacity of soilWind speedFloodwater depth

6/22/2008 P.W. Inglett 57

Plant biomass NPlant biomass N

NitrificationNitrification

AEROBICAEROBIC

Organic N

Plantuptake

NO3-

Litterfall

Peataccretion

Nitrification Mineralization.

[NH4+]s

NH4+

[NH4+]s

NH4+NO3

-

N2 N2O (g)NH3

Volatilization

N2

Nitrogen Fixation

Water Water ColumnColumn

6/22/2008 P.W. Inglett 58

ANAEROBICuptake

Adsorbed NH4+

Denitrification

accretion

Organic N

[ 4 ]s[ 4 ]s

NN2, N2O (g)

MicrobialBiomass N

30

NH + → NO → NO

NitrificationNitrification

NH4+ → NO2

- → NO3-

Obligate aerobes (O2 e- acceptor)Common nitrifiers (autotrophs)MethanotrophsH t t h

6/22/2008 P.W. Inglett 59

Heterotrophs

Sites of NitrificationSites of NitrificationAerobic

Water column

O2 bic

Soil

Aerobic Soil/FloodwaterInterface

6/22/2008 P.W. Inglett 60

AerobicRoot Zone

O2

Aer

ob

Ana

erob

ic S

oil

O2

31

NitrificationNitrification

NH4+ → NO2

- Nitrosomonas (‘Nitroso’ spp.)

NO2- → NO3

- Nitrobacter (‘Nitro’ spp.)

Obligate aerobes (O2 e- acceptor)Energy/e- source: NH4

+

Carbon source: CO

6/22/2008 P.W. Inglett 61

Carbon source: CO2

NitrificationNitrificationStep I: Nitrosomonas

NH4+ + 2H2O → NO2

- + 6e- + 8H+

ΔGo = -65 kcal/mole

1½ O2 + 6e- + 6H+ → 3H2O

NH4+ + 11/2O2 → NO2

- + 3H2O + H+

Step II: Nitrobacter ΔGo = -18 kcal/mole

2NO 2H O 2NO 4 4H+

6/22/2008 P.W. Inglett 62

2NO2- + 2H2O → 2NO3

- + 4e- + 4H+

O2 + 4e- + 4H+ → 2H2O

2NO2- + O2 → 2NO3

-

32

B t i d f i

Heterotrophic NitrificationHeterotrophic Nitrification

Bacteria and fungiPoorly studiedOnly dominant under high C/low N conditionsMany facultative (reduce oxidized N to N2)

6/22/2008 P.W. Inglett 63

2

“Nitrifier denitrification”

NitrificationNitrification

AmmoniaAmmoniaNH3 toxic to nitrifying bacteriapH7 - 8.5 optimumSulfide

6/22/2008 P.W. Inglett 64

S2- toxic to nitrifying bacteria

33

NitrificationNitrification

Ideal Conditions Inhibited

C

NH4+ NH4

+

NO2-

NO2-NO3

-

NO3-

6/22/2008 P.W. Inglett 65

C

Time Time

Oxygenases Hydroxylamineid d t

NitrificationNitrification

NH4+ NH2OH [NOH]

NO2-N2O NO3

-

yg oxidoreductase

Chemical

2 e- 2 e-

2 e-

2 e-

Oxygenstress

6/22/2008 P.W. Inglett 66

NO2N2O NO3Nitrite

reductaseNitrite

reductase

34

Inhibited NitrificationInhibited Nitrification

NO3-NH4

+ N2

N2O

NO

Nitrifiers Denitrifiers

NO

N2O

‘Leaky Pipe’ Model:

6/22/2008 P.W. Inglett 67

22

Regulators: Ammonia concentration

NitrificationNitrification

Ammonia concentrationOxygen availabilityAlkalinity and CO2

TemperatureNitrifying population

6/22/2008 P.W. Inglett 68

pHCEC

35

Organic NOrganic N

AmmonificationVolatilization

(to atmosphere)

NHNH44++ NHNH44

++Soluble Adsorbed

[NH[NH33 ]](g)(g)

[NO[NO33-- ]]

-

-

--

-

-

-

Soi

l Par

ticle

-

ant/M

icro

bial

U

ptak

e

6/22/2008 P.W. Inglett 69

Live Organic N

Live Organic N

Pl

Anaerobic Ammonium Oxidation: Anammox

Anaerobic Ammonium Oxidation: Anammox

6/22/2008 P.W. Inglett 70Kuypers et al. 2003. Nature 422:608–611.

36

Anaerobic Ammonium OxidationAnaerobic Ammonium Oxidation(ANAMMOX)(ANAMMOX)

5NH4+ + 3NO3

- → 4N2 + 9H2O + 2H+

NH + + NO - → N + 2H O

6/22/2008 P.W. Inglett 71

NH4 + NO2 → N2 + 2H2O

ANAMMOXANAMMOX

6/22/2008 P.W. Inglett 72

37

Plant biomass NPlant biomass N

DenitrificationDenitrification

AEROBICAEROBIC

Organic N

Plantuptake

NO3-

Litterfall

Peataccretion

Nitrification Mineralization.

[NH4+]s

NH4+

[NH4+]s

NH4+NO3

-

N2 N2O (g)NH3

Volatilization

N2

Nitrogen Fixation

Water Water ColumnColumn

6/22/2008 P.W. Inglett 73

ANAEROBICuptake

Adsorbed NH4+

Denitrification

accretion

Organic N

[ 4 ]s[ 4 ]s

NN2, N2O (g)

MicrobialBiomass N

Pasteur, L. 1859. Sur la fermentation nitreuse. Bull. Sot. Chim. Fr. 1:21.

“Nitrates, which the juice of beetroot naturally includes, decompose, and great quantities of nitrous vapor form at the surface of the vats”

6/22/2008 P.W. Inglett 74

38

Dehérain andDehérain and Maquenne, 1882Maquenne, 1882. Sur la reduction des nitrates dans la terre arable. C. R. Acad. Sci. 95: 691-693

“From experience”:Nitrate is reduced under certain conditions

in arable land releasing nitrogen gasNitrate reduction occurs in arable soil

which contains a high organic matter

6/22/2008 P.W. Inglett 75

g gWe have observed that this reduction

occurs when the soil atmosphere is completely stripped of oxygen

Denitrification NO → N

Nitrate ReductionNitrate Reduction

5 e-NO3 → N2

Dissimilatory nitrate reduction to ammonia (DNRA)NO3

- → NH4+

Assimilatory nitrate reduction to i

8 e-

6/22/2008 P.W. Inglett 76

ammoniaNO3

- → NH4+ → Proteins

39

Nitrate ReductionNitrate Reduction

AssimilatoryNH + uptake for

Dissimilatory Functions as an electronNH4

+ uptake for growth - biosynthesisNH4

+ concentration-main regulatorGrowth linkedOccurs mainly in

Functions as an electron acceptorOxygen concentration main regulatorLinked to catabolic reactions

6/22/2008 P.W. Inglett 77

aerobic soilsInsensitive to O2

Occurs in anaerobic soilsSensitive to O2

Nitrate ReductionNitrate ReductionDenitrification

NO - /NO -→ NDNRA

NO -→ NH +NO3 /NO2 → N25 e- transferred Low electron pressureEh = 200 – 300 mVO2 transient

diti

NO3 → NH48 e- transferredHigh electron pressureEh = < 0 mVLake sediments or

t tl d

6/22/2008 P.W. Inglett 78

conditionsFacultative anaerobes

permanent wetlandsObligate anaerobes

40

Low O content Low Eh

Regulators of DenitrificationRegulators of Denitrification

Low O2 content - Low Eh Presence of Electron Acceptor- N OxidesFacultative Anaerobes - EnzymesElectron Donor - Carbon Source

Organic carbon compoundsReduced sulfur compounds

Temperature

6/22/2008 P.W. Inglett 79

Nitrate diffusion/flux to anaerobic zonesPlant root density

Sites of Nitrification/DenitrificationSites of Nitrification/DenitrificationAerobic

Water column

O2 bic

Soil

Aerobic Soil/FloodwaterInterface

6/22/2008 P.W. Inglett 80

AerobicRoot Zone

O2

Aer

ob

Ana

erob

ic S

oil

O2

41

NO3- NO2

- [HNO] [H2N2O2]

Dissimilatory Nitrate ReductionDissimilatory Nitrate Reduction

NO3 NO2 [HNO] [ 2 2 2]

NH2OH N2OBiological

[HNO] = Nitroxyl[H2N2O2] = Hyponitrite

6/22/2008 P.W. Inglett 81

NH4+ N2

[ 2 2 2] ypNH2OH = Hydroxylamine

DNRA Denitrification

Abiotic Nitrate ReductionAbiotic Nitrate Reduction(‘Chemo(‘Chemo--denitrification’)denitrification’)

Abiotic Nitrate ReductionAbiotic Nitrate Reduction(‘Chemo(‘Chemo--denitrification’)denitrification’)

6/22/2008 P.W. Inglett 82

42

Abiotic Nitrate ReductionAbiotic Nitrate ReductionAbiotic Nitrate ReductionAbiotic Nitrate Reduction

6/22/2008 P.W. Inglett 83

Lithotrophic Nitrate ReductionLithotrophic Nitrate ReductionLithotrophic Nitrate ReductionLithotrophic Nitrate Reduction

OthOther potential e- donors:S2-, H2

6/22/2008 P.W. Inglett 84

43

w/ added NO3-

N.R. Coupled to Fe(II) Oxidation:Paddy Soils

N.R. Coupled to Fe(II) Oxidation:Paddy Soils

w/o added NO3

-

w/ added NO3

-

w/o added

6/22/2008 P.W. Inglett 85

Ratering and Schnell. 2001. Env. Microbiol. 3(2), 100-109.

Fe(II) Fe(III)

NO3-

NO3--control

N.R. Coupled to Fe(II) Oxidation N.R. Coupled to Fe(II) Oxidation

NO3- + Fe(II) → NO2

- → Fe(III) + N2

Fe(III)-culture

NO3--culture

6/22/2008 P.W. Inglett 86

Straub, et al. 2007. Appl. Env. Microbiol. 62: 1458-1460.

Fe(III)-control

44

N2N2

NO3-NO3-

NH4+NH4+ NO2

-NO2-

O2/Fe3+

6/22/2008 P.W. Inglett 87

CH4?

6/22/2008 P.W. Inglett 88

45

Low O2 content - Low Eh Presence of Nitrogenous Oxides

Regulators of DenitrificationRegulators of Denitrification

Presence of Nitrogenous OxidesHeterotrophs: Carbon Source

Organic carbon compounds, DOCLithotrophs: Electron Source

Reduced Fe, Mn, S compounds, H2

TemperatureNitrate diffusion/flux to anaerobic zones

6/22/2008 P.W. Inglett 89

Nitrate diffusion/flux to anaerobic zonesPlant root density

Nitrate uptake, O2 loss

DenitrificationDenitrificationDenitrificationDenitrificationWetlandWetland Denitrification RateDenitrification Rate

Houghton Lake WetlandInflow ZoneInterior Zone

(mg N kg-1 day-1)7411

Orange County ESAWT 91

Inflow ZoneInterior Zone

6/22/2008 P.W. Inglett 90

Everglades-WCA-2a61

1Interior Zone

Inflow ZoneInterior Zone

46

Coupled NitrificationCoupled Nitrification--DenitrificationDenitrification

Nitrification rate depends on:Ammonification rateAmmonium flux into aerobic zone

Denitrification rate depends on:Nitrification rateNitrate flux into anaerobic zones

Nitrification-denitrification occurs in:

6/22/2008 P.W. Inglett 91

Flooded soil-water column with aerobic-anaerobic interfacesAerobic-anaerobic interfaces in the root zoneWater-table fluctuations/ alternate flooding and draining

Coupled NitrificationCoupled Nitrification--DenitrificationDenitrificationCoupled NitrificationCoupled Nitrification--DenitrificationDenitrification

6/22/2008 P.W. Inglett 92From: Reddy (1989)

47

10

Everglades –WCA-2AEverglades –WCA-2ANitrate source/ High C/Low Eh Nitrate depleted/

High C/Low Eh

Nitrate source/ Low C,P/Low Eh

trific

atio

n R

ate

g N

kg

-1hr

-1)

4

6

8

10

With GlucoseWithout Glucose

6/22/2008 P.W. Inglett 93

Den

i(m

g

Distance (km)

0

2

0 2 4 6 8 10

Denitrification Walls:(Schipper et al. 2003)

48

Supply of NO2-

ANAMMOX vs. DenitrificationANAMMOX vs. DenitrificationANAMMOX vs. DenitrificationANAMMOX vs. Denitrification

pp y 2Low NO2

- favors Denitrification, High NO2- (>10mM)

inhibits ANNAMOX

Organic matter availabilityHigher DOC favors Denitrification

Temperature

6/22/2008 P.W. Inglett 95

Temperature ANNAMOX dominant @ low Temp.

6/22/2008 P.W. Inglett 96

49

Supply of NO3-

Denitrification vs. DNRADenitrification vs. DNRADenitrification vs. DNRADenitrification vs. DNRA

Supply of NO3Low NO3

- favors DNRA

Organic matter availabilityHigh DOC favors DNRA

Hydropattern

6/22/2008 P.W. Inglett 97

Denitrifiers are largely facultative

ON

(Of added 15NO3-)

6/22/2008 P.W. Inglett 98

50

6/22/2008 P.W. Inglett 99

6/22/2008 P.W. Inglett 100

51

Potential FatePotential FatePotential FatePotential FateLow Organic

Matter (Low C:EA)

NO

NO3-

NO2-

N2

N2ONH4

+

N2

N2O

N

N2

Dissim

ila

H+

NO

6/22/2008 P.W. Inglett 101

High Organic Matter

(High C:EA)AerobicAnaerobic

NH4+

N2

atory

Permanently Anaerobic

Potential FatePotential FatePotential FatePotential Fate

6/22/2008 P.W. Inglett 102

Burgin and Hamilton. 2007. Front Ecol Environ 5(2): 89–96.

52

Plant biomass NPlant biomass N

Nitrogen CyclingNitrogen Cycling

AEROBICAEROBIC

Organic N

Plantuptake

NO3-

Litterfall

Peataccretion

Nitrification Mineralization.

[NH4+]s

NH4+

[NH4+]s

NH4+NO3

-

N2 N2O (g)NH3

Volatilization

N2

Nitrogen Fixation

Water Water ColumnColumn

6/22/2008 P.W. Inglett 103

ANAEROBICuptake

Adsorbed NH4+

Denitrification

accretion

Organic N

[ 4 ]s[ 4 ]s

NN2, N2O (g)

MicrobialBiomass N