Nitration of Paracetamol

download Nitration of Paracetamol

of 20

description

Dininitroparacetamol

Transcript of Nitration of Paracetamol

  • Nitration processes of

    acetaminophen in nitrifying

    activated sludges

    Serge Chiron, Marseille University

    E.Gomez and H.Fenet, Montpellier University

  • An unexpected biotransformation pathway:

    nitration

    OH

    HO

    OH

    HO

    Nitration

    17 -ethinylestradiol Skotnicka-Pitak et al. ES&T 2009

    Cl

    Cl

    NH

    OH

    O

    Nitration

    Cl

    Cl

    NH

    OH

    O

    Diclofenac Perez et al. Anal. Chem. 2008

    O2N

    HO

    Nitration

    HO

    NO2353-nonylphenol Telscher et al. ES&T 2005

    with amonia oxidizing bacteria

    in CAS batch reactor

    In soil/sludge mixture

  • Objectives

    To investigate the nitration mechanisms of phenolic compounds in nitrifying activated sludge.

    At different scales: field-, batch- and molecular-scale experiments.

    Acetaminophen (paracetamol) as a probe compound.

  • Why paracetamol ?

    OH

    NHCOCH3

    - Readily prone to nitration

    - High occurrence in WWTPs (1-10 g/L range)

    - Nitrated derivatives can be easily synthetized

    pKa = 9.4

    logKow = 0.45

    Sw > 1g/L

  • Field studies: Targeted compounds195

    160150

    NHCOCH3

    OH

    NO2

    3-nitro-APAP

    (II)

    NHCOCH3

    OH

    Cl

    3-chloro-APAP

    (III)

    229

    212

    199

    184

    NHCOCH3

    OH

    ClO2N

    3-chloro-5-nitro-

    APAP

    (IV)

    186

    144

    109

    240

    195

    165

    150

    NHCOCH3

    OH

    NO2O2N

    3,5-dinitro-APAP

    (V)

    152

    134

    110NHCOCH3

    OH

    Acetaminophen

    (APAP)

    168

    126

    150

    108

    NHCOCH3

    OH

    OH

    3-OH-APAP

    (I)

    (+) ESP (-) ESP (-) ESP

    (+) ESP

    (+) ESP (-) ESP

    1

    2

    34

    5

    6

  • Analytical methodology

    Compound Recoveries

    (%)

    3-OH-APAP 55 ( 12)

    APAP 75 ( 8)

    3-nitro-APAP 78 ( 8)

    3-chloro-APAP 86 ( 6)

    3-chloro-5-nitro-

    APAP

    93 ( 4)

    3,5-dinitro-

    APAP

    95 ( 5)

    On-line SPE-LC-MS/MS

  • Aix-en-Provence WWTP effluent analysis2,4-D d3

    (I.S)

    3-nitro-APAP

    0.21 0.02 g/L

    3-chloro-5-nitro-APAP

    0.028 2x10-3 g/L

    APAP

    0.18 0.02 g/l

    Representative MRM chromatogram obtained in (-) ESP LC-MS/MS

    Preconcentration volume: 50 mL

    Grit removalPrimary

    clarifierStage-1 Stage-2

    Secondary

    clarifierX X

    X: sampling point

    Conventional

    Activated

    Sludge

    Nitrifying

    Activated

    Sludge

    Final

    EffluentInfluent

    Time (min)

  • Field data (24 h composite samples)

    Sampling

    month

    APAP 3-OH-

    APAP

    3-chloro-

    APAP

    3-nitro-

    APAP

    3-chloro-5-

    nitro-APAP

    Stage-2

    influent

    Oct. 2008 3.45 0.21 0.96 0.11 0.24 0.02 n.d n.d

    Nov. 2008 5.35 0.32 1.44 0.17 0.85 0.04 n.d n.d

    Dec. 2008 6.75 0.41 1.86 0.22 0.76 0.04 n.d n.d

    Stage-2

    effluent

    Oct. 2008 0.19 0.02 n.d n.d 0.18 0.02 0.03 1x10-3

    Nov. 2008 0.35 0.03 n.d n.d 0.26 0.03 0.11 5x10-3

    Dec. 2008 0.64 0.05 n.d n.d 0.32 0.03 0.09 3x10-3

  • Batch experiments

    Time (h)

    0 50 100 150 200

    Co

    nc

    en

    tra

    tio

    n (

    mg

    /L)

    0

    2

    4

    6

    8

    10

    NH4-NNO3-N

    NO2-N

    Experimental conditions:

    [MLSS] = 2.5 g/L

    pH = 7-7.5

    T = 25 C

    [O2] > 3 mg/L

    [NH4+] = 10 mg/L

    [APAP]0 = 100 g/L

    [3-chloro-APAP]0 = 100

    g/L

  • Batch 1 experiment: no nitrification inhibition

    Time (h)0 50 100 150 200

    Co

    ncen

    trati

    on

    (x10-7

    M)

    0

    2

    4

    6

    Co

    ncen

    trati

    on

    (x10-8

    M)

    0

    2

    4

    6

    8

    3-chloro-APAP

    APAP

    3-OH-APAP

    3-nitro-APAP3-chloro-5-nitro-

    APAP

    [NH4-N]0 = 10 mg/L

    [APAP]0 = 100 g/L

    [3-chloro-APAP]0 =

    100 g/L

  • Batch 2 experiment : ammonia oxygenase inhibition

    Time (h)

    0 50 100 150 200

    Co

    ncen

    trati

    on

    (x10-7

    M)

    0

    1

    2

    3

    4

    5

    6

    7

    Co

    ncen

    trati

    on

    (x10-8

    M)

    0

    2

    4

    6

    8

    10

    APAP

    3-chloro-

    APAP

    3-OH-APAP

    3-nitro-APAP and 3-chloro-5-nitro-APAP

    [Allylthiourea] = 5 mg/L

  • Reaction of APAP with HNO2

    NHCOCH3

    OH

    NO2

    2-nitro-APAP

    195

    178

    165

    148

    123

    (-ESP)-LC/MS

    [APAP] = 70 M

    [NO2-] = 0.1 mM

    pH = 5

    APAP

    Dimer

    Trimer

    Time (min)

    2-nitro-APAP

  • Proposed mechanism of 2-nitro-APAP formation

    NHCOCH3

    OH

    NCOCH3

    O

    HNO2

    pH < 5.5

    1,4 Michael addition

    NO2-

    APAP

    NHCOCH3

    OH

    NO2

    2-nitro-APAPN-Acetyl-p-benzoquinone-imine

    Matsumo et al. Chem. Pharm. Bull. 1989

    pKa (HNO2/ NO2- ) = 3.4

  • Reactivity of APAP with horseradish peroxidase

    Time (min)

    Dimer

    Trimer

    3-nitro-

    APAP

    3,5-dinitro-APAP(-ESP)-LC/MS

    [APAP] = 70 M

    [peroxidase] = 80 nM

    [NO2-] = 0.1 mM

    [H2O2] = 0.2 mM

    Phosphase buffer 100 mM / pH 7.5

  • Reactivity of APAP with peroxynitrite

    Time (min)

    3-OH-APAP

    APAP

    Dimer

    Trimer

    3-nitro-APAP(-ESP)-LC/MS

    [APAP] = 70 M

    [ONOOH] = 5 mM

    [HCO3-] = 5 mM

    [Cl-] = 5 mM

    [DOM] = 10 mg/L

    Phosphate buffer 100 mM / pH 7.5

  • Proposed mechanism of 3-nitro-APAP formation

    NCOCH3

    O.

    Polymerization

    NHCOCH3

    OH

    APAP

    High selectivity

    CO3.-

    High reactivty

    NHCOCH3

    OH

    3-nitro-APAP

    .NO2

    NO2

    ONOO- + H+ ONOOH pKa = 6.8

    .NO2 +

    .OH k = 5.3 x 10

    9 M-1s-1

    ONOO- + CO2.NO2 + CO3

    .- k = 1 x104 M-1s-1

    ONOOH

    k = 2.109 M-1s-1

  • Where is peroxynitrite coming from?

    _ First step

    NH3 + O2 + 2H+ 2e-

    Ammonia mono-oxygenase (AMO) NH2OH + H2O

    .NO (side-product)

    - Second step

    NH2OH + H2OHydroxylamine oxidoreductase

    HNO2 + 4H+ + 4e-

    - Third step

    NH4+ oxidation by ammonia oxidizing bacteria (AOB)

    .NO + O2

    .- ONOO- k = 1.9 x 1010 M-1s-1

    ONOO- + H+ ONOOH pKa = 6.8

    O2 + e- O2

    .-

  • Conclusions

    Formation of nitro-APAP derivatives with a

    environmental profile more worrisome than

    APAP.

    Nitration is probably linked to .NO generation

    by nitrifying bacteria.

    This result must be validated with other

    phenolic pollutants (i.e. bisphenol A,

    nonylphenol).

  • Nitration processes in the environment

    PhotonitrationNO3 + h + H2O OH + NO2 + OH [ 1 = 0.01]

    NO2 + h + H2O OH + NO + OH [ 2 = 0.02-0.07]

    NO2 + OH NO2 + OH [k3 = 1.0 1010 M 1 s 1]

    Thermal nitration by HNO2 (in the dark)pKa (HNO2/ NO2

    - ) = 3.4 relevant at pH< 5.5

    Bionitration by peroxidases in presence of

    NO2- and H2O2

    Bionitration by ONOOH (peroxynitrite).NO + O2

    .- ONOO- k = 1.9 x1010 M-1s-1

    ONOO- + H+ ONOOH pKa = 6.8

    ONOO- + H+.NO2 + OH

    - k = 5.3 x 109 M-1s-1

  • Expected biotransformation pathways

    NH2

    OO

    OH

    NH

    OH

    OO

    OH

    NH

    Hydrolysis

    Atenolol

    Cl

    Cl

    NH

    OH

    O

    Hydroxylation

    Cl

    Cl

    NH

    OH

    O

    HO

    Diclofenac

    Radjenovic et al. J. Chromatogr. A. 2008

    Perez et al. Anal. Chem. 2008

    NO OH

    OH

    II

    I

    HN

    O

    OH

    OH

    NH

    O

    O

    NO OH

    OH

    II

    I

    HN

    O

    OH

    OH

    NH

    O

    O

    Oxidation

    O

    O

    Iopromide Schulz et al. ES&T 2008