Nigel Seth-Smith Semtech John Hudson Semtech Randy … · John Hudson Semtech Randy Conrod Imagine...

21
Nigel Seth-Smith Semtech John Hudson Semtech Randy Conrod Imagine Communications UHD in a Hybrid SDI/IP World

Transcript of Nigel Seth-Smith Semtech John Hudson Semtech Randy … · John Hudson Semtech Randy Conrod Imagine...

Nigel Seth-Smith Semtech John Hudson Semtech Randy Conrod Imagine Communications

UHD in a Hybrid SDI/IP World

The transition to Digital HDTV is substantially complete in much of the world Focus has shifted to operational efficiency with improved workflows Multiplexed nature of emission means channels can be spun up readily – the production chain needs to match this flexibility

–  At recent Wimbledon tennis tournaments the BBC created 10 temporary streamed channels and 6 broadcast channels

HDTV

“Specialize only what needs to be special while generalizing everything else” 1. Replace specialized video tape with data files stored on servers

•  Non real-time, so no critical technical constraints •  Costly, with cost control using compression

2. Replace specialized audio and video processing equipment with software running on CPUs and GPUs

•  Audio replacement complete •  Video replacement in progress

•  real-time vs non real-time is a decider

3. Replace specialized time-critical video switching with datacom switches •  Currently good enough datacom switches are also specialized

•  Top end switches under the control of network management software

Professional Media Networks

Hybrid SDI/IP Model - Today

SMPTE ST 2022 Standards Suite –  ST 2022-1, -2, -3 define transport of low data rate compressed media

signals over IP. They effectively replace ASI. –  ST 2022-5, -6, -7 are for uncompressed SDI over IP

•  2022-6 defines the encapsulation into RTP packets •  2022-5 defines the FEC to be used if desired •  2022-7 defines the parameters for seamless switching between multiple streams •  Currently defined for payload data rates up to 3Gb/s

VSF (Video Services Forum) –  Technical Recommendation TR-01 similar to ST 2022-2, specifically for

JPEG2000 contribution over IP –  Anticipate a TR for real-time with separate media streams

Phase 3 – Real Time over IP

To get to UHD from HD: –  Double the Width x 2 –  Double the Height x 2 –  Switch from Interlace to Progressive x 2

Data rate change x 8 12 Gb/s payload for UHD 1 3840 x 2160 “4K” This exceeds the capacity of 3G-SDI and 10GbE

–  What are they doing about it?

UHDTV

SDI is a broadcast industry specific format. If the industry needs it to jump, it jumps UHD over quad-link 3G-SDI was standardized in 2014

–  SMPTE ST 425-5 UHD over 6G-SDI and 12G-SDI were standardized in February 2015

–  SMPTE ST 2081 and ST 2082 The UHD-SDI suite of standards are highly flexible

–  Translating a signal from quad 3G-SDI to 12G-SDI is easy –  Selection of an infrastructure is not limiting

•  For example, if you select 12G-SDI as an infrastructure you can easily import and export quad 3G-SDI signals

UHD over SDI

UHD images are divided into HD size sub images –  4 for UHD1, 16 for UHD2

Each sub image has timing, audio, ANC data etc. added just like HD They are then muxed as necessary for the transport

UHD Real Time Transport

UHDTV1Source Image

Sub Image 1

Sub Image 2

Sub Image 3

Sub Image 4

QUAD-LINK 3G-SDI

ST 425-5

DUAL-LINK 6G-SDI

ST 2081-11

SINGLE-LINK 12G-SDI

ST 2082-10

MAPPING GEARBOX REMAPPING

Four 3 Gb/sData Streams

One Source Image

To multi-rate SDI Infrastructure12G capable

To multi-rate SDI Infrastructure

6G capable

To multi-rate SDI Infrastructure

3G capable

Four Sub Images

IP is not just a broadcast industry standard. Our industry is dependent on the big users of ethernet technology to drive the next data rate node UHD can be transported over IP:

–  Using four 3G links, each encapsulated using ST 2022-6 •  These will not fit into a single 10GbE link •  The use of multiple links for a single image is currently not defined

–  Allocation of signals to links –  Timing synchronization and latency

–  Using ST 2022-6 techniques to encapsulate 12G-SDI into a single higher speed ethernet link

•  Not yet standardized •  Next ethernet single link data rate not decided

Real Time UHD over IP

UHD over IP using ST 2022-6 encapsulated quad 3Gb/s streams –  Potential enhancements to ST 2022 to transport dual 6G or single 12G

over IP also shown

UHD Real Time Transport

UHDTV1Source Image

Sub Image 1

Sub Image 2

Sub Image 3

Sub Image 4

QUAD-LINK 3G-SDI

ST 425-5

DUAL-LINK 6G-SDI

ST 2081-11

SINGLE-LINK 12G-SDI

ST 2082-10

MAPPING GEARBOX REMAPPING

Four 3 Gb/sData Streams

One Source Image

To SDI Infrastructure12G capable

To SDI Infrastructure6G capable

To SDI Infrastructure3G capable

To IP Infrastructure10G capable

Four Sub Images

IP CODING

ST 2022-6

ST 2022-6

ST 2022-6(+)

ST 2022-6(+)

ST 2022-6(+)

To IP Infrastructure25 / 40G capable

To IP Infrastructure10G capable

ST 2022-6

ST 2022-6

UHD Formats vs UHD-SDI and Ethernet

SystemNomenclature Horizontal  Pixels Vertical  Pixels Frames  Per  

Second  (nominal) 10-­‐bit  4:2:212-­‐bit  4:2:212-­‐bit  4:4:410-­‐bit  4:4:4:4

Port  Speed  /  Standard

4320p30/29.97 7680 4320 30

4320p25 7680 4320 25

4320p24/2398 7680 4320 24

UHDTV2  Production

ST  2083-­‐10Single-­‐link  24G

(24Gb/s)

ITU-­‐R  BT.2077  Part3

40GbE

ST  2083-­‐11Dual-­‐link  24G(48Gb/s)

ITU-­‐R  BT.2077  Part3

100GbE

ST  2083-­‐11Dual-­‐link  24G(48Gb/s)

ITU-­‐R  BT.2077  Part3

100GbE

ST  2083-­‐12Quad-­‐link  24G

(96Gb/s)

ITU-­‐R  BT.2077  Part3

400GbE

ST  2083-­‐12Quad-­‐link  24G

(96Gb/s)

ITU-­‐R  BT.2077  Part3

400GbE

ST  2083-­‐13Octa-­‐link  24G(192Gb/s)

ITU-­‐R  BT.2077  Part3

400GbE

4320p60/59.94 7680 4320 60

4320p50 7680 4320 50

4320p120/119.88 7680 4320 120

4320p100 7680 4320 100

SystemNomenclature Horizontal  Pixels Vertical  Pixels Frames  Per  

Second  (nominal)10-­‐bit4:2:2

12-­‐bit  4:2:212-­‐bit  4:4:410-­‐bit  4:4:4:4

Port  Speed  /  Standard

2160p60/59.94 3840  /  4096 2160 60ST  2082-­‐11Dual-­‐link  12G(24Gb/s)

ITU-­‐R  BT.2077  Part3

40GbE

2160p50 3840  /  4096 2160 50

2160p30/29.97 3840  /  4096 2160 30ST  2082-­‐10

Single-­‐link  12G(12Gb/s)

ITU-­‐R  BT.2077  Part3

25/40GbE

2160p25 3840  /  4096 2160 25

2160p24/2398 3840  /  4096 2160 24

UHDTV1  and  4K  D-­‐Cinema  Production

2160p48  /  47.98 4096 2160 48

2160p120/119.88 3840  /  4096 2160 120

2160p100 3840  /  4096 2160 100

2160p96  /  95.9 4096 2160 96

ST  2082-­‐11Dual-­‐link  12G(24Gb/s)

ITU-­‐R  BT.2077  Part3

40GbE

ST  2082-­‐12Quad-­‐link  12G

(48Gb/s)

ITU-­‐R  BT.2077  Part3

100GbE

ST  2081-­‐10Single-­‐link  6G

(6Gb/s)

ITU-­‐R  BT.2077  Part3

10GbE

ST  2082-­‐10Single-­‐link  12G

(12Gb/s)

ITU-­‐R  BT.2077  Part3

25/40GbE

UHD Formats vs UHD-SDI and Ethernet

SystemNomenclature Horizontal  Pixels Vertical  Pixels Frames  Per  

Second  (nominal) 10-­‐bit  4:2:212-­‐bit  4:2:212-­‐bit  4:4:410-­‐bit  4:4:4:4

Port  Speed  /  Standard

4320p30/29.97 7680 4320 30

4320p25 7680 4320 25

4320p24/2398 7680 4320 24

UHDTV2  Production

ST  2083-­‐10Single-­‐link  24G

(24Gb/s)

ITU-­‐R  BT.2077  Part3

40GbE

ST  2083-­‐11Dual-­‐link  24G(48Gb/s)

ITU-­‐R  BT.2077  Part3

100GbE

ST  2083-­‐11Dual-­‐link  24G(48Gb/s)

ITU-­‐R  BT.2077  Part3

100GbE

ST  2083-­‐12Quad-­‐link  24G

(96Gb/s)

ITU-­‐R  BT.2077  Part3

400GbE

ST  2083-­‐12Quad-­‐link  24G

(96Gb/s)

ITU-­‐R  BT.2077  Part3

400GbE

ST  2083-­‐13Octa-­‐link  24G(192Gb/s)

ITU-­‐R  BT.2077  Part3

400GbE

4320p60/59.94 7680 4320 60

4320p50 7680 4320 50

4320p120/119.88 7680 4320 120

4320p100 7680 4320 100

SystemNomenclature Horizontal  Pixels Vertical  Pixels Frames  Per  

Second  (nominal)10-­‐bit4:2:2

12-­‐bit  4:2:212-­‐bit  4:4:410-­‐bit  4:4:4:4

Port  Speed  /  Standard

2160p60/59.94 3840  /  4096 2160 60ST  2082-­‐10

Single-­‐link  12G(12Gb/s)

ITU-­‐R  BT.2077  Part3

25/40GbE

2160p50 3840  /  4096 2160 50

2160p30/29.97 3840  /  4096 2160 30ST  2082-­‐10

Single-­‐link  12G(12Gb/s)

ITU-­‐R  BT.2077  Part3

25/40GbE

2160p25 3840  /  4096 2160 25

2160p24/2398 3840  /  4096 2160 24

UHDTV1  and  4K  D-­‐Cinema  Production

2160p48  /  47.98 4096 2160 48

2160p120/119.88 3840  /  4096 2160 120

2160p100 3840  /  4096 2160 100

2160p96  /  95.9 4096 2160 96

ST  2082-­‐12Quad-­‐link  12G

(48Gb/s)

ITU-­‐R  BT.2077  Part3

100GbE

ST  2081-­‐10Single-­‐link  6G

(6Gb/s)

ITU-­‐R  BT.2077  Part3

10GbE

ST  2082-­‐11Dual-­‐link  12G(24Gb/s)

ITU-­‐R  BT.2077  Part3

40GbE

ST  2082-­‐11Dual-­‐link  12G(24Gb/s)

ITU-­‐R  BT.2077  Part3

40GbE

UHD Formats vs UHD-SDI and Ethernet

SystemNomenclature Horizontal  Pixels Vertical  Pixels Frames  Per  

Second  (nominal) 10-­‐bit  4:2:212-­‐bit  4:2:212-­‐bit  4:4:410-­‐bit  4:4:4:4

Port  Speed  /  Standard

4320p30/29.97 7680 4320 30

4320p25 7680 4320 25

4320p24/2398 7680 4320 24

UHDTV2  Production

ST  2083-­‐10Single-­‐link  24G

(24Gb/s)

ITU-­‐R  BT.2077  Part3

40GbE

ST  2083-­‐11Dual-­‐link  24G(48Gb/s)

ITU-­‐R  BT.2077  Part3

100GbE

ST  2083-­‐11Dual-­‐link  24G(48Gb/s)

ITU-­‐R  BT.2077  Part3

100GbE

ST  2083-­‐12Quad-­‐link  24G

(96Gb/s)

ITU-­‐R  BT.2077  Part3

400GbE

ST  2083-­‐12Quad-­‐link  24G

(96Gb/s)

ITU-­‐R  BT.2077  Part3

400GbE

ST  2083-­‐13Octa-­‐link  24G(192Gb/s)

ITU-­‐R  BT.2077  Part3

400GbE

4320p60/59.94 7680 4320 60

4320p50 7680 4320 50

4320p120/119.88 7680 4320 120

4320p100 7680 4320 100

SystemNomenclature Horizontal  Pixels Vertical  Pixels Frames  Per  

Second  (nominal)10-­‐bit4:2:2

12-­‐bit  4:2:212-­‐bit  4:4:410-­‐bit  4:4:4:4

Port  Speed  /  Standard

2160p60/59.94 3840  /  4096 2160 60ST  2082-­‐10

Single-­‐link  12G(12Gb/s)

ITU-­‐R  BT.2077  Part3

25/40GbE

2160p50 3840  /  4096 2160 50

2160p30/29.97 3840  /  4096 2160 30ST  2082-­‐10

Single-­‐link  12G(12Gb/s)

ITU-­‐R  BT.2077  Part3

25/40GbE

2160p25 3840  /  4096 2160 25

2160p24/2398 3840  /  4096 2160 24

UHDTV1  and  4K  D-­‐Cinema  Production

2160p48  /  47.98 4096 2160 48

2160p120/119.88 3840  /  4096 2160 120

2160p100 3840  /  4096 2160 100

2160p96  /  95.9 4096 2160 96

ST  2081-­‐10Single-­‐link  6G

(6Gb/s)

ITU-­‐R  BT.2077  Part3

10GbE

ST  2082-­‐11Dual-­‐link  12G(24Gb/s)

ITU-­‐R  BT.2077  Part3

40GbE

ST  2082-­‐11Dual-­‐link  12G(24Gb/s)

ITU-­‐R  BT.2077  Part3

40GbE

ST  2082-­‐12Quad-­‐link  12G

(48Gb/s)

ITU-­‐R  BT.2077  Part3

100GbE

10G is dominant high-end technology

–  40G is 4 x 10G –  100G is 10 x 10G

First significant use of 4 x 25G for 100G in a data center was this year Moves to separate out single 25G as a node

–  Suitable for broadcast –  Uses SFP28 (SFP+) –  Still early days

Ethernet Roadmap

Source: Ethernet Alliance

As an alternative to increasing the channel data rate the signal can be compressed. The SMPTE UHDTV Ecosystem Study Group considered compression and had this to say in its 2014 report:

–  “Modest levels of compression in the range 2:1 to 20:1 (depending on image format and interface bandwidth requirements) could be employed to provide sufficient bandwidth reduction to accommodate the transport of UHDTV production image formats…”

–  “Latency of encoding/decoding of the compressed stream would be a significant issue

for live production. A codec with a minimal latency that could provide the required compression with appropriate computational complexity would be required.”

Mezzanine Compression

It is critical that any mezzanine compression allows many generations of codec without harming the signals ability to be compressed for emission to the home Up to now the industry has always managed without compression for time-critical services

–  Any latency will eventually end up with a frame of delay Two candidate compression techniques are proposed within SMPTE RDD 34 and SMPTE RDD 35 – others are possible

–  RDD 34: Low Latency Video Codec within an IP Network Environment –  RDD 35: IntoPIX lightweight Codec used in IP Networked or SDI Infrastructures

NOTE: The candidates are not interoperable

Compression

SDI over IP is a good initial solution (SMPTE ST 2022-6) –  Easy interfacing –  Guaranteed lip-sync

But separate media streams in IP would have advantages –  Separate processing paths for Video, Audio and Metadata –  Less wasted bits – particularly for 24 Hz and 50 Hz based standards –  Video compression could be used to “fine tune” bandwidth requirements

Synchronization is critical

Alternative IP transports

SVIP group “Uncompressed Video over IP without SDI Encapsulation” –  Part of VSF investigating this subject

AES 67 Audio over IP

–  Defines separate audio transport

RDD 34 Compressed Video over IP –  IP transport and control/management is proprietary

RDD 37 Uncompressed Video, audio and metadata over IP

–  Separate streams for the different media. Proprietary use of TS (Transport Streams) over IP

RDD 35 Compressed Video over SDI or IP –  SDI encapsulation using ST 2022-6 or RTP Transport over IP

Alternative IP transports

“Specialize only what needs to be special while generalizing everything else” Lots of choices

–  All SDI, All IP, Hybrid; what speed? Lots of issues

–  Is compression really OK? –  Live switching –  Synchronization –  Latency

UHD –  Bandwidth >10Gb/s

Don’t delay –  Whatever the choice – don’t get paralysis by analysis

Live Infrastructure

Time critical switching in IP networks is still a niche application A hybrid approach where time critical switching uses SDI and non-real time uses IP is a well established model Techniques are gaining traction for professional media networks to handle real-time HD over IP

–  Possibility to move to all IP if the trade-offs work out

UHD presents a significant bandwidth challenge. The choices are: 1.  Use the new UHD-SDI in your hybrid network, including quad 3G for compatibility 2.  Move to a new ethernet data rate ahead of the large ethernet users 3.  Adopt compression at every interface

Summary

For UHD, a Hybrid SDI/IP network is the right choice until the next node of ethernet becomes commodity and the remaining real-time issues are resolved

Conclusion