Nitriding((Ferritic(Nitrocarburizing)(–(fundamentals ... · Report’1201’ Page’2’! Develop...

51
Report 1201 Page 1 Nitriding (Ferritic Nitrocarburizing) – fundamentals, modeling and process optimization Report No. 1301 Research Team: Mei Yang [email protected] (508) 8315825 Xiaolan Wang [email protected] Richard D. Sisson, Jr. [email protected] (508) 8315335 Focus group: 1. Project Statements Objectives Develop a fundamental understanding of the nitriding process in terms of: Mass transfer kinetics from the atmosphere into the surface. The nitriding potential in the atmosphere is determined by the initial gas mixture (NH3/H2) and can be calculated from thermodynamics. The transfer of nitrogen from the atmosphere to the surface of the steel is controlled by the nitriding potential in the atmosphere as well as the surface condition (chemistry/contamination, and roughness) and the steel composition. The mass transfer may be modeled by either a mass transfer coefficient, or a flux as a function of time. Develop a computational model to determine the nitrogen concentration and nitride profiles in the steel in terms of temperature, atmosphere composition, steel surface condition, alloy composition and the pre- nitriding steel microstructure. This tool will be designed to predict the nitride profile as well as the nitrogen concentration profile (i.e. case depth) based on the input of the process parameters of temperature (time), NH3/H2 (time), the alloy designation (4140 or Nitralloy – 135) and the surface condition of the steel. NitrideTool will be created by simulating the nitrogen uptake and diffusion into ferrite and the precipitation of nitrides and conversion of carbides to carbonitrides during the process. The fundamentals of these phenomena as described above will be used for the model generation. The model will include multiple boosts and diffuse type cycles. The model will also rely on the isopleths and Lehrer diagrams from Thermo-Calc. Verify the model by comparison with experimental results. The verification will initially be conducted by comparison with results in the literature and results from CHTE member companies. Selected experiments will also be conducted to test the model’s accuracy and capabilities.

Transcript of Nitriding((Ferritic(Nitrocarburizing)(–(fundamentals ... · Report’1201’ Page’2’! Develop...

Report  1201   Page  1    

Nitriding  (Ferritic  Nitrocarburizing)  –  fundamentals,  modeling  and  process  optimization  

Report  No.  13-­‐01  

 

Research  Team:    Mei  Yang       [email protected]     (508)  831-­‐5825                                                              Xiaolan  Wang                                                                [email protected]        Richard  D.  Sisson,  Jr.     [email protected]   (508)  831-­‐5335          Focus  group:    

 

1. Project  Statements  

Objectives  Develop a fundamental understanding of the nitriding process in terms of:

Mass transfer kinetics from the atmosphere into the surface. The nitriding potential in the atmosphere is determined by the initial gas mixture (NH3/H2) and can be calculated from thermodynamics. The transfer of nitrogen from the atmosphere to the surface of the steel is controlled by the nitriding potential in the atmosphere as well as the surface condition (chemistry/contamination, and roughness) and the steel composition. The mass transfer may be modeled by either a mass transfer coefficient, or a flux as a function of time.

Develop a computational model to determine the nitrogen concentration and nitride profiles in the steel in terms of temperature, atmosphere composition, steel surface condition, alloy composition and the pre-nitriding steel microstructure. This tool will be designed to predict the nitride profile as well as the nitrogen concentration profile (i.e. case depth) based on the input of the process parameters of temperature (time), NH3/H2 (time), the alloy designation (4140 or Nitralloy – 135) and the surface condition of the steel.

• NitrideTool will be created by simulating the nitrogen uptake and diffusion into ferrite and the precipitation of nitrides and conversion of carbides to carbonitrides during the process. The fundamentals of these phenomena as described above will be used for the model generation. The model will include multiple boosts and diffuse type cycles. The model will also rely on the isopleths and Lehrer diagrams from Thermo-Calc.

• Verify the model by comparison with experimental results. The verification will initially be conducted by comparison with results in the literature and results from CHTE member companies. Selected experiments will also be conducted to test the model’s accuracy and capabilities.

Report  1201   Page  2    

Develop a model-based optimization process to determine the optimum process parameters for several process goals: minimum cycle time, minimum cost, maximum productivity, minimum gas consumption.

 

Strategy  1. Literature review –

a. Nitriding practices in industry b. NH3/H2 thermodynamics – effects of H2O c. N solubility in steel – alloying effects including C d. N diffusion in steel – alloying effects including C e. Nitride precipitation in steels – kinetics and size f. N adsorption, decomposition and absorption g. Nitride hardening mechanisms h. Effects of steel microstructure – tempered Martensite carbide distribution – on diffusion

and nitride precipitation 2. Determine the boundary conditions for nitriding of steel

a. Flux? b. Mass transfer coefficient? c. Constant surface concentration?

3. Create Nitridetool for N diffusion and nitride precipitation in steels a. Nitralloy – 135 b. 4140

4. Verify computer model a. Literature data b. Selected experiments

5. Develop optimization methods for nitriding a. Minimum cycle time b. Minimum cost

6. Test optimization methods

2. Achievement  to  date  

Gas  nitriding   is  a   thermochemical   surface   treatment   in  which  nitrogen   is   transferred   from  an  ammonia  atmosphere  into  the  surface  of  steels  at  temperatures  within  the  ferrite  and  carbide  phase  region.  [1,  2]  After  nitriding,  a  compound  layer  and  an  underlying  diffusion  zone  (i.e.  the  case)  are  formed  near  the  surface  of  the  steel  (Figure  1).  The  compound  layer,  also  known  as  the  white  layer,  consists  predominantly  of  ε  -­‐  Fe2-­‐3(C,  N)  and/or  γ΄  -­‐  Fe4N  phases  and  can  greatly  improve   the   wear   and   corrosion   resistances.   [3]   The   hardened   diffusion   zone,   which   is  composed   of   interstitial   solid   solution   of   nitrogen   dissolved   in   the   ferrite   lattice   and   nitride  and/or  carbonitride  precipitation  for  the  alloy  steels  containing  the  nitrides  forming  elements,  

Report  1201   Page  3    

is  responsible  for  a  considerable  enhancement  of  the  fatigue  endurance.  Furthermore,  being  a  low   temperature   process,   nitriding   minimizes   the   distortion   and   deformation   of   the   heat  treated  parts.  [1]  Therefore,  gas  nitriding  is  an  important  surface  treatment  for  ferritic  steels.  

 

 

Figure  1.  Schematic  compound  layer  and  diffusion  zone  structure  of  nitrided  iron/steel  

 

Although   the   industrial   use   of   the   gas   nitriding   began   in   the   1930s,   it   has   not   gained   wide  applications  mainly  due  to  its   low  performance  reliability  [4].  The  properties  of  nitrided  steels  are  determined  by  the  nitrided  case  microstructures.  To  ensure  the  reproducible  and  desirable  properties   from   batch   to   batch,   the   gas   nitriding   need   to   be   controlled   to   ensure   the  microstructure  evolution.  The   successful   gas  nitriding  process   control  depends  on:  1)  process  parameters  selection  to  meet  the  specification,  2)  accurate  process  parameters  control  during  the  process.    

The  gas  nitriding  process  parameters  include  temperature,  time,  and  the  nitriding  atmosphere.  For  the  nitriding  atmosphere  control,  the  ammonia  dissociation  rate  was  traditionally  adopted  as   the   controlling   parameter.   It   represents   the   percentage   of   ammonia   dissociated   into  hydrogen  and  nitrogen  and  is  manually  measured  by  using  a  burette  in  the  furnace  exhaust  gas.  Since  dissociation  rate  is  not  an  in-­‐situ  measurement  and  the  measurement  is  done  manually,  it  introduces  operator  induced  variability  and  cannot  provide  the  accurate  control  on  the  nitriding  process.  A  new  control  parameter,  the  nitriding  potential,  was  introduced  in  the  1990’s  [5].  The  nitriding  potential  is  defined  by;    

 

Report  1201   Page  4    

                    (1)  

 

where  3NHp and  

2Hp are  the  partial  pressures  of  the  ammonia  and  hydrogen  gases  respectively.  

By   utilizing   the   thermal   conductivity   hydrogen   sensor   in   conjunction   with   the   two-­‐loop  controller/programmer,   the  nitriding  potential  can  be  calculated  and  controlled  automatically  and  accurately.  [6]    

With   the  development  of  measure  and  control   systems,   the  gas  nitriding  process  parameters  can  be  controlled  accurately.  How  to  pre-­‐define  the  nitriding  process  parameters  to  meet  the  specifications  becomes  the  main  challenge  of  the  gas  nitriding  process  control.  Conventionally,  trial   and   error   methods   were   used   to   define   the   nitriding   process   parameters   to   meet   the  specifications.   This  method   is   expensive,   time   consuming,   and  hard   to   control.   Therefore,   an  effective  simulation  tool  is  needed  to  define  the  process  parameters  based  on  the  performance  specifications  of  various  steels.  By  using  this  tool,  the  properties  of  the  nitrided  steels  based  on  the   phase   constitution,   surface   nitrogen   concentration,   nitrogen   concentration   profile,   case  depth,   as   well   as   growth   kinetics   can   be   simulated   through   variation   of   process   parameters  (temperature,  time,  and  the  nitriding  atmosphere).  [7]  

There  has  been  ongoing  effort  on  the  simulation  of   the  gas  nitriding  process  since  1990s  and  most  of  the  work  has  been  done  to  simulate  the  nitriding  process  of  pure  iron  [8-­‐10].  However,  the  pure  iron  is  never  used  for  nitriding  in  industry  while  the  simulation  for  nitridable  steels  is  greatly  needed.    

In   the   present   work   a   computational   model   is   developed   to   determine   the   nitrogen  concentration  and  nitride  profiles   in   the  nitrided  steels   in   terms  of   temperature,  atmosphere  composition,   steel   surface   condition,   alloy   composition   and   the   pre-­‐nitriding   steel  microstructure.  Based  on  this  model,   the  nitride  profile  as  well  as   the  nitrogen  concentration  profile  can  be  predicted  from  the   input  of  the  process  parameters  such  as  nitriding  potential,  temperature,  time,  and  the  steel  composition.    

 

2.1.  Experiments  

2.1.1. Materials  and  experimental  procedures  The   AISI   4140   bars   used   in   the   experimental   study   were   acquired   from   Peterson   Steel  Corporation   and   their   composition   determined   by   optical   emission   spectroscopy   (OES)   is  reported  in  Table  1.  

 

2/32

3

H

NHn p

pK =

Report  1201   Page  5    

 

Table  1.  Composition  of  AISI  4140  in  wt.%  

C   Mn   P   S   Si   Cr   Mo   Fe  

0.399   0.91   0.01   0.029   0.266   0.88   0.166   Balance  

 

Before  nitriding,  the  cylindrical  steel  bars  were  heat  treated  to  harden  the  core  by  heating  to  843oC   and   keeping   at   this   temperature   for   1.5   hours   in   Endothermic   gas   at   0.4%   carbon  potential,   followed  by  quenching   in  agitated  54oC  mineral  oil,   and  were  washed   in  hot  water  and   tempered   in   air   at   579oC   for   3   hours   (Bodycote,   Worcester,   MA,   USA).   The   hardening  process  is  shown  in  Figure  2.  

                               

Figure  2  Hardening  process  for  steel  bars  

 The  bars  were  machined  into  disks  with  a  diameter  of  3.175  cm  and  thickness  of  1  cm.  Figure  3  shows   the   schematic   of   the   sample   and   its   loading   configuration   for   the   nitriding   process.  Before  the  nitriding  process,  the  disks  were  washed  with  alcohol  and  half  of  the  disks  were  pre-­‐oxided  in  air  at  330oC  for  3  hours  to  investigate  the  effect  of  the  surface  condition  on  the  gas  nitriding   process.   In   this   report,   as-­‐washed   and   pre-­‐oxided   are   used   to   refer   the   different  surface  conditions  before  the  gas  nitriding  process.    

Both   as-­‐washed   and   pre-­‐oxided   samples   were   nitrided   at   550°C   with   8   𝑎𝑡𝑚!!!   nitriding  potential   for   three   different   times   14hours,   30   hours,   and   45   hours   (Bluewater   Thermal  Solutions,  Reidsville,  NC,  USA)  as  shown  in  Figure  4.  Figure  5  shows  the  schematic  setup  of  the  

                       T                    T=1550F  (843oC)  

     1.5hrs    

           Quenching  in  

                   Mineral  oil                          T=1075F  (579oC)  

                  3hrs  

               Quenching                                                                                                                                        Tempering  

 

 

 

Room  T  

Report  1201   Page  6    

gas  nitriding  process.  The  gas  nitriding  furnace  is  48  inches  in  diameter  and  96  inches  in  depth.  The   samples   were   heated   up   in   nitrogen   to   the   processing   temperature   before   adding   the  nitriding   gas   and   were   cooled   down   in   nitrogen   from   the   nitriding   temperature   to   room  temperature.   The   nitriding   gas   is   a  mix   of   ammonia   and   dissociated   ammonia.   The   nitriding  potential  (Kn)  is  continuously  monitored  by  using  a  hydrogen  sensor  and  controlled  by  making  adjustments   to   the   mixing   ratios   of   the   ammonia   to   dissociated   ammonia   gas.   A   constant  nitriding  potential  is  maintained  by  continuously  making  fine  adjustments  to  both  ammonia  and  dissociated  ammonia  flow  rates.  

 

   

Figure  3  Sample shape and workload used for the nitriding process.

 

φ 2mm

φ 31.75mm*10mm  

Report  1201   Page  7    

 

Figure  4  current  nitriding  process  for  AISI  4140  

   

 

 

 

   

Figure  5  Schematic  setup  of  the  gas  nitriding  process  

 

2.1.2. Characterization  The  nitriding  performance  of  nitrided  AISI  4140  samples  was  evaluated  in  terms  of  weight  gain,  microhardness  profile,  nitrogen  concentration  profile,  and  optical  micrograph.  Laboratory  scale  sensitive   to   10µg   was   used   for   weight   gain   measurements.   Shimadzu   HMV-­‐2000   Micro  

time

Tempe

rature

T=500°

Kn  (Nitriding  Potential)  =  4.60

Room  Temp

14  hours

T=550oC  

Kn  (nitriding  potential)=  8  atm-­‐0.5  

14hrs,  30hrs,  or  45  hrs  

Temperature  Control  

 

Nitriding  Furnace  

Ammonia  Dissociator  

Exhaust  Gas  Neutralizing  Equipment  

Ammonia  

Ammonia  

Nitrogen  

Dissociated  Ammonia  

Report  1201   Page  8    

Hardness  Tester  was  used   for  microhardness   testing  with  a  200gf   load  and  15s   loading   time.  Nitrogen   concentration   profiles   were   obtained   by   Spectro   MaXx   LMM14   optical   emission  spectroscopy  (OES)  analyzer.  

 

2.1.2.1. The  weight  gain  and  average  flux  The  weight  gain  from  the  nitriding  process  was  calculated  based  on  the  weight  measurements  of  each  disk  before  and  after   the  nitriding  process   separately.     The  average   flux   is   calculated  from  the  following  equation:  

          ⎟⎠

⎞⎜⎝

⎛ Δ⋅=AM

tJ 1              

where  J  is  the  average  flux,  AMΔ  is  weight  gain  per  unit  surface  area,  and  t  is  the  nitriding  time.    

The  measured  weight  gain  and  average   flux   for  as-­‐washed  and  pre-­‐oxided  AISI  4140  samples  from  different  nitriding  times  are  presented  in  Figure  6.  It  shows  the  pre-­‐oxidation  can  benefit  the  gas  nitriding  process   (accelerate  the   intake  of  the  nitrogen)  but  the  effect  decreases  with  increasing  times.  

 

Figure  6  The  weight  gain  (a)  and  Average  flux  (b)  of  pre-­‐oxided  and  as-­‐washed  AISI  4140  samples  after  nitriding  process  with  different  nitriding  process  time,  i.e.  14hrs,  30hrs,  and  45hrs.  

 

4.0E-­‐05  

5.0E-­‐05  

6.0E-­‐05  

7.0E-­‐05  

8.0E-­‐05  

9.0E-­‐05  

1.0E-­‐04  

1.1E-­‐04  

3.5   4   4.5   5   5.5   6   6.5   7  

Weight  G

ain  (kg)  

Time1/2  (hour1/2)  

4140(Pre-­‐oxide)  

4140(As-­‐wash)  

1.0E-­‐07  

2.0E-­‐07  

3.0E-­‐07  

4.0E-­‐07  

5.0E-­‐07  

6.0E-­‐07  

3.5   4   4.5   5   5.5   6   6.5   7  

Flux  (k

g/m

2 /s)  

Time1/2  (hour1/2)  

4140(Pre-­‐oxide)  

4140(As-­‐wash)  

Report  1201   Page  9    

2.1.2.2. Optical  microscope  Figure   7   presents   the   cross   section   optical   micrographs   of   the   nitrided   samples.   The   white  layers  are  the  compound  layer.  It  shows  that  with  the  nitriding  time  increasing  the  compound  layer  becomes  thicker  and  more  uniform.    

The  average  compound  layer  thickness  for  14hours,  30hours,  45hours  are  measured  as  9.07µm,  16.29µm,  20.73µm,  respectively  for  the  as-­‐washed  samples  and  17.10µm,  20.32µm,  22.16µm,  respectively   for   the   pre-­‐oxided   samples.   By   plotting   the   compound   layer   thickness   (Th)   as   a  function  of  the  squared  nitriding  time,  i.e.  Th  =  a  +  bt1/2  (Figure  8),  it  can  be  determined  that  the  growth   of   compound   layer   for   both   as-­‐washed   and   pre-­‐oxided   surface   conditions   obeys   the  parabolic  law  with  nitriding  time.    

However,  the  intercept  of  extrapolate  trend  line,  a,  is  negative  for  as-­‐washed  surface  condition  and  positive  for  pre-­‐oxided  surface  condition.   It  seems  that  there   is  some  incubation  time  for  the   formation  of   compound   layer   for   the  as  washed   sample,  while   the  oxidation   layer   forms  after   the   pre-­‐oxidation   process   promotes   the   formation   of   compound   layer   during   the   early  stage   of   the   nitriding   process.   The   typical   oxide   layer   formed   after   current   pre-­‐oxidation  process  should  be   less  than  one  micron  [11].  And  approximately  one  micron  thick  oxide   layer  has  been  observed  after  short  nitriding  process  for  the  pre-­‐oxided  AISI  4140  [12].    

 

     

(a)         (b)           (c)  

     

 (d)         (e)           (f)  

Report  1201   Page  10    

Figure  7.  Cross  section  optical  micrographs  of  as-­‐washed  14  hrs  (a),  30  hrs  (b),  45  hrs  (c)  and  pre-­‐oxided  14  hrs  (d),  30  hrs  (e),  45  hrs  (f)  gas  nitriding,  etched  with  2%  nital  solution  

 

   

                       (a)                                                    (b)  

Figure  8.  Experimental  Compound  layer  thickness  (•)  measured  for  as-­‐washed  (a)  and  pre-­‐oxided  (b)  samples  nitrided  for  14hrs,  30hrs,  and  45hrs  attached  with  the  fitted  trendline.  

 

2.1.2.3. Nitrogen  concentration  profile  

         

y  =  -­‐  5.5818+0.0658x  

0  

5  

10  

15  

20  

25  

30  

0   100   200   300   400   500    Com

poun

d  Layer  T

hickne

ss  (µ

m)  

Time1/2  (s1/2)  

y  =    10.758+0.0286x  

0  

5  

10  

15  

20  

25  

30  

0   100   200   300   400   500  

 Com

poun

d  Layer  T

hickne

ss  (µ

m)  

Time1/2  (s1/2)  

0 1 2 3 4 5 6 7 8 9

10

0 500 1000

Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

simulation 1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6

0 500 1000

Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

simulation 1 2 3

(a)                (b)  

 

 

 

 

 

 

(c)                (d)  

 

 

 

 

 

 

Report  1201   Page  11    

   

 

Figure  9.  The  simulation  results  for  nitride  as-­‐washed  AISI  4140  in  comparison  with  the  OES  measured  nitrogen  concentration  profiles:  the  complete  nitrogen  concentration  profile  for  14  hrs(a),  30hrs(c),  and  45hrs(e);  the  nitrogen  concentration  profile  

in  the  diffusion  zone  for  14  hrs(b),  30hrs(d),  and  45hrs(f).  

 

0 1 2 3 4 5 6 7 8 9

10

0 500 1000 Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

simulation 1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6

0 500 1000 Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

simulation 1 2 3

0

2

4

6

8

10

0 500 1000

Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

1 2 3 simulation

0 0.1 0.2 0.3 0.4 0.5 0.6

0 500 1000

Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

1 2 3 simulation

Report  1201   Page  12    

 

Figure  10.  The  simulation  results  for  nitrided  pre-­‐oxided  AISI  4140  in  comparison  with  the  OES  measured  nitrogen  concentration  profiles:  the  complete  nitrogen  concentration  profiles  for  14  hrs  (a),  30  hrs  (c),  and  45  hrs  (e);  the  nitrogen  

concentration  profiles  in  the  diffusion  zone  for  14  hrs  (b),  30  hrs  (d),  and  45  hrs  (f).  

 

0 1 2 3 4 5 6 7 8 9

10

0 500 1000

Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

14hrs 1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 500 1000

Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

14hrs 1 2 3

0 1 2 3 4 5 6 7 8 9

10

0 500 1000

Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

30hrs 1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 500 1000

Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

30hrs 1 2 3

0 1 2 3 4 5 6 7 8 9

10

0 500 1000

Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

45hrs 1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 500 1000

Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

45hrs 1 2 3

(a)                (b)  

 

 

 

 

 

 

(c)                (d)  

 

 

 

 

 

 

(e)                (f)  

Report  1201   Page  13    

Surface   nitrogen   concentration   can   be   measured   by   spectral   analysis   on   the   OES   (Optical  Emission   Spectroscopy).   Currently,   the   upper   limitation  of   accurate   nitrogen  measurement   is  0.4  wt.%.  Extrapolation  to  0.6  wt.%   is  made  for  samples  with  higher  nitrogen  concentrations.  However,  the  further  calibration  is  needed  for  high  nitrogen  concentration  measurements.  As  Figure   11   shows,   concentrations   at   3   different   positions  were  measured   on   the   surface.   The  nitrogen  concentration  profiles  are  obtained  by   removing   the  measured  surface   layer  one  by  one.  The  experimental  nitrogen  concentration  profiles  for  various  nitriding  times  are  shown  in  Figure  9  for  as-­‐washed  samples  and  in  Figure  10  for  pre-­‐oxided  samples  separately.  

 

 

Figure  11  Photo  of  4140  steel  sample  after  the  3-­‐point  OES  analysis  

 

2.1.2.4. Vickers  microhardness  profile  The  microhardness   for   the  cross   section  of   the  nitrided  AISI  4140  samples  were  measured   to  see   the   hardness   change   from   the   surface   layer   to   the   core   substrate.   The   measurements  started  at  50μm  below  the  surface.  Figure  12  shows  the  hardness  decrease  from  the  surface  to  the   core   for   both   as-­‐washed   and   pre-­‐oxided   samples.  With   the   nitriding   time   increasing,   i.e.  from  14  hours   to  30  hours   to  45  hours,   the  hardness  profiles   shift   toward   right  and   the  case  depth  also  increases.  

 

1   2  

3  

Report  1201   Page  14    

 

(a)                                  (b)  

Figure  12  The  Vickers  hardness  vs.  depth  from  surface  for  as-­‐washed  AISI  4140  (a)  and  pre-­‐oxided  AISI  4140  (b).  

 

2.1.2.5. Nitrogen  concentration  vs.  Vickers  microhardness  The  microhardness  as  a  function  of  nitrogen  concentration  were  both  plotted  for  as-­‐washed  and  pre-­‐oxided  nitrided  AISI  4140  samples  as  shown  in  Figure  13  (a)  and  (b),  respectively.  There  are  excellent  correlations  between  the  nitrogen  concentration  and  the  microhardness  in  both  cases  for  various  nitriding  times.  

 

(a)                                  (b)  

Figure  13  The  Vickers  microhardness  vs.  nitrogen  concentration  for  as-­‐washed  AISI  4140  (a)  and  pre-­‐oxided  AISI  4140  (b).  

 

Figure  14  compares  the  Vickers  microhardness  vs.  nitrogen  concentration  for  both  plotted  for  as-­‐washed  and  pre-­‐oxided  nitrided  AISI  4140  samples.  It  shows  that  the  hardness  is  related  to  the  nitrogen  concentration  only,  which  means  if  the  nitrogen  concentration  profile  can  be  predicted  by  nitriding  simulation  the  hardness  profile  can  be  predicted  too.    

Report  1201   Page  15    

 

Figure  14  Comparison  of  the  Vickers  microhardness  vs.  nitrogen  concentration  for  as-­‐washed  and  pre-­‐oxided  AISI  4140.  

 

2.2.  Previous  work  on  pure  iron  and  steel  nitriding  (literature  review)  

2.2.1. Fe-­‐C  binary  phase  diagram  

Phase  diagrams  are   the  base   to  understand   the  phase  evolution  during   the  nitriding  process.  Figure  15  shows  the  experimental  Fe-­‐N  binary  phase  diagram  in  which,  Fe4N  is  usually  called  γ’  phase   and   ε   represents   Fe2N1-­‐x.   On   this   phase   diagram,   the   complete   ferritic   phase   range   is  below   the   eutectoid   temperature   (around   590˚C).   It   shows   that   when   the   nitrogen  concentration   exceeds   the   nitrogen   solubility   limitation   of   α-­‐Fe   (ferrite),   the   first   phase  developing  at  the  surface  of  the  ferrous  substrate  is  γ’  (near  6  wt.%  N).  Then  ε  phase  is  formed  with  increasing  of  the  nitrogen  concentration.  

Hv=a*wt%N+b  

Report  1201   Page  16    

Figure  15.  Fe-­‐N  binary  phase  diagram  [13].  

 

2.2.2. Microstructures  of  nitrided  pure  iron  The  microstructure  of  nitrided  iron  is  shown  in  Figure  16.  It  is  clear  that  the  compound  layer  is  composed  of  sublayers  of  ε  phase  and  γ΄  phase.  The  ε  phase  is  close  to  the  surface  and  the  γ΄  phase  is  near  to  the  diffusion  zone.  

 

 (a)                                    (b)  

Figure  16.  (a)  Compound  layer  structure  of  nitrided  iron  [14]  (b)  Schematic  sequence  of  phases  during  iron  nitriding  [15]  

 

2.2.3. Nitride  layer  growth  model  on  pure  iron  nitriding  process  There  has  been  ongoing  effort  on  the  simulation  of  the  gas  nitriding  process  since  1990s.  And  most  of   the  successful  work  has  been  done  to  simulate  the  gas  nitriding  process  of  pure   iron  

Report  1201   Page  17    

due   to   the   limited   thermodynamics   and   kinetics   information   available   on   the   gas   nitriding  process  of  steels.  

 

Figure  17.  Relation  between  Fe-­‐N  phase  diagram  and  concentration/  depth  for  growth  of  a  bilayer  ε-­‐Fe2N1-­‐x  and  γ ’-­‐Fe4N  into  a  substrate  α -­‐Fe  [10]  

In   nitrided   iron,   single-­‐phase   layers   exist   in   the   compound   layer.   The   kinetics   of   diffusion-­‐controlled  growth  of   the  nitride   layers  ε  and  γ’can  be  described  by   the  shift  of   the   interfaces  (ε/γ’  and  γ’/α)  between  ε, γ’,  and  α due  to  the  differences  on  the  flux  of  nitrogen  arriving  at  the  interfaces  and  the  flux  of  nitrogen  leaving  from  the  interfaces.    

The  nitrogen  concentrations  on   the   interfaces  between   these   layers  can  be  defined   from  the  binary   Fe-­‐N   phase   diagram   when   the   local   equilibrium   is   assumed   at   the   interfaces   [10]   as  shown  in  Figure  17.    

According   to   Fick’s   first   law,   the   flux   difference   at   the   interfaces   can   be   described   as   the  amount  of  nitrogen  that  diffuses  through  the  interfaces  within  the  time  increment.  Somers  and  Mittemeijer   [8]   successfully  adopted   this  nitride   layer  growth  model   to  derive   the  monolayer  (γ’)  and  bilayer  (ε  and  γ’)  growth  into  the  substrate  for  the  pure  iron  nitriding  process.  

 

2.2.4.  Modeling  on  steel  nitriding  process  However,   the   nitriding   process   simulation   on   steels   become   much   more   complicated,   since  multiphase  layers  were  observed  in  the  compound  layer.  By  comparing  the  difference  between  

Report  1201   Page  18    

the  nitrided  pure  iron  and  steel,  the  challenges  of  nitriding  process  simulation  on  steels  will  be  presented  below.  

 

2.2.4.1. Challenges  of  steel  nitriding  process  modeling    

Figure  18.  Tentative  Fe-­‐N-­‐C  phase  diagram  at  570-­‐580˚C.  Sizes  of  α,  γ΄  and  cementite  fields  are  not  in  scale  [16].  

 

The  Fe-­‐N-­‐C  ternary  phase  diagram  proposed  by  Slycke  et  al.  [16]  (Figure  18)  shows  that  with  the  presence  of  carbon  the  ε  phase   (Fe2(N,C)1-­‐x)   forms  first   in   the  compound   layer.  By  controlling  the  nitrogen  and  carbon  concentration   the   single  ε   phase   can  be  developed.  γ’   phase   is  only  formed   during   a   relative   low   carbon   concentration   range   and   coexists   with   ε   phase.   This   is  explained   by   the   crystallographic   resemblance   between   orthorhombic   and   hexagonal   crystal  structure.   Cementite   (Fe3C),   which   is   part   of   the   steel   matrix,   has   orthorhombic   crystal  structure  and  can  easily  be  converted  into  hexagonal  ε  phase.  [17]  

Therefore,   the   well-­‐defined   ɛ   and   γʹ′   sublayer   structure   is   replaced   by   a  mixture   of   ɛ   and   γʹ′  phases  in  steel  as  shown  in  Figure  19  [18].  In  Figure  19  ɛ1  and  ɛ2  represent  Fe2N1-­‐x  and  Fe2(N,C)1-­‐x,  respectively.  The  microstructure  change  in  the  steel  compound  layer  is  due  to  the  presence  of  carbon   in   steel   matrix,   which   is   in   good   agreement   with   the   Fe-­‐C-­‐N   ternary   phase   diagram  (Figure  18)  description.  

Report  1201   Page  19    

Figure  19.  The  final  phase  composition  of  (carbo)nitrides  zone  after  3  and  10  h  of  single-­‐stage  process  at  KN  =  3.25  and  T  =  853  K  (580  °C):  a.  depth  distributions  of  ε  and  γʹ′  phases  in  the  compound  zone  on  steel  4340;  b.  total  interstitial  content  (N  +  C)  as  a  function  of  depth;  c.  optical  micrographs  of  the  cross  sections  of  the  compound  zone—γʹ′  appears  dark  grey,  ε  appears  

light  grey.  [18]  

 

2.3. Compound  layer  growth  model  and  modeling  parameters  This  nitrides  mixture  structure  makes  it  so  difficult  to  use  the  nitride  layer  growth  model,  which  describes  the  growth  of  single  nitride  phase  and  already  applies  on  pure  iron  nitriding  process  successfully,  to  simulate  the  steel  nitriding  process.    

Following   the   nitride   layer   growth   model   of   pure   iron   proposed   by   Somers   et   al.   [8],   the  compound  layer  growth  model  on  nitriding  of  steels  was  developed  as  shown  in  Figure  20.  Ns  is  the  nitrogen  concentration  on  the  outside  steel  surface.  At  the  compound  layer/diffusion  zone  interface,  the  nitrogen  concentration  is  Nc  at  the  interface  in  the  compound  layer  and  is  Nd  at  the  interface  in  diffusion  zone.  N0  is  the  nitrogen  concentration  in  steel  before  nitriding  process.  

Report  1201   Page  20    

The   initial   position   of   the   interface   between   compound   layer   and   diffusion   zone   is   ξ. If   the  interface   shifts   a   distance   dξ   into   the   substrate   within   a   time   increment   dt,   the   mass  conservation  in  the  compound  layer  is  expressed  as:  

  N! −  N! ∙ dξ+ dW = (J!|!!! −   J!|!!!) ∙ dt   (1)  

where   cJ  is  the  flux  of  nitrogen  entering  the  compound  layer  at  the  steel  surface  and   dJ  is  the  flux  of  nitrogen  leaving  the  compound  layer  at  the  interface,  dW  is  the  amount  of  solute  that  accumulates  in  the  compound  layer  to  maintain  a  concentration  -­‐  depth  profile.  

 

Figure  20.  Schematic  of  the  nitride  layer  growth  model  on  nitriding  of  steel  

 

The  diffusion  of  nitrogen  in  the  steel  follows  Fick’s  First  Law,  

  J!|!!! = −D! !!!!

|!!!   (2)  

  J!|!!! = −D! !!!!

|!!!   (3)  

where  𝐷!  and  𝐷!  are  the  diffusion  coefficient  of  nitrogen  in  compound  layer  and  diffusion  zone,  respectively.  Then  substituting  Equations  2  and  3  into  Equation  1  yields  

  N! −  N! ∙ dξ+ dW = [ −D! !!!!

|!!! −   −D!!!!!

|!!!)] ∙ dt   (4)  

Report  1201   Page  21    

In  equation  4,  Ns,  Nc,  Nd,  Dc,  and  Dd  are  the  main  parameters  needed  to  be  defined  to  simulate  the  nitriding  process  of  steels.  

 

2.3.1. Modeling  parameters  determination  According  to  the  compound  layer  growth  model,  there  are  two  kinds  of  modeling  parameters.  One  is  boundary  conditions  including  Ns,  Nc,  and  Nd,  the  other  one  is  the  diffusivities  including  Dc   and   Dd.   In   the   present   work,   AISI   4140   is   chosen   to   show   the   modeling   parameters  determination.  

 

2.3.1.1. Boundary  conditions  determination  

2.3.1.1.1. Lehrer  diagram  The   dissociation   rate   of   ammonia   or   the   nitriding   potential   is   the  most   critical   parameter   to  understand   and   control   the   nitriding   process.   The   chemical   potential   of   nitrogen   μN  thermodynamically  defines  the  nitridability  of  the  nitriding  atmosphere.  [19]  At  thermodynamic  equilibrium,   the   chemical   potential   in   the   steel   surface   (µμ!,!)   equals   that   in   the   nitriding  

atmosphere  (!!µμ!!,!).  That  means  

!!μ!!,! = μ!,!                    (5)  

And  the  chemical  potential  of  nitrogen  in  the  steel  can  be  related  to  nitrogen  activity  aN  by  

!!μ!!,!! + !

!𝑅𝑇𝑙𝑛

!!!!!!! = μ!,!

! + 𝑅𝑇𝑙𝑛𝑎!          (6)  

where  R  is  the  gas  constant,  T  is  temperature,  𝑝!!  is  the  partial  pressure  of  nitrogen,  𝑝!!! is  the  

partial  pressure  of  nitrogen  at  the  standard  state.  

Since  the  chemical  potential  of  nitrogen  is  extremely  low  in  N2  and  relatively  high  in  ammonia,  ammonia  is  used  as  the  principal  constituent  of  the  nitriding  atmosphere,  [19]    giving    

𝑁𝐻! = 𝑁 + !!𝐻!                          (7)  

where  [N]  represents  nitrogen  which  is  dissolved  on  the  steel  surface.  

For   local   equilibrium   between   N   in   the   gas   phase   and   N   in   the   steel   surface   the   activity   of  nitrogen,  aN,  is  given  by:  

𝑎! = 𝐾!!"!!!!!/! 𝑝!

!/!                            (8)  

Report  1201   Page  22    

where  K  is  the  equilibrium  constant  of  reaction,  𝑝!  is  the  total  pressure,  and    𝑝!"!  and  𝑝!!are  the  partial  pressures  of  the  ammonia  and  hydrogen  gases  respectively.  On  the  basis  of  eq.(4),    

𝐾!!!!"!!!!!/!                  (9)  

is  defined  as  nitriding  potential  (Kn)  measured  in  𝑝!!!/!  or  𝑎𝑡𝑚!!/!.  

 

 Figure  21.  The  experimental  Lehrer  diagram  of  the  pure  iron  [20]  with  isoconcentration  lines  added  [21]  

Dissociation   rate   represents   the   percentage   of   ammonia   dissociated   into   hydrogen   and  nitrogen   based   on   Eq.(3)   and   is   measured   by   using   a   burette   in   the   furnace   exhaust   gas.  Dissociation   rate   and   nitriding   potential   can   be   easily   converted   to   each   other   based   on   the  equations  described  above.    

The  state  of  the  art  for  controlling  the  nitriding  process  is  to  define  the  composition  and  phase  distribution  at  the  surface  of  the  steel  by  measuring  and  controlling  the  nitriding  potential.  The  widely  used   Lehrer  diagram   for  pure   iron   is  presented   in   Figure  21,   showing   the   relationship  between  the  phases  formed  under  local  equilibrium  and  the  nitriding  potential  as  a  function  of  temperature   for   pure   iron.   However,   the   Lehrer   diagrams   for   alloy   steels   do   not   exist.  Application  of  the  pure  iron  Lehrer  diagram  on  steel  nitriding  can  lead  to  incorrect  prediction  of  the  phases  at  the  steel  surface.  

 

Report  1201   Page  23    

2.3.1.1.2. Customized  Lehrer  diagram  development  The  Lehrer  diagram  of  pure  iron  was  plotted  by  using  the  computational  thermodynamics.  

Figure  22  shows  the  calculated  Lehrer  diagram  for  pure  iron,  which  is  overall  in  good  agreement  with   the   experimental   diagram  presented   in   Figure   21.   This   comparison  proved   the  utility   of  using  thermodynamic  database  to  calculate  the  customized  Lehrer  diagrams  for  alloy  steels.    

 

Figure  22.  The  calculated  Lehrer  diagram  of  the  pure  iron  

 

 

 

Figure  23.  Lehrer  diagram  of  AISI  4140  (a)  and  nitriding  potential  evolution  with  nitrogen  concentration  for  AISI  4140  at  550oC  (b).  

(a)                              (b)  

Report  1201   Page  24    

With  the  same  approach,  the  customized  Lehrer  diagram  of  AISI  4140  (Figure  23  (a))  has  been  successfully   developed.   The   Lehrer   diagram   of   AISI   4140   presents   the   phase   regions  corresponding  to  different  nitriding  potentials  and  is  significantly  different  from  Lehrer  diagram  of  pure  iron.  The  accuracy  of  the  customized  Lehrer  diagram  has  been  verified  in  the  previous  work.  

 

2.3.1.1.3. Boundary  conditions  determination  Based  on  this  Lehrer  diagram  of  AISI  4140,  the  relationship  between  the  nitriding  potential  and  the  nitrogen  concentration  at  fixed  temperature  can  be  calculated.  Figure  23  (b)  shows  nitriding  potential  as  a  function  of  nitrogen  concentration  at  550°C,  which  is  the  nitriding  temperature.    

If   the   thermodynamic   equilibrium  between   the   gaseous   atmosphere   and   the   steel   surface   is  assumed,  when  the  nitriding  potential  is  8  the  nitrogen  concentration  on  the  nitrided  AISI  4140  surface  should  be  equal  to  approximately  9.917wt.%  according  to  this  diagram.  

It  is  also  important  to  note  the  horizontal  line  on  Figure  23  (b)  when  the  nitrogen  concentration  varies  from  2.3  to  6.5  wt.%N.  The  nitriding  potential  is  constant  along  this  line.  According  to  the  definition  of  nitriding  potential  as  shown  in  Equation  8,  the  nitriding  potential  is  proportional  to  the  activity  of  nitrogen  (N)   in  the  steel.  Therefore,  constant  nitriding  potential  corresponds  to  the  constant  nitrogen  activity,  which  lies  on  the  interface  between  the  compound  layer  and  the  diffusion   zone   in  nitrided  AISI   4140  when   the  nitrogen   concentration   is   between  2.3   and  6.5  wt.%N.  The  position  of  this  interface  on  Figure  23  (b)  can  be  verified  from  the  phase  evolution  along   the   change   of   nitrogen   concentration.   As   the   diagram   shows,   the   bcc   (ferrite)   doesn’t  exist  above  the  horizontal  line  but  exists  below  this  line.  The  nitrogen  concentration  higher  than  6.5wt.%N  represents  the  compound  layer  and  the  nitrogen  concentration   lower  than  2.3wt.%  represents  the  diffusion  zone.  

In  conclusion,  the  boundary  conditions  can  be  defined  as  Ns  =  9.92wt.%N.  Nc  =  6.5wt.%N,  and  Nd  =  2.3wt.%N  from  the  nitriding  potential  vs.  nitrogen  concentration  diagram.  Figure  24  shows  the   relationship   between   the   isopleth   and   nitrogen   concentration/depth   for   the   compound  layer  growth  model  of  AISI  4140.  

 

Report  1201   Page  25    

 Figure  24.  Relation  between  the  isopleth  and  nitrogen  concentration/depth  for  the  nitride  layer  growth  model  of  AISI  4140  

 

2.3.1.2. Compound  layer  growth  kinetics  and  diffusivity  From  the  above  analysis,  Ns,  Nc,  and  Nd  are  determined  by  the  Lehrer  diagram  of  AISI  4140,  but  the  diffusivities,  𝐷!  and  𝐷!  are  still  unknown.    

The  diffusivity  in  the  compound  layer  𝐷!   is  hard  to  determined  due  to  the  complicated  multi-­‐phase   structure.   The   experimental   data   (Figure   25)   show   that   the   compound   layer   growth  kinetics  for  both  as-­‐washed  and  pre-­‐oxided  nitriding  obey  the  parabolic   law  with  the  nitriding  time.   And   the   thickness   of   the   compound   layer   is  much   less   than   the   depth   of   the   diffusion  zone.   Therefore,   instead   of   determining   the   values   of  𝐷!,   the   nitrogen   concentration   in   the  compound   layer   can   be   simulated   as   a   linear   concentration-­‐depth   profile   by   combing   the  empirical  parabolic  growth  kinetics  and  the  boundary  conditions.    

Based  on  the  boundary  conditions  determined  by  the  AISI  4140  Lehrer  diagram,  Nc  the  nitrogen  concentration  at  the  interface  in  the  compound  layer  and  Nd  the  nitrogen  concentration  at  the  interface   in   the   diffusion   zone   are   constant   when   the   nitriding   temperature   is   fixed.   The  diffusivity   in   the  diffusion  zone  should  thus  be  a  constant  and   independent  with  the  nitriding  potentials  and  the  surface  conditions  of  the  nitriding  samples.  

 

Report  1201   Page  26    

 

 

Figure  25.  Experimental  Compound  layer  thickness  (•)  measured  for  as-­‐washed  and  pre-­‐oxided  samples  nitrided  for  14hrs,  30hrs,  and  45hrs  attached  with  the  fitted  trendline.  

 

In  the  previous  work,  𝐷!,  the  diffusivity  in  the  diffusion  zone  was  determined  as  5x10-­‐9cm2/s  by  an   inverse   method   which   compares   the   results   of   the   simulated   and   experimental   nitrogen  concentration  profiles  from  the  OES  measurements  of  a  two-­‐stage  commercial  nitriding  process  at  very  close  nitriding  temperature  (548°C)  but  different  nitriding  potential  (0.43)  in  the  second  stage  [22].  This  diffusivity  is  adopted  to  simulate  the  current  nitriding  process  and  the  simulated  nitrogen  concentration  profiles  from  the  compound  layer  growth  model  for  nitrided  AISI  4140  at  different  times  are  shown  in  Figure  26  and  Figure  27.  The  simulation  results  are  compared  with   the   experimental   data   from   as-­‐washed   samples   and   pre-­‐oxided   samples   separately   as  

0  

5  

10  

15  

20  

25  

30  

0   50   100   150   200   250   300   350   400   450  

 Com

poun

d  Layer  T

hickne

ss  (µ

m)  

Time1/2  (s1/2)  

AISI  4140,  as-­‐wash  T=550°C,  Kn=8atm-­‐1/2  

AISI  4140,  pre-­‐oxided  T=550°C,  Kn=8atm-­‐1/2  

0  

5  

10  

15  

20  

25  

30  

0   100   200   300   400   500  

 Com

poun

d  Layer  T

hickne

ss  (µ

m)  

Time1/2  (s1/2)  

Report  1201   Page  27    

shown   in   Figure   9   and   Figure   10.   It   shows   very   good   agreement  with   the   experimental   data  from   present   OES  measurements.   Therefore,   the   nitrogen   diffusivity   in   the   diffusion   zone   is  determined   to   be   constant   and   only   depends   on   the   nitriding   temperature   and   the   specific  material.  

 

 

(a)               (b)  

Figure  26.  Compound  layer  growth  model  simulation  results  for  different  nitriding  time  at  550°C  with  8  𝐚𝐭𝐦!𝟏𝟐  nitriding  potential  for  as-­‐washed  AISI  4140  

 

 

(a)               (b)  

Figure  27.  Compound  layer  growth  model  simulation  results  for  different  nitriding  time  at  550°C  with  8  𝐚𝐭𝐦!𝟏𝟐  nitriding  potential  for  pre-­‐oxided  AISI  4140  

 

0  

2  

4  

6  

8  

10  

12  

0   20   40   60   80   100  

Weight  P

ercentage  of  N  

Depth  from  Surface  (µm)  

14hrs  

30hrs  

45hrs  

0  

0.1  

0.2  

0.3  

0.4  

0.5  

0.6  

0   500   1000   1500  Weight  P

ercentage  of  N  

 Depth  from  Surface  (µm)  

14hrs  

30hrs  

45hrs  

0  

2  

4  

6  

8  

10  

12  

0   20   40   60   80   100  

Weight  P

ercentage  of  N  

Depth  from  Surface  (µm)  

14hrs  

30hrs  

45hrs  

0  

0.1  

0.2  

0.3  

0.4  

0.5  

0.6  

0   500   1000   1500  

Weight  P

ercentage  of  N  

Depth  from  Surface  (µm)  

14hrs  

30hrs  

45hrs  

Report  1201   Page  28    

2.3.2. NitrideTool©  Base  on  the  compound  layer  growth  model,  a  software,  Nitriding  Tool  has  been  developed    to  determine   the   compound   layer   phase   composition   and   thickness,   and   calculate   the   nitrogen  concentration  profile  in  the  case  during  the  gas  nitriding  process  of  steels.  Figure  28  shows  the  user   interface   of   the   NitrideTool©.   In   this   software,   nitriding   potential   or   dissociation   rate,  temperature,  and   time  are   the   input  parameters.  Since  alloy  composition  affects   the  nitridng  process,   the   Lehrer   diagram,   compound   layer   growth   kinetics   and   nitrogen   diffusivity   in  diffusion  zone  are  needed.  

 

Figure  28:  Interface  of  NitrideTool©  

 

References:  1.   Pye,  D.,  Practical  nitriding  and  ferritic  nitrocarburizing.  2003,  Materials  Park,  OH:  ASM  International.  2.   Somers,  M.A.J.,  Thermodynamics,  kinetics  and  microstructural  evolution  of  the  compound  layer;  A  comparison  of  the  

states  of  knowledge  of  nitriding  and  nitrocarburizing.  Heat  Treatment  of  Metals,  2000.  27(4):  p.  92-­‐102.  3.   Du,  H.,  M.  Somers,  and  J.  Agren,  Microstructural  and  compositional  evolution  of  compound  layers  during  gaseous  

nitrocarburizing.  Metallurgical  and  Materials  Transactions  A,  2000.  31(1):  p.  195-­‐211.  4.   Zinchenko,  V.  and  V.  Syropyatov,  New  possibilities  of  gas  nitriding  as  a  method  for  anticorrosion  treatment  of  machine  

parts.  Metal  Science  and  Heat  Treatment,  1998.  40(7):  p.  261-­‐265.  5.   Lotze,  T.H.,  GAS  NITRIDING,  in  Application  Bulletin  2003,  Super  Systems,  Inc.  

Report  1201   Page  29    

6.   Lohrmann,  M.,  Improved  nitriding  and  nitrocarburizing  atmosphere  control  with  the  HydroNit  sensor  Heat  Treatment  of  Metals,  2001(3):  p.  53-­‐55.  

7.   Maldzinski,  L.,  et  al.,  New  possibilities  for  controlling  gas  nitriding  process  by  simulation  of  growth  kinetics  of  nitride  layers.  Surface  Engineering,  1999.  15(5):  p.  377-­‐384.  

8.   Somers,  M.A.J.  and  E.J.  Mittemeijer,  Layer-­‐Growth  Kinetics  on  Gaseous  Nitriding  of  Pure  Iron  -­‐  Evaluation  of  Diffusion-­‐Coefficients  for  Nitrogen  in  Iron  Nitrides.  Metallurgical  and  Materials  Transactions  a-­‐Physical  Metallurgy  and  Materials  Science,  1995.  26(1):  p.  57-­‐74.  

9.   Somers,  M.A.J.  and  E.J.  Mittemeijer,  Modeling  the  Kinetics  of  the  Nitriding  and  Nitrocarburizing  of  Iron.  Heat  Treating  1997:  Proceedings  of  the  17th  Conference  (ASM  International),  2000.  15-­‐18(3):  p.  321-­‐330.  

10.   Torchane,  L.,  et  al.,  Control  of  iron  nitride  layers  growth  kinetics  in  the  binary  Fe-­‐N  system.  Metallurgical  and  Materials  Transactions  a-­‐Physical  Metallurgy  and  Materials  Science,  1996.  27(7):  p.  1823-­‐1835.  

11.   Boggs,  W.E.,  R.H.  Kachik,  and  G.E.  Pellissier,  The  Effect  of  Oxygen  Pressure  on  the  Oxidation  of  Zone-­‐Refined  Iron.  Journal  of  The  Electrochemical  Society,  1965.  112(6):  p.  539-­‐546.  

12.   Yang,  M.,  et  al.  (private  communication,  2011).  13.   Handbook,  A.S.M.,  Alloy  Phase  Diagrams.  1992,  ASM:  Metals  Park,  OH.  14.   Tatiana,  L.,  Phase  transformations  in  interstitial  Fe-­‐N  alloys.  2005.  p.  52.  15.   Somers,  M.A.J.,  Härt.-­‐Tech.  Mitt.,  1991.  46:  p.  375.  16.   Slycke,  J.S.L.A.J.,  Nitrocarburizing  and  the  ternary  Fe-­‐N-­‐C  phase  diagram.  Scand.  J.  Metal.,  1988.  17(3):  p.  122.  17.   Mittemeijer,  E.J.,  et  al.,  The  Conversion  Cementite  -­‐  >  Epsilon-­‐Nitride  During  the  Nitriding  of  FeC  Alloys  Scr.  Metall.  ,  

1980.  14(11):  p.  1189-­‐1192.  18.   Ratajski,  J.,  J.  Tacikowski,  and  M.A.J.  Somers,  Development  of  compound  layer  of  iron  (carbo)nitrides  during  nitriding  

of  steel.  Surface  Engineering,  2003.  19(4):  p.  285-­‐291.  19.   Mittemeijer,  E.J.  and  J.T.  Slycke,  Chemical  potentials  and  activities  of  nitrogen  and  carbon  imposed  by  gaseous  

nitriding  and  carburizing  atmosphere.  Surface  Engineering,  1996.  12(2):  p.  152-­‐162    20.   Lehrer,  E.,  The  equilibrium,  iron-­‐hydrogen-­‐ammonia.  Zeitschrift  fuer  Elektrochemie  und  Angewandte  Physikalische  

Chemie,  1930.  36:  p.  383.  21.   Maldzinski  L.,  P.Z.,  Kunze  L.,  Equilibrium  Between  NH3/H2  and  Nitrogen  in  ε  Phase  of    Iron-­‐Nitrogen  System.  Steel  

Research,  1986.  12:  p.  645-­‐649.  22.   Yang,  M.  and  R.D.S.  Jr.,  Modeling  the  Nitriding  of  Steel  by  Compound  Layer  Growth  Model.  Materials  Performance  and  

Characterization,  2012.  1(1):  p.  1-­‐10.    

     

Report  1201   Page  30    

Appendix  A  Experimenal  Data  for  steels  nitrided  at  550oC  

 

Figure  A-­‐  1.  Weight  gain  of  nitrided  samples,  including  pre-­‐oxided  and  as-­‐washed  AISI  4140,  AISI  5130,  CAT  135,  and  H13  for  three  different  nitriding  process  times,  14hrs,  30hrs,  and  45hrs.  

 

Figure  A-­‐  2.  Flux  of  nitrided  samples,  including  pre-­‐oxided  and  as-­‐washed  AISI  4140,  AISI  5130,  CAT  135,  and  H13  for  three  different  nitriding  process  times,  14hrs,  30hrs,  and  45hrs.  

0.0E+00  

2.0E-­‐05  

4.0E-­‐05  

6.0E-­‐05  

8.0E-­‐05  

1.0E-­‐04  

1.2E-­‐04  

1.4E-­‐04  

1.6E-­‐04  

10   15   20   25   30   35   40   45   50  

Weight  G

ain  (kg)  

Time  (hour)  

4140(Pre-­‐oxide)  

4140(As-­‐wash)  

5130(Pre-­‐oxide)  

5130(As-­‐wash)  

135(Pre-­‐oxide)  

135(As-­‐wash)  

H13(pre-­‐oxide)  

H13(As-­‐wash)  

0.0E+00  

1.0E-­‐07  

2.0E-­‐07  

3.0E-­‐07  

4.0E-­‐07  

5.0E-­‐07  

6.0E-­‐07  

7.0E-­‐07  

8.0E-­‐07  

3.5   4   4.5   5   5.5   6   6.5   7  

Flux  

Time1/2  (hour1/2)  

4140(Pre-­‐oxide)  4140(As-­‐wash)  5130(Pre-­‐oxide)  5130(As-­‐wash)  135(Pre-­‐oxide)  135(As-­‐wash)  H13(pre-­‐oxide)  H13(As-­‐wash)  

Report  1201   Page  31    

 

0  

5  

10  

15  

20  

25  

30  

0   50   100   150   200   250   300   350   400   450  

 Com

poun

d  Layer  T

hickne

ss  (µ

m)  

Time1/2  (s1/2)  

AISI  4140,  pre-­‐oxide T=550°C,  Kn=8atm

-­‐

Report  1201   Page  32    

 

 

0  

5  

10  

15  

20  

25  

30  

35  

40  

45  

0   50   100   150   200   250   300   350   400   450  

 Com

poun

d  Layer  T

hickne

ss  (µ

m)  

Time1/2  (s1/2)  

CAT  135,  pre-­‐oxide T=550°C,  Kn=8atm

-­‐

Report  1201   Page  33    

 

 

Figure  A-­‐  3.  compound  layer  thickness  of  nitrided  samples,  including  pre-­‐oxided  and  as-­‐washed  AISI  4140,  AISI  5130,  CAT  135,  and  H13  for  three  different  nitriding  process  times,  14hrs,  30hrs,  and  45hrs.    

0  

5  

10  

15  

20  

25  

30  

0   50   100   150   200   250   300   350   400   450  

 Com

poun

d  Layer  T

hickne

ss  (µ

m)  

Time1/2  (s1/2)  

AISI  5130,  as-­‐wash T=550°C,  Kn=8atm

-­‐

Report  1201   Page  34    

 

Figure  A-­‐  4.  the  OES  measured  nitrogen  concentration  profiles  in  the  diffusion  zone  of  nitrided  AISI4140  pre-­‐oxided  samples  for  14  hrs(a),  30hrs(b),  and  45hrs(c).  

   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 200 400 600 800 1000 1200 Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

N wt% vs Depth

1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 200 400 600 800 1000 1200 Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

N wt% vs Depth

1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 200 400 600 800 1000 1200 Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

N wt% vs Depth

1 2 3

Report  1201   Page  35    

 Figure  A-­‐  5.  the  OES  measured  nitrogen  concentration  profiles  in  the  diffusion  zone  of  nitrided  AISI4140  as-­‐washed  samples  

for  14  hrs(a),  30hrs(b),  and  45hrs(c).  

   

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000 1200

Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

N wt% vs Depth

1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 200 400 600 800 1000 1200

Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

N wt% vs Depth

1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 200 400 600 800 1000 1200

Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

N wt% vs Depth

1 2 3

Report  1201   Page  36    

 

Figure  A-­‐  6.  the  OES  measured  nitrogen  concentration  profiles  in  the  diffusion  zone  of  nitrided  AISI5130  pre-­‐oxided  samples  for  14  hrs(a),  30hrs(b),  and  45hrs(c).  

   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 200 400 600 800 1000 1200 Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

N wt% vs Depth

1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 200 400 600 800 1000 1200 Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

N wt% vs Depth

1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 200 400 600 800 1000 1200 Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

N wt% vs Depth

1 2 3

Report  1201   Page  37    

 

Figure  A-­‐  7.  the  OES  measured  nitrogen  concentration  profiles  in  the  diffusion  zone  of  nitrided  AISI5130  as-­‐washed  samples  for  14  hrs(a),  30hrs(b),  and  45hrs(c).  

   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 200 400 600 800 1000 1200 Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

N wt% vs Depth

1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 200 400 600 800 1000 1200 Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

N wt% vs Depth

1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 200 400 600 800 1000 1200 Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

N wt% vs Depth

1 2 3

Report  1201   Page  38    

 

Figure  A-­‐  8.  the  OES  measured  nitrogen  concentration  profiles  in  the  diffusion  zone  of  nitrided  CAT135  pre-­‐oxided  samples  for  14  hrs(a),  30hrs(b),  and  45hrs(c).  

 

   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 200 400 600 800 1000 1200 Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

N wt% vs Depth

1 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 200 400 600 800 1000 1200 Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

N wt% vs Depth

1 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 200 400 600 800 1000 1200 Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

N wt% vs Depth

1 2

Report  1201   Page  39    

 

Figure  A-­‐  9.  the  OES  measured  nitrogen  concentration  profiles  in  the  diffusion  zone  of  nitrided  CAT135  as-­‐washed  samples  for  14  hrs(a),  30hrs(b),  and  45hrs(c).  

   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 200 400 600 800 1000 1200 Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

N wt% vs Depth

1 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 200 400 600 800 1000 1200 Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

N wt% vs Depth

1 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 200 400 600 800 1000 1200

Wei

ght P

erce

ntag

e of

N

Depth from Surface (µm)

N wt% vs Depth

1 2

Report  1201   Page  40    

 

 

   

Figure  A-­‐  10.  The  microhardness  of  nitrided  samples,  including  pre-­‐oxided  and  as-­‐washed  AISI  4140,  AISI  5130,  CAT  135,  and  H13  for  three  different  nitriding  process  times,  14hrs,  30hrs,  and  45hrs.  

 

 

300  

350  

400  

450  

500  

550  

600  

650  

0   500   1000   1500   2000  

14hours  

30hours  

45hours  

AISI 4140, 550℃, KN 8, As-washed

Har

dnes

s (H

V)

Depth from surface (um)

300  

350  

400  

450  

500  

550  

600  

650  

0   500   1000   1500   2000  

14hours  

30hours  

45hours  

AISI 4140, 550℃, KN 8, Pre-oxided

Depth from surface (um)

Har

dnes

s (H

V)

300  350  400  450  500  550  600  650  700  

0   500   1000   1500   2000  

14hours  

30hours  

45hours  

Har

dnes

s (H

V)

Depth from surface (um)

AISI 5130, 550℃, KN 8, As-washed

300  350  400  450  500  550  600  650  700  

0   500   1000   1500   2000  

14hours  30hours  45hours  

Har

dnes

s (H

V)

Depth from surface (um)

AISI 5130, 550℃, KN 8, Pre-oxided

300  

350  

400  

450  

500  

550  

600  

0   200   400   600   800   1,000   1,200  

Hardne

ss  (H

V)  

Depth  (μm)  

CAT  135,  550C,  KN  8,  As-­‐wash  

14  hours  30  hours  45  hours  

300  

350  

400  

450  

500  

550  

600  

0   200   400   600   800   1,000   1,200  

Hardne

ss  (H

V)  

Depth  (μm)  

CAT  135,  550C,  KN  8,  Pre-­‐oxide  

14  hours  30  hours  45  hours  

Report  1201   Page  41    

   

     

     

Figure  A-­‐  1.  Optical  micrographs  of  AISI  4140  samples:  (a-­‐1)  as-­‐wash  14hours,  (a-­‐1)  as-­‐wash  30hours,  (a-­‐3)  as-­‐wash  45hours;  (b-­‐1)  pre-­‐oxide  14hours,  (b-­‐2)  pre-­‐oxide  30hours,  (b-­‐3)  pre-­‐oxide  45hours.  

   

(a-­‐1)   (a-­‐2)   (a-­‐3)  

(b-­‐1)   (b-­‐2)   (b-­‐3)  

Report  1201   Page  42    

     

      Figure  A-­‐  12.  Optical  micrographs  of  AISI  5130  samples:  (a-­‐1)  as-­‐wash  14hours,  (a-­‐1)  as-­‐wash  30hours,  (a-­‐3)  as-­‐wash  45hours;  (b-­‐1)  pre-­‐oxide  14hours,  (b-­‐2)  pre-­‐oxide  30hours,  (b-­‐3)  pre-­‐oxide  45hours.  

 

 

   

(a-­‐1)   (a-­‐2)   (a-­‐3)  

(b-­‐1)   (b-­‐2)   (b-­‐3)  

Report  1201   Page  43    

Appendix  B  Experimenal  Data  for  steels  nitrided  at  525oC  

 

Figure  B-­‐  2.  Weight  gain  of  nitrided  samples,  including  pre-­‐oxided  and  as-­‐washed  AISI  4140,  AISI  5130,  CAT  135,  and  H13  for  three  different  nitriding  process  times,  14hrs,  30hrs,  and  45hrs.  

 

Figure  B-­‐  3.  Flux  of  nitrided  samples,  including  pre-­‐oxided  and  as-­‐washed  AISI  4140,  AISI  5130,  CAT  135,  and  H13  for  three  different  nitriding  process  times,  14hrs,  30hrs,  and  45hrs.  

 

0.0E+00  

2.0E-­‐05  

4.0E-­‐05  

6.0E-­‐05  

8.0E-­‐05  

1.0E-­‐04  

1.2E-­‐04  

10   15   20   25   30   35   40   45   50  

Weight  G

ain  (kg)  

Time  (hour)  

4140(pre-­‐oxide)  

4140(as-­‐wash)  

5130(pre-­‐oxide)  

5130(as-­‐wash)  

135(pre-­‐oxide)  

135(as-­‐wash)  

0.0E+00  

5.0E-­‐08  

1.0E-­‐07  

1.5E-­‐07  

2.0E-­‐07  

2.5E-­‐07  

3.0E-­‐07  

3.5E-­‐07  

4.0E-­‐07  

4.5E-­‐07  

10   15   20   25   30   35   40   45   50  

Flux  

Time  (hour)  

4140(pre-­‐oxide)  

4140(as-­‐wash)  

5130(pre-­‐oxide)  

5130(as-­‐wash)  

135(pre-­‐oxide)  

135(as-­‐wash)  

Report  1201   Page  44    

0  

5  

10  

15  

20  

25  

0   100   200   300   400   500  

AISI  5130,  525℃,  KN  8,  pre-­‐oxide  

Compo

und  layer    thickness(um

)  

Time1/2  (s1/2)  

0  

5  

10  

15  

20  

0   100   200   300   400   500  

CAT135,  525℃,  KN=8,    pre-­‐oxide  

Compo

und  layer    thickness(um

)  

Time1/2  (s1/2)  

Figure  B-­‐  4.  compound  layer  thickness  of  nitrided  samples,  including  pre-­‐oxided  and  as-­‐washed  AISI  4140,  AISI  5130,  CAT  135,  and  H13  for  three  different  nitriding  process  times,  14hrs,  30hrs,  and  45hrs.

0  

5  

10  

15  

20  

0   200   400   600  

AISI 4140, 525℃, KN 8, as-wash

Compo

und  layer  thickne

ss(um)  

Time1/2  (s1/2)  

0  

5  

10  

15  

20  

25  

0   100   200   300   400   500  

AISI  5130,  525℃,  KN  8,  as-­‐wash  

Compo

und  layer    thickness(um

)  

Time1/2  (s1/2)  

0  

5  

10  

15  

20  

0   100   200   300   400   500  

CAT  135,  525℃,  KN=8,  as-­‐wash  

Compo

und  layer    thickness(um

)  

Time1/2  (s1/2)  

0  

5  

10  

15  

20  

0   200   400   600  

AISI 4140, 525oC Kn 8, pre-oxide

Compo

und  layer    thickness(um

)  

Time1/2  (s1/2)  

0  

5  

10  

15  

0   200   400   600  

H13, 525C,KN=8, pre-oxide

Compo

und      layer    thickne

ss(um)  

Time1/2  (s1/2)  

Report  1201   Page  45    

0  

0.2  

0.4  

0.6  

0   200   400   600   800  

14hrs  30hrs  45hrs  

AISI5130, 525℃, KN 8, pre-oxide

Weight  p

ercentage  of  N

Depth  from  the  surface  (um)

Figure  B-­‐  5.  the  OES  measured  nitrogen  concentration  profiles  in  the  diffusion  zone  of  nitrided  AISI4140  pre-­‐oxided  samples  for  14  hrs,  30hrs,  and  45hrs.

Figure  B-­‐  6.  the  OES  measured  nitrogen  concentration  profiles  in  the  diffusion  zone  of  nitrided  AISI4140  as-­‐washed  samples  for  14  hrs,  30hrs,  and  45hrs.

  Figure  B-­‐  7.  the  OES  measured  nitrogen  concentration  profiles  in  the  diffusion  zone  of  nitrided  AISI5130  pre-­‐oxided  samples  for  14  hrs,  30hrs,  and  45hrs.  

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  

0   200   400   600   800   1000  

14hrs  

30hrs  

45hrs  

AISI 4140, 525 ℃, KN 8, As-wash

Wei

ght o

f per

cent

age

of N

Depth from surface (um)

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  

0   200   400   600   800   1000  

14hrs  

30hrs  

45hrs  

Depth from surface (um)

Wei

ght o

f per

cent

age

of N

AISI 4140, 525℃, KN 8, Pre-oxide

Report  1201   Page  46    

-­‐0.1  

0.1  

0.3  

0.5  

0.7  

0   300   600   900  

14hrs  30hrs  45hrs  

CAT135, 525℃, KN 8, Pre-oxide

Wei

ght o

f per

cent

age

of N

Depth from surface (um)

  Figure  B-­‐  8.  the  OES  measured  nitrogen  concentration  profiles  in  the  diffusion  zone  of  nitrided  AISI5130  as-­‐washed  samples  for  14  hrs,  30hrs,  and  45hrs.  

                      Figure  B-­‐  9.  the  OES  measured  nitrogen  concentration  profiles  in  the  diffusion  zone  of  nitrided  CAT  135  pre-­‐oxided  samples  for  14  hrs,  30hrs,  and  45hrs.  

  Figure  B-­‐  10.  the  OES  measured  nitrogen  concentration  profiles  in  the  diffusion  zone  of  nitrided  CAT  135  as-­‐washed  samples  for  14  hrs,  30hrs,  and  45hrs  

       

0  

0.2  

0.4  

0.6  

0   200   400   600   800  

14hrs  

30hrs  

45hrs  

AISI5130, 525℃, KN 8, as-wash Weight  p

ercentage  of  N

Depth  from  the  surface  (um)

-­‐0.1  

0.1  

0.3  

0.5  

0.7  

0   300   600   900  

14hrs  30hrs  45hrs  

CAT 135, 525℃, KN=8, as-wash

Wei

ght o

f per

cent

age

of N

Depth from surface (um)

Report  1201   Page  47    

0  

0.1  

0.2  

0.3  

0   100   200   300   400   500  

14hrs   30hrs  

H13,  525℃,  KN=8,  pre-­‐oxide

Wei

ght o

f per

cent

age

of N

Depth from surface (um)

  Figure  B-­‐  11.  the  OES  measured  nitrogen  concentration  profiles  in  the  diffusion  zone  of  nitrided  H13  pre-­‐oxided  samples  for  14  hrs,  30hrs,  and  45hrs.  

  Figure  B-­‐  12.  the  OES  measured  nitrogen  concentration  profiles  in  the  diffusion  zone  of  nitrided  H13  as-­‐washed  samples  for  14  hrs,  30hrs,  and  45hrs.  

0  

0.1  

0.2  

0.3  

0   100   200   300   400   500  

14hrs   30hrs  

H13,  525℃,  KN=8,  as-­‐wash

Wei

ght o

f per

cent

age

of N

Depth from surface (um)

(b)  

Report  1201   Page  48    

300  

400  

500  

600  

700  

0   500   1000   1500   2000  

14hrs  

30hrs  

45hrs  

AISI 4140, 525℃, KN 8, as-wash Microhardne

ss  (H

V)

Depth  from  surface  (um)

300  

400  

500  

600  

700  

0   500   1000   1500   2000  

14hrs  

30hrs  

45hrs  

Microhardne

ss  (H

V)

Depth  from  surface  (um)

AISI 4140, 525℃, KN 8, as-wash

300  

400  

500  

600  

700  

800  

0   500   1000   1500   2000  

14hrs  30hrs  45hrs  

AISI 5130, 525℃, KN 8, pre-oxide

Microhardne

ss  (H

V)

Depth  from  surface  (um)

300  350  400  450  500  550  600  650  

0   500   1000   1500   2000  

14hrs  30hrs  45hrs  

Har

dnes

s (H

V)

Depth from surface (um)

CAT 135, 525 ℃, KN=8, as-wash

500  600  700  800  900  

1000  1100  

0   500   1000   1500   2000  

14hrs  30hrs  45hrs  

H13, 525℃, KN=8, pre-oxide

Har

dnes

s (H

V)

Depth from surface (um)

  Figure  B-­‐  13.  The  microhardness  of  nitrided  samples,  including  pre-­‐oxided  and  as-­‐washed  AISI  4140,  AISI  5130,  CAT  135,  and  H13  for  three  different  nitriding  process  times,  14hrs,  30hrs,  and  45hrs.  

300  

400  

500  

600  

700  

800  

0   500   1000   1500   2000  

14hrs  

30hrs  

45hrs  

AISI 5130, 525℃, KN 8, as-wash

Microhardne

ss  (H

V)

Depth  from  surface  (um)

300  350  400  450  500  550  600  650  

0   500   1000   1500   2000  

14hrs  30hrs  45hrs  

Har

dnes

s (H

V)

Depth from surface (um)

CAT 135, 525 ℃, KN=8, as-wash

500  600  700  800  900  1000  1100  

0   500   1000   1500   2000  

14hrs  30hrs  45hrs  

H13, 525℃, KN=8, as-wash

Har

dnes

s (H

V)

Depth from surface (um)

Report  1201   Page  49    

Figure  B-­‐  14.  Optical  micrographs  of  AISI  4140  samples:  (a)  original;  (b-­‐1)  as-­‐wash  14hours,  (b-­‐1)  as-­‐wash  30hours,  (b-­‐3)  as-­‐wash  45hours;  (c-­‐1)  pre-­‐oxide  14hours,  (c-­‐2)  pre-­‐oxide  30hours,  (c-­‐3)  pre-­‐oxide  45hours.  

(a)  

(b-­‐1)   (b-­‐2)   (b-­‐3)  

(c-­‐1)   (c-­‐2)   (c-­‐3)  

Report  1201   Page  50    

Figure  B-­‐  15.  Optical  micrographs  of  AISI  5130  samples:  (a)  original;  (b-­‐1)  as-­‐wash  14hours,  (b-­‐1)  as-­‐wash  30hours,  (b-­‐3)  as-­‐

wash  45hours;  (c-­‐1)  pre-­‐oxide  14hours,  (c-­‐2)  pre-­‐oxide  30hours,  (c-­‐3)  pre-­‐oxide  45hours.  

(a)  

(b-­‐1)   (b-­‐2)   (b-­‐3)  

(c-­‐1)   (c-­‐2)   (c-­‐3)  

Report  1201   Page  51    

Figure  B-­‐  16.  Optical  micrographs  of  CAT  135  samples:  (a)  original;  (b-­‐1)  as-­‐wash  14hours,  (b-­‐1)  as-­‐wash  30hours,  (b-­‐3)  as-­‐wash  45hours;  (c-­‐1)  pre-­‐oxide  14hours,  (c-­‐2)  pre-­‐oxide  30hours,  (c-­‐3)  pre-­‐oxide  45hours.  

   

Figure  B-­‐  17.  Optical  micrographs  of  H13  samples:  (a)  pre-­‐oxide  14hours,  (b)  pre-­‐oxide  30hours,  (c)  pre-­‐oxide  45hours.    

(a)  

(b-­‐1)   (b-­‐1)   (b-­‐1)  

(c-­‐1)   (c-­‐2)   (c-­‐3)  

(a)   (b)   (c)