New insights into symptoms and neurocircuit function of anorexia nervosa

download New insights into symptoms and neurocircuit function of anorexia nervosa

of 12

Transcript of New insights into symptoms and neurocircuit function of anorexia nervosa

  • 8/14/2019 New insights into symptoms and neurocircuit function of anorexia nervosa

    1/12

    Anrxia nra (AN), a dirdr f nknwn ati-gy, i charactrizd by rtrictd ating and a rnt- prit f thinn (BOX 1). AN i piby tht hgn f a pychiatric dirdr. Thri a narrw rang f ag f nt (ary adcnc),trtypic prntatin f ypt and cr, andrati gndr pcificity1. Indiida with AN ha ang-yntnic ritanc t ating and a pwrf pr-it f wight , yt ar paradxicay prccpidwith fd and ating rita t th pint f bin.Indiida ha a ditrtd bdy iag and, n whnaciatd, tnd t th a fat, xpr dniaf bing ndrwight and cpiy r-xrci.Thy ar ftn ritant t tratnt and ack inightrgarding th rin f th dica cnqncf th dirdr.

    Tw typ f ating-ratd bhair ar n in AN

    (BOX 1). Rtricting-typ anrxic wight pry byditing witht bing ating r prging. Bing-ating/prging-typ anrxic a rtrict thir fd intakt wight, bt ha a pridic diinhibitin frtraint and ngag in bing ating and/r prging ad indiida with biia nra (BN). Cnidringthat tranitin btwn yndr ccr in any, itha bn argd that AN and BN har rik andiabiity factr2,3. Hwr, thi Riw fc nrtricting-typ AN.

    Athgh AN i charactrizd a an ating dirdr,it rain nknwn whthr thr i a priary di-trbanc f apptiti pathway, r whthr ditrbd

    apptit i cndary t thr phnna, ch aanxity r bina prccpatin with wight gain.Thr ha bn cnidrab intrt in th r f thhypthaa in fd and wight rgatin in AN,athgh it rain ncrtain whthr hypthaaicatratin ar a ca r a cnqnc f th yp-t. Thi Riw fc n anthr prpcti. Thati, athgh th hypthaa i an iprtant rgatrf fd intak and bdy wight, thr i iitd idncthat hypthaaic pptid ha a r in th atigyf AN. Hwr, tdi in ania and hathy hanar ading t a nw ndrtanding f rapping n-ra pathway that cntribt t th datin f rwardand tin in rpn t apptiti tii. Ginth prbab ink btwn fding bhair and affc-ti prc in AN, th nra btrat ndryingth prc ar ptntia candidat rgin fr ndr-

    tanding th pathphyigy f thi in. Thi Riwintgrat finding fr pharacgica, bhairaand nriaging tdi that cntribt t th ndr-tanding f apptit rgatin, rward, nrtranittrand nrcircit that ar aciatd with AN.

    State and trait

    Whn anrihd and aciatd, indiida withAN ha widprad and r atratin f brain andpriphra-rgan fnctin; hwr, it i ncar whthrth chang ar th ca r th cnqnc f a-ntritin and wight . Thrfr, t ndrtand thatigy and cr f in f AN, it i f t diid

    *Eating Disorder Treatment &

    Research Program,

    Department of Psychiatry,

    University of California, San

    Diego, La Jolla Village

    Professional Center, 8950

    Villa La Jolla Drive, Suite

    C-207, La Jolla, California

    92037, USA.Psychiatry & Neurobiology

    and Anatomy, University of

    Rochester Medical Center,601 Elmwood Avenue,

    Rochester, New York 14642,

    USA.Laboratory of Biological

    Dynamics and Theoretical

    Medicine, Department

    of Psychiatry, University of

    California, San Diego, 8939

    Villa La Jolla Dr. Suite 200,

    La Jolla, California 92037-

    0985, USA.

    Correspondence to W.H.K.

    e-mail: [email protected]

    doi:10.1038/nrn2682

    Published online 15 July

    New insights into symptomsand neurocircuit functionof anorexia nervosaWalter H. Kaye*, Julie L. Fudge and Martin Paulus

    Abstract | Individuals with anorexia nervosa have a relentless preoccupation with dieting and

    weight loss that results in severe emaciation and sometimes death. It is controversial whether

    such symptoms are secondary to psychosocial influences, are a consequence of obsessionsand anxiety or reflect a primary disturbance of brain appetitive circuits. New brain imaging

    technology provides insights into ventral and dorsal neural circuit dysfunction perhaps

    related to altered serotonin and dopamine metabolism that contributes to the puzzling

    symptoms found in people with eating disorders. For example, altered insula activity could

    explain interoceptive dysfunction, and altered striatal activity might shed light on altered

    reward modulation in people with anorexia nervosa.

    R E V I E W S

    NATuRe RevIeWs |NeuroscieNce volume 10 | AuGusT 2009 |573

    2009 Macmillan Publishers Limited. All rights reserved

    mailto:[email protected]:[email protected]
  • 8/14/2019 New insights into symptoms and neurocircuit function of anorexia nervosa

    2/12

    Interoception

    The sensing and integrating of

    afferent proprioceptive and

    visceroceptive information,

    resulting in feeling the inner

    state of the body, which is

    important for allocating

    attention, evaluating context

    and planning actions.

    th nrbigica atratin int tw catgri. Firt,thr t b prrbid, gnticay-dtrind traitatratin that cntribt t a nrabiity t dpAN. scnd, thr ar tat atratin cndary tantritin that ight tain th in, and pr-hap accrat th t-f-cntr pira that rt inr aciatin and th hight rtaity rat f anypychiatric dirdr.

    Trait-related alterations. larg-ca cnity-badtwin tdi ha hwn that 50% t 80% f th ari-anc in AN and BN can b accntd fr by gnticfactr35. Th gntic nrabiity t ating dirdright b xprd a a diff phntyp f cntinbhaira trait, a ggtd by idnc f ignificanthritabiity f dirdrd ating attitd, wight prc-cpatin, diatifactin with wight and hap, ditaryrtraint, bing ating and f-indcd iting68, andf ignificant faiiaity f bthrhd fr f atingdirdr2,9.

    Cnidrab idnc ha ggtd that chid-

    hd tprant and prnaity trait can ad ta prdipitin t dp AN dring adcnc.Rcnt tdi1012 dcrib ngati tinaity, haraidanc, prfctini, inhibitin, dri fr thinn,atrd interoceptive awarn and bi-cpiprnaity trait a chidhd prdiping factrthat prcd th nt f an ating dirdr (FIG. 1)and that prit aftr rcry ( bw). stdi ggtthat th trait ar hritab, can b prnt in naffctdfaiy br and ar indpndnt f bdy wight13,priding frthr idnc that thy cnfr iabiity tth dpnt f AN.

    State-related alterations. staratin and aciatinha prfnd ffct n th fnctining f th brainand thr rgan yt. Thy ca nrchicaditrbanc that cd xaggrat prrbid trait14,adding ypt that aintain r accrat th di-a prc (FIG. 1). Fr xap, bjct with AN haa rdcd brain 15, an atrd tabi infrnta, cingat, tpra and parita rgin16, and argrin t pr-pbrta gnada fnctin17. Th fact

    that ch ditrbanc tnd t nraiz aftr wightrtratin ggt that thy ar a cnqnc rathrthan a ca f AN.

    It i iky that any f th taratin-drin nd-crin and tabic chang that rt fr AN arcpnatry and attpt t cnr nrgy r ti-at hngr and fding18. Fr xap, bjct with ANha atrd cncntratin19 f nrpptid Y (NPY),ptin, crtictrpin-raing hrn (CRH), ch-cytkinin, bta-ndrphin and pancratic pypptid.It i iprtant t nt that ch atratinar iky tca atratin in d, cgniti fnctin, ipcntr and atnic and hrna yt20, whichindicat that thy ight cntribt t th bhairaypt aciatd with th i tat. Fr xap,intracrbrntricar CRH adinitratin in xpri-nta ania prdc any f th phyigicaand bhaira chang aciatd with AN, incd-ing hypthaaic hypgnadi, atrd tinaity,dcrad xa actiity, hypractiity and dcradfding bhair21. Thrfr, it can b argd that

    cndary chang in pptid cncntratin cantain AN bhair (FIGS 1,2) by driing a dir frr diting and wight . mrr, antritin-aciatd atratin xaggrat tina dyrga-tin, cnitnt with th any indiida with ANthat t Dsm-Iv (Diagntic and statitica manaf mnta Dirdr, frth ditin) critria1 fr ajrdprin, bi cpi dirdr (oCD) rthr anxity dirdr22,23.

    Do symptoms in individuals with AN reflect trait orstate?Th difficty in ditingihing chang that ard t trait fr th that ar ratd t tat in td-i f bjct with AN ha bn a ajr cnfnd inth rarch f thi dirdr. Prpcti, ngitdinatdi ar diffict gin th yng ag f ptntiabjct, th rarity f th dirdr and th any yarf fw-p rqird. An atrnati tratgy i t tdyindiida wh ha rcrd fr AN, th aidingth cnfnding infnc f antritin and wight n bigica yt. Thr i prnty n agrd-pn dfinitin f rcry fr AN, bt r rarchdfin it a haing a tab and hathy bdy wight frnth r yar, with tab ntritin, rati abncf ditary abnraiti and, in fa,nra n-tratin. Athgh th prc f rcry fr ANi pry ndrtd and, in t ca, prtractd,

    apprxiaty 50% t 70% f affctd indiida wintay attain cpt r drat rtin fth in, athgh thi ight nt ccr nti thirary t id 202426. stdi ha dcribd tpra-nt and charactr trait that ti prit aftr ng-trrcry fr AN, ch a ngati tinaity, haraidanc, prfctini, dir fr thinn and idditary prccpatin. It i pib that ch pritntypt ar car cad by chrnic antritin.Hwr, th fact that ch bhair24,27,28 ar iiart th dcribd fr chidrn wh wi dp AN1012arg that thy rfct ndrying trait that cntribtt th pathgni f thi dirdr.

    Box 1 | DSM-IV, diagnostic criteria for anorexia nervosa1

    Refusaltomaintainbodyweightatoraboveaminimallynormalweightforageand

    height(forexample,weightlossleadingtomaintenanceofbodyweightlessthan85%ofthatexpected;orfailuretomakeexpectedweightgainduringperiodofgrowth,

    leadingtobodyweightlessthan85%ofthatexpected.)

    Intensefearofgainingweightorbecomingfat,eventhoughunderweight.

    Disturbanceinthewayinwhichonesbodyweightorshapeisexperienced,undue

    influenceofbodyweightorshapeonself-evaluation,ordenialoftheseriousnessof

    thecurrentlowbodyweight.

    Inpostmenarchealfemales,amenorrhea(thatis,theabsenceofatleastthree

    consecutivemenstrualcycles).

    Therearetwotypesofanorexianervosa:1.Restrictingtype,inwhichthepersonhas

    notregularlyengagedinbinge-eatingorpurgingbehaviour;2.Binge-eating/purging

    type,inwhichthepersonhasregularlyengagedinbinge-eatingorpurgingbehaviour

    (thatis,self-inducedvomitingorthemisuseoflaxatives,diureticsorenemas).

    R E V I E W S

    574 | AuGusT 2009 | volume 10 www.nat.m/w/n

    2009 Macmillan Publishers Limited. All rights reserved

  • 8/14/2019 New insights into symptoms and neurocircuit function of anorexia nervosa

    3/12

    Traits

    Negative emotionPerfectionismDrive for thinnessIncreased interoceptive awarenessObsessive-compulsive personality

    Puberty

    Brain developmentHormonesStressCultural factors

    Dieting

    Weight loss

    Neurobiologicalchanges

    Denial, rigidity,anxiety, depression,obsessionality

    Chronic illness(3050%)

    Recovery(5070%)

    Childhood

    Adolescence

    Adulthood

    Neurobiology and behaviour

    Cn crbid bhair typica f bth rcrdand i AN indiida ar ftn xprd in cncrt.Th incd inhibitin, anxity, dprin and b-inaity, and pzzing ypt ch a bdy iagditrtin, prfctini, and anhdnia. Th bha-ir cd b ncdd in ibic and cgniti circitknwn t dat and intgrat nrna prcthat ar ratd t apptit, tinaity and cgniticntr. Tw nrcircit that ha bn dcribdbad n iaging, nrphyigica and in td-i29,30 ight b f particar ranc t ndrtand-

    ing bhair in AN. A ntra (ibic) nrcircitthat incd th aygdaa, ina, ntra triatand ntra rgin f th antrir cingat crtx(ACC) and th rbitfrnta crtx (oFC) t biprtant fr idntifying th tina ignificancf tii and fr gnrating an affcti rpn t thtii29,30. A dra (cgniti) nrcircit i thghtt dat cti attntin, panning and ffrtfrgatin f affcti tat, and incd th hippca-p, dra rgin f th ACC, dratra prfrntacrtx (DlPFC), parita crtx and thr rgin29,30.Indd, arir brain iaging tdi ha hwn thatbjct wh ha rcrd fr AN ha atrd

    actiity in frnta, antrir cingat and paritargin3133 sra intigatr ha prpd thatdyrgatin f th tw circit cntribt t rapychiatric dirdr incding ajr dprin, anxi-ty dirdr and oCD. It i pib that abrrant fnc-tin f th circit ca atrd tin rgatin rbinaity bt that th car bai f th dy-fnctin diffr btwn dirdr30. Indd, th nr-bigica ditrbanc in pp with ating dirdray diffr fr th fnd in pp with dprin,anxity r oCD. Fr xap, th binding ptntia fth rtnin (5-HT) rcptr 1A (5-HT

    1A) i dcrad

    in bjct with dprin34, a w a in pp withcia phbia35 and panic dirdr36, whrait tnd tb incrad in pp with ating dirdr3740.

    Thi Riw fc n th finding drid frra iaging tchngi. stdi ing pitrniin tgraphy (PeT) brain iaging and ratdtchngi ha ad 5-HT and dpain (DA)nrtranittr yt in bjct with AN and inth wh ha rcrd.scnd, rcnt fnctinamRI (fmRI) tdi ha bgn t hd ight n atrdactiity in intrcnnctd brain rgin f th indi-

    ida. Tgthr th tdi prid nw inightint nrbigica ditrbanc that charactriz thidady dirdr.

    Serotonin function in AN. Th 5-HT yt ha bnintniy tdid in pp with AN a cnidrabidnc ggt that thi nrtranittr ytcd pay a part in ypt ch a nhancd ati-ty41, ip cntr42,43 and d44,45. Indd, thr ich idnc f abnra fnctina actiity f th5-HT yt in bjct with AN46,47(FIG. 2). Fr xap,in ndrwight and anrihd indiida ffr-ing fr AN th crbrpina fid (CsF) ha rdcdant f 5-hydrxyindactic acid (5-HIAA) which i th ajr brain tabit f 5-HT and ithght t rfct xtracar 5-HT cncntratin48.By cntrat, 5-HT tabit wr atd in thCsF f bjct wh had rcrd fr AN.

    It i iprtant t nt that th 5-HT yt in14 r r rcptr, and intract withany thrnrtranittr and c. ony a fw f thcpnnt can crrnty b ard in vivo inhan. sti, iaging tdi f 5-HT fnctina acti-ity ar f; athgh th cpxity f 5-HT circitcannt b fy cidatd in han, ch iaging td-

    i can charactriz ptntia tat and trait diffrncbtwn indiida with AN and hathy cntr, bd t d ratinhip f 5-HT actiity t bhairand prid nw inight n ptntiay r ffctitratnt targt. In fact, brain iaging tdi cnit-nty hw that, whn cpard with hathy bjct,indiida with r haing rcrd fr ating di-rdr ha atd and diinihd binding ptntiafr ptynaptic 5-HT

    1Arcptr and5-HT

    2Arcptr,

    rpctiy3740,4951. stdi f indiida with r ha-ing rcrd fr AN tnd t prdc iiar find-ing, pprting th ntin that thr ar trait-ratdatratin f 5-HT fnctin in AN.

    Figure 1 | T tm an nmngy anxa na. Childhood

    personality and temperament traits, which contribute to a vulnerability for developing

    anorexia nervosa (AN), become intensified during adolescence as a consequence of the

    effects of multiple factors, such as puberty and gonadal steroids, development, stress

    and culture. Individuals with AN find that dieting reduces, and eating enhances

    dysphoric mood. But with chronic dieting and weight loss, there are neurobiological

    changes which increase denial, rigidity and obsessions, as well as depression and anxiety,

    so that individuals often enter a downward spiral. Although 50% or more of individuals

    with AN recover by their early to mid20s, a significant proportion of subjects develop a

    chronic illness or die.

    R E V I E W S

    NATuRe RevIeWs |NeuroscieNce volume 10 | AuGusT 2009 |575

    2009 Macmillan Publishers Limited. All rights reserved

    http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3350&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3350&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3356&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3356&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3356&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3356&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3350&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
  • 8/14/2019 New insights into symptoms and neurocircuit function of anorexia nervosa

    4/12

    Dieting

    Dysphoric mood

    CRH-endorphin

    Dysphoric mood

    Weight loss

    5 10 15 20 25 30 35Novelty seeking

    [11C]WAY100635BP

    orbitalcortex

    10 14 18 22 26 30

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    [18F]altamserinBP

    orbitofrontalcorte

    x

    0

    11

    10

    9

    8

    7

    6

    5

    4

    3

    5 10 15 20 2 5 30

    Harm avoidance

    [11C]WAY100635BP

    mesialtemporalcortex

    +

    +

    +

    +

    +

    5-HT1A receptor

    5HT2A receptor

    Normal

    AN trait

    5-HT overdrive

    Dysphoric mood Error detection Inhibition

    5-HT production 5HT1A levels

    5-HT 5-HT

    1A

    , 5-HT2A

    bindingForced

    eating

    Harm avoidance

    Continuedstarvation

    a

    b

    1

    2

    3

    4

    5

    6

    7

    Restrictive eating

    Figure 2 | T tnn na ntn n anxa na. It is well known that people with anorexia nervosa

    (AN) enter a vicious cycle, whereby malnutrition and weight loss drive the desire for further restricted eating and emaciation.

    Evidence suggests that, compared with healthy individuals (a), individuals who are vulnerable to developing an eating

    disorder might have a trait for increased extracellular serotonin (5HT) concentrations 68 and an imbalance in postsynaptic

    5HT1A

    and 5HT2A

    receptor activity3740,4951 (b), which together might contribute to increased satiety and an anxious,

    harmavoidant temperament. Gonadal steroid changes during menarche or stress related to adolescent individuationissues might further alter activity of the 5HT system and so exacerbate this temperament, resulting in a chronic dysphoric

    state. It is important to note that foodmood relationships in AN are very different from those in healthy controls. That is,

    palatable foods in healthy subjects are associated with pleasure, and starvation is aversive. By contrast, palatable foods

    seem to be anxiogenic in AN, and starvation reduces dysphoric mood. In subjects with AN, starvation and weight loss result

    in reduced levels of 5HIAA in the cerebrospinal fluid (CSF)74 (and inferentially reduced extracellular 5HT concentrations)

    but exaggerated 5HT1A

    receptor binding in limbic and cognitive cortical regions39. Starvationinduced reductions of

    extracelluar 5HT levels might result in reduced stimulation of postsynaptic 5HT1A

    and 5HT2A

    receptors, and thus

    decreased dysphoric symptoms. However, when individuals with AN are forced to eat, the resulting increase in extracellular

    5HT levels, and thus stimulation of postsynaptic 5HT1A

    and 5HT2A

    receptors, increases dysphoric mood, which makes

    eating and weight gain aversive. Alternatively, if subjects with AN continue to starve, anorexigenic signals related to

    neuropeptide disturbances (for example, increased corticotropinreleasing hormone (CRH)21 and reduced endorphin166)might drive further food restriction and changes in behaviour and cognition, which thus promotes AN symptoms.

    Scatterplots reproduced, with permission, from REF. 39 (2007) American Medical Association and REF. 40 (2005) Elsevier.

    R E V I E W S

    576 | AuGusT 2009 | volume 10 www.nat.m/w/n

    2009 Macmillan Publishers Limited. All rights reserved

  • 8/14/2019 New insights into symptoms and neurocircuit function of anorexia nervosa

    5/12

    mrr, iaging tdi prid inight int hwditrbd 5-HT fnctin i ratd t dyphric din AN52,53. That i, PeT iaging tdi hw trikingand cnitnt piti crratin btwn th bind-ing ptntia f bth 5-HT

    1Aand 5-HT

    2Arcptr

    and har aidanc a tifactd tpranttrait54 that cntain nt f anxity, inhibitin, andinfxibiity. stdi in ania and hathy hanpprt th pibiity that 5-HT

    1Aand 5-HT

    2Arcptr

    actiity ha a r in anxity5558. It i iprtant t ntthat thr i high c-caizatin (80%) f th 5-HT

    2A

    and 5-HT1A

    ptynaptic rcptr in th rdnt frntacrtx59 and thr crtica rgin60. Thrgh intrn-rn, thy diat, rpctiy, dirct hyprparizingand dparizing actin f 5-HT n prfrnta n-rn that prjct t crtica and bcrtica ara61,62.Intractin btwn 5-HT

    1Aand 5-HT

    2Arcptr

    in th dia prfrnta crtx (PFC) and ratdrgin t dat anxity, attntina fnctin-ing63, ipiity and cpi prratin62, andxpratin f nw nirnnt64. It rain t b

    dtrind whthr th ibaanc btwn nhancd5-HT

    1Aand diinihd 5-HT

    2Arcptr binding ptn-

    tia cntribt t ch ypt in indiida withating dirdr.

    Implications for satiety and the benefit of starvation. Iti thght that, in indiida with AN, ditary rtraintrdc anxity, whra ating tiat dyphricd53,65,66. I atrd 5-HT fnctin th ink btwnrtrictd fding bhair and anxity in bjctffring fr AN? It i w-knwn that carbhydratintak incra xtracar 5-HT cncntratin inth brain thrgh cpx tabic ffct n tryp-tphan, th ain acid prcrr f 5-HT53,67. W pr-p that, bth prrbidy and aftr rcry frAN, a nra ant f fd ingtin i aciatdwith xaggratd xtracar brain 5-HT crtin68.Thi i cnitnt with incrad CsF 5-HIAA inpp wh ha rcrd fr AN68. Incrad 5-HTcncntratin inhibit apptit, prhap thrgh acti-

    atin f5-HT2C

    rcptr69; hwr, 5-HT2C

    rcp-tr binding ha nt bn ard by iaging tdiin indiida with AN. Incrad 5-HT

    1Abinding

    ptntia i pitiy aciatd with har aidancin bjct wh ha rcrd fr AN40 (FIG. 2), andnhancd anxity and har aidanc ar trait thatar prnt prrbidy and prit aftr rcry fr

    AN. It i thrfr pib that carbhydrat-indcdincra in xtracar 5-HT dri anxity andhar aidanc thrgh tiatin f 5-HT

    1Arcp-

    tr (FIG. 2), ffring a ptntia xpanatin fr fd-ing-ratd dyphric d in AN. By cntrat, whnindiida with AN tar, xtracar 5-HT cn-cntratin ight diinih, rting in a brif rpitfr dyphric d. stdi in ania and hathyhan hw that bth a rtrictd dit (which ignifi-canty wr paa tryptphan) and xprintayrdcd tryptphan dptin dcra 5-HT ynthiin th brain67,70,71. Indd, anrihd and aciatdindiida with AN ha rdcd paa tryptphan

    aaiabiity72,73 and rdcd CsF 5-HIAA 74.Iprtanty, xprinta anipatin that rdcth f tryptphan in th brain dcra anxityin bth i and rcrd AN bjct53. Hwr, tar-

    atin in AN t b aciatd with a cpna-try incra in ptynaptic 5-HT

    1Arcptr binding

    ptntia39. mrr, 5-HT2A

    rcptr binding i pi-tiy ratd t har aidanc in bjct ffringfr AN. Thrfr, whn indiida with AN arfrcd t at (FIG. 2), it i iky that thy ha a ratiincra in xtracar 5-HT cncntratin in thbrain, ading t an xaggratin f dyphric d.Th, indiida with AN ight pr taratinin an attpt t aid th dyphric cnqnc fating and cnqnty pira t f cntr.

    Dopamine and reward processing in AN. Pp withAN ftn xrci cpiy, ar anhdnic andactic, and find itt in if that i rwarding aidfr th prit f wight 1. sch tprantprit, in a r dt fr, aftr rcry24,75,

    indicating that th charactritic ar trait rathrthan bing tat ratd.DA dyfnctin, particaryin triata circit, ight cntribt t atrd rwardand affct, dciin-aking and xcti cntr, aw a trtypic tr nt and dcradfd ingtin in bjct with AN76. eidnc thatth DA yt i ind in AN incd rdcdCsF f DA tabit in bth i indiida andth haing rcrd fr AN77, fnctina DA D2rcptr (DRD2) gn pyrphi in bjct withAN78 and ipaird ia dicriinatin arning 79,which i thght t rfct DA-ignaing fnctin, inindiida with AN. A PeT tdy fnd that bjctwh rcrd fr AN had incrad D2/D3 rcp-tr (DRD3) binding in th ntra triat76, a rginthat dat rpn t rward tii80,81. Thicd indicat incrad D2/D3 dniti, dcradxtracar DA, r bth, in indiida wh rcrdfr AN. In additin, D2/D3 rcptr binding in thdra cadatdra ptan crratd pitiywith har aidanc in bjct wh had rcrdfr AN76.

    T dtrin whthr indiida wh ha rc-rd fr AN ha fndantay diffrnt rpnt rward cpard with hathy cntr, an nt-ratd fmRI tdy xaind th bd xygn -dpndnt (BolD) igna whi participant prfrd

    a ip chic and fdback tak82. Th tak waadaptd fr a w-charactrizd ging-gaprtc83 that i knwn t actiat th ntra triatand bgna ACC, with cntr participant hwingdiffrntia actiity in th ara in rpn t pitiand ngati ntary fdback. In th bjct whhad rcrd fr AN actiity in th bgna ACCand it ntra triata targt wa iiar dring pi-ti and ngati fdback82, ggting that indiid-a with AN ha a circit-bad abnraity dringthi ip tak and ight ha difficty dicriinat-ing btwn piti and ngati fdback. Aniatdi hw that DA ha a r in th prcing f

    R E V I E W S

    NATuRe RevIeWs |NeuroscieNce volume 10 | AuGusT 2009 |577

    2009 Macmillan Publishers Limited. All rights reserved

    http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3358&ordinalpos=2&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3358&ordinalpos=2&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1813&ordinalpos=9&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1814&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1814&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1813&ordinalpos=9&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3358&ordinalpos=2&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
  • 8/14/2019 New insights into symptoms and neurocircuit function of anorexia nervosa

    6/12

    Hedonic

    A sensation related to or

    characterized by pleasure

    tiatina apct t tii in th ntra triat:DA dat th infnc f ibic inpt n tri-ata actiity30,80,81 and i thght t thrby diat thbinding fhedonic aatin f tii t bjct ract (wanting rpn)84. Th ntra triata rpnin bjct wh had rcrd fr AN82 ight rfct afair t apprpriaty bind, dat r dicriinatrpn t aint tii. Th data pprt th p-ibiity that indiida wh ha rcrd fr ANight ha an ipaird abiity t idntify th tinaignificanc f tii30, which cd b iprtant inndrtanding why it i diffict t tiat th tngag in tratnt r apprciat th cnqnc fthir bhair85.

    mrr, th wn wh had rcrd fr ANhad xaggratd actiatin in th cadatdra tria-t and in th cgniti crtica rgin that prjct tthi ara, pcificay th DlPFC and th parita cr-tx82. Th cadat nc i actiatd by tak in whichthr i bth a prcid cnnctin btwn actinand tc, and ncrtainty abt whthr th

    actin wi ad t th dird tc86. many f thwn indicatd an attpt at tratgic (a ppdt hdnic) rpn t ipr th rati f win t, which prhap cntribtd t th gratr actia-tin f thi rgin. In th abnc f apprpriat rwardprcing thrgh ntra-triata/DA path, indiidawh ha rcrd fr AN ight fc n a dtaidtratgy rathr than th ra itatin87. Fr anthrprpcti, cntr wn apprpriaty id in thnt. That i, thy raizd thy had t ak a gand thn d n t th nxt tak. By cntrat, bjctwith AN tnd t xaggratdy and biy wrryabt th cnqnc f thir bhair kingfr r whn thr ar nn and ar ry cn-crnd abt aking itak. A rcnt fmRI iagingtdy, ing a t hifting tak, hwd ratiy iiarfinding in indiida with AN88, nay hypactia-tin in th ntra antrir cingat-triat-thaaicp, with prdinant actiatin f frntparitantwrk. Tgthr th data ggt that indiid-a with AN ight b ab t prciy dataffcti rpn t idiaty aint tii btha incrad actiity in nrcircit cncrnd withpanning and cnqnc.

    Serotonindopamine interactions. D intractinbtwn 5-HT and DA yt cntribt t ypt

    in AN? It ha bn pcatd that 5-HT i th crciabtrat f an ari tiatina yt whichight pp a DA-ratd apptiti yt89,90. Indd,tdi f ania hw that 5-HT

    2Crcptr tnicay

    inhibit DA nrn91,92. A PeT tdy in bjct thathad rcrd fr ating dirdr fnd piti cr-ratin btwn 5-HT tranprtr and D2/D3 rcp-tr binding in th ntra triat and dra cadat(u. F. Bair and W.H.K.,npbihd bratin).Fr anthr prpcti, tdi ggt that 5-HTha a r in actin chic by cntring th ticaf dayd rward thrgh diffrntia ffct n n-tra and dra triata circit93,94. Thi i cnitnt with

    idnc that rdcd and incrad 5-HT actiity araciatd with ipi, aggri bhair andbhaira inhibitin, rpctiy43,93,95. Cnidrdtgthr, indiida with AN ight ha a trait twardan ibaanc btwn 5-HT and DA pathway, whichcd ha a r in an atrd intractin btwn

    ntra and dra nrcircit.Dpit cnidrab idnc f 5-HT abnr-

    aiti, indiida with AN hw itt rpn, intr f iprnt f d r rdctin f crating dirdr ypt, whn tratd with ctirtnin r-ptak inhibitr (ssRI)96. Th fficacyf ssRI i dpndnt n nrna ra f 5-HT 97,and 5-HT ra in trn rt in dnitizatin fth 5-HT

    1Arcptr98. It i pib that atd acti-

    ity f 5-HT1A

    rcptr in th raph nc f bjctwith AN (FIG. 2) rt in rdcd 5-HT nrna firing,and th dcrad xtracar 5-HT 74, cnit-nt with th rdcd CsF 5-HIAA fnd in thindiida. Thrfr, it i pib that ssRI ar ntffcti in indiida with AN bca ssRI wd

    nt ha ch ffct if ynaptic 5-HT ar dptdby antritin. Priinary data rai th pibiitythat anzapin (Zyprxa; ei liy) which ha ffctn bth DA and 5-HT rcptr and piby thratypica antipychtic ight b f fr incraingwight gain and rdcing anxity and binaityin AN99.

    Neurocircuitry of appetite

    Hw can indiida with AN rtrict thir fd intakry day, aintain a w wight fr any yar andti di f taratin, whn t pp trg-g t a fw pnd? Apptit i a cpx incn-ti tiatina dri and i thght t dpnd nintrratd pychbigica factr incding fdrwarding prprti, an indiida htaticnd and th cgniti abiity t far atrnati (tating) bhair100102. Apptit i cary ditrbd inbjct with AN: thy diik high-fat fd103,104, dnt find cr ari whn atiatd and fai t ratfd a piti whn hngry105,106. Th rpntnd nt t chang fwing wight rgain and, antd ab, thr i idnc that ditary rtraintrdc anxity and that ating rt in dyphricd in indiida with AN53,65,66. Th cpx fdcnatry ypt f ating dirdr ar ra-tiy niq and ha a trtypic and rnt

    xprin, pprting th pibiity that thy rfct abrrant fnctin f nra circit ind inrgating ating bhair.

    Athgh a wt-tat prcptin tak d nt ttth cpxity f fd chic107, it can b d in brainiaging tdi t actiat brain ara ind in app-tit rgatin.swt-tat prcptin (FIG. 3) i priph-ray diatd by tng rcptr108 thrgh a nrayt cniting f crania nr, th nc tractitarii, and thaaic ntrptrir dia nc,t th priary gtatry crtx, which in han c-pri th frnta prc and th antrir ina109113.Th antrir ina and aciatd gtatry crtx

    R E V I E W S

    578 | AuGusT 2009 | volume 10 www.nat.m/w/n

    2009 Macmillan Publishers Limited. All rights reserved

  • 8/14/2019 New insights into symptoms and neurocircuit function of anorexia nervosa

    7/12

    Planning futureconsequences

    Reward

    Workingmemory

    Bodyspace

    Incentive learning(flexible)

    Conflictmonitoring

    Interoceptiveawareness

    Affectiverelevance

    DLPFCParietalcortex

    ACC

    Spinal cord

    Chemoreceptorsof the tongue

    Sensory input

    C

    P

    OFC

    Amygdala

    Thalamictaste centre

    NTSMedulla

    Brainstem

    Gustatorycortex

    Anteriorinsula

    Visceroception

    A sensation originating from

    the internal organs.

    Proprioception

    A sensation originating from

    the joints and the

    subcutaneous tissues.

    rpnd t th tat and phyica prprti f fd, anday a rpnd t it rwarding prprti114117.

    othr rgin cpriing th ntra nrcircitntind ab ar intrcnnctd with th ina(FIG. 3), incding th aygdaa, th ntra ACC andth oFC. Th ACC i inkd t hypthaaic and brain-t pathway that diat atnic and icra cn-tr118,119. Th prgna ACC i ipicatd in cnfict

    nitring and dtct ing nprdictd tc tgid bqnt bhair80,120122. Th oFC i a-ciatd with fxib rpn t changing tii: itrpnd t th anticipatd ngati (r piti) af xtrna tii and fxiby atr rpn bad nchanging incnti a f a ti123126. Th ant-rir ina, ACC and oFC a innrat a brad rginf th rtra ntra triat, in which bhairarprtir ar cptd bad n th inpt. Thintrcnnctd rgin f th ntra nrcircit payan iprtant part in dtrining htatic app-titi nd (FIG. 3). Indd, brain iaging tdi hacnitnty hwn that fd dpriatin (cpardt haing bn fd) in hathy indiida actiat thina and th oFC117,127130. Crtica rgin incdd inth dra nrcircit ch a th DlPFC, th pari-ta crtx and th ptrir inar rgin diatcgniti fnctin ch a panning and qncing.Th rgin nd inpt t r dratra part fth triat, bt a ight intrfac and rap with

    ntra triata ara131,132. Tgthr, th inpt ar

    thght t dat th triata actiity that ndrith apprach r aidanc f fd.

    Adinitring cr r watr t bjct whha rcrd fr AN rt in a rdcd BolDrpn in th ina, ACC and triat a cpardwith cntr bjct133. In hathy cntr, f-ratingf paantn f th gar tat crratd pitiywith th BolD rpn in th ina, th ACC and th

    ntra and dra ptan133. Cnitnt with th idathat th abiity t prci a paatab tat i fndan-tay atrd in AN, indiida wh had rcrd frAN faid t hw any ratinhip btwn actiity inth rgin and f-rating f th paantn f thcr tat. Th finding ar pprtd by thrbrain iaging tdi in which th bratin f fdpictr by ndrwight bjct with AN d t atrdactiity in th ina, th oFC, th ia tpra andparita crtx and th ACC134138. mrr, th atrdactiity in th prgna ACC and dia prfrn-ta crtx pritd aftr rcry33. Atrd actiityin th antrir ina, it visceroceptive and propriocep-tive affrnt, and it ffrnt t th oFC, th ACC,th aygdaa and th ntra triat ight ndri thatratin fnd in bjct with AN in inking nry-hdnic xprinc t th tiatina cpnntf rward139.

    A central role for the anterior insula?Th antririna i crciay ind in intrcpti prc-ing140142. Intrcptin incd a rang f natinbynd tat, incding th prcptin f pain, t-pratr, itch, tick, na tch, c tnin, airhngr, tach pH and inttina tnin. Intgratinf th intrna fing prid an intgratd n fth phyigica cnditin f th ntir bdy143 and icrcia fr th intantiatin f th f bca it pr-

    id th ink btwn cgniti and affcti prcand th crrnt bdy tat140142,144,145.

    It i thght that atrd intrcpti awarn ightb a prcipitating and rinfrcing factr in AN10,146148.

    Figure 3 | cta-tata atway wt a n tat. Chemoreceptors on the

    tongue detect a sweet taste. The signal is then transmitted through brainstem and

    thalamic taste centres to the primary gustatory cortex, which lies adjacent to and is

    densely interconnected with the anterior insula. The anterior insula is an integral part of

    a ventral (limbic) neurocircuit through its connections with the amygdala, the anterior

    cingulate cortex (ACC) and the orbitofrontal cortex (OFC). Afferents from the corticalstructures involved in the ventral neurocircuit (anterior insula and interconnected limbic

    cortices) are directed to the ventral striatum, whereas cortical structures involved in

    cognitive strategies (forming a dorsal neurocircuit) send inputs to the dorsolateral

    striatum. Therefore, the sensory aspects of taste are primarily an insula phenomenon,

    whereas higher cortical areas modulate pleasure, motivation and cognitive aspects of

    taste. These aspects are then integrated, resulting in an eat or do not eat decision.

    Coding the awareness of pleasant sensation from the taste experience via the anterior

    insula might be altered in subjects with anorexia nervosa, tipping the balance of striatal

    processes away from normal, automatic reward responses mediated by the ventral

    striatum and towards a more strategic approach mediated by the dorsal striatum. The

    figure links each cortical structure with arrows, indicating that all cortical structures

    project to striatum in a topographic manner.DLPFC, dorsolateral prefrontal cortex; NTS,

    nucleus tractus solitarii.

    R E V I E W S

    NATuRe RevIeWs |NeuroscieNce volume 10 | AuGusT 2009 |579

    2009 Macmillan Publishers Limited. All rights reserved

  • 8/14/2019 New insights into symptoms and neurocircuit function of anorexia nervosa

    8/12

    C

    P

    C

    P

    Foodpresentation

    Foodpresentation

    Interoceptivesignals

    Interoceptivesignals

    Amygdala

    DLPFC

    Anterior insulaParietalcortex

    Posteriorinsula

    Positivevaluation

    Negativevaluation

    Top-downmodulatoryinfluence

    Approach foodEat food

    Dont approach foodAvoid food in the future

    Short-term Long-term Short-term Long-term

    Consequences Consequences

    Satisfyinghunger

    Stayingthin

    Healthy Anorexia nervosa Th r f th antrir ina in intgrating intrcp-ti infratin and th atrd ina actiity that habn fnd in indiida with AN ( arir) pprtth ida that thy ight ffr fr a fndantay andphyigicay atrd n f f149. Indd, any f thypt f AN, ch a ditrtd bdy iag, ack frcgnitin f th ypt f antritin (fr xap,a fair t apprpriaty rpnd t hngr) and diin-ihd tiatin t chang, cd b ratd t ditrbdintrcpti awarn. In particar, thr ight b aqaitati chang in th way that pcific intrcptiinfratin i prcd. Fr xap, indiida withAN ight xprinc an ari icra natin whnxpd t fd r fd-ratd tii. Thi xprincight fndantay atr th rward-ratd prprtif fd and rt in a bia tward ngati tinaity.mrr, th ari intrcpti xprinc aciatdwith fd ight triggr tp-dwn datry prcaid at anticipating and iniizing th xpr tfd tii (har aidanc), which ad t incradanticipatry prcing aid t rdc th xpr t

    th ariy ad ti. Thrfr, indiida withAN ight xhibit attnatd rpn t th idiatrward-ratd igna f fd (rdcing hngr) bt hwincrad rpn t th ng-tr rward-igna a-ciatd with th ga f wight rdctin r thr idacgniti cntrct. Finay, th antrir ina ha bnipicatd in rik prdictin rrr150, ggting thatipairnt in ina fnctin ight ad t anaattitd in a cntxt f ncrtainty and th cntribtt har aidanc.

    Thrfr, gin th prinnt atratin in inaactiity in indiida with AN, n ight pcat thatthy xprinc an atrd nitiity t r intgratin fintrna bdy igna. spcificay, th prjctin f thantrir ina t th antrir cingat ay datth dgr t which cgniti cntr i ngagd t atrbhair tward pr dciin aking that d ntbr th htatic wight baanc bt intadrt in prgri wight .

    A neurocircuitry of appetite regulation in AN. Badn th ab prc and aciatd brain ara, wcan bgin t ab a nra yt prcingd f AN (FIG. 4). spcificay, tp-dwn (crtica)apificatin f anticipatry igna ratd t fdr tii aciatd with atity igna (intgratdwithin th ina)cd triggr bhaira tratgifr aiding xpr t fd. Th anticipatry int-rcpti tii ar aciatd with an ari bdytat that rb apct f th phyigica tatf th bdy aftr fding. Thi abnra rpn tfd anticipatin ight fnctin a a arning ig-na t frthr incra aidanc bhair, that i,t ngag in actiiti aid at iniizing xpr tfd. spcificay, tii that prdict fd intak, cha dipay f fd r fd , cd gnrat abdy prdictin rrr, rting fr cparing thcrrnt bdy tat with th anticipatd bdy tat (frxap, fing atiatd) aftr fding. Thi prdictinrrr wd gnrat a tiatina r apprach igna

    Figure 4 | ima baan btwn ntt an wa ng. We

    propose that subjects with anorexia nervosa (AN) experience a strong conflict between

    the biological need for food and the acquired aversive association with food. In healthy

    individuals, the presentation of foodrelated stimuli is associated with ascending

    interoceptive afferents that converge on the anterior insula, which processes

    staterelated positive or negative valuation of these signals. In individuals with AN this

    interoceptive information is biased towards the negative or aversive properties of food.

    As a consequence, topdown, cortical circuits (dotted box) are engaged to resolve theconflict between the need for food and the aversive interoceptive evaluation,

    processed in the anterior insula. Thus, topdown modulatory circuits are overengaged

    in people with AN, which emerges on a symptomatic level as high anticipatory

    reactivity, behavioural rigidity and excessive worry about future events. On a biological

    level, these dysfunctions are implemented in a neural system consisting of the

    ascending interoceptive pathways, the insular cortex, the amygdala and the anterior

    cingulate cortex (not shown). This information converges in the striatum, which receives

    inputs from the anterior insula (for the integrated bottomup information) and the

    prefrontal cortex (for the topdown modulation relating to cognitive control circuits).

    The excessive topdown cognitive control in subjects with AN in response to

    interoceptive stimuli alters the striatal responses, shifting the behavioural event horizon

    towards satisfying longterm goals (avoiding food, getting thin) rather than shortterm

    goals (eating food).

    R E V I E W S

    580 | AuGusT 2009 | volume 10 www.nat.m/w/n

    2009 Macmillan Publishers Limited. All rights reserved

  • 8/14/2019 New insights into symptoms and neurocircuit function of anorexia nervosa

    9/12

    in hathy indiida bt ight ad t an aidancigna in AN.

    Th dra and ntra nrcircit dcribd ariright b ind in th prc: Th ACC, n fth prjctin ara f th inar crtx, i iprtantin prcing th cnfict btwn aaiab bhairand tc, fr xap, ha I at thi cak and at-ify y hngr nw r ha I nt at thi cak and taythin?151. Th oFC, anthr prjctin ara f th ant-rir inar crtx152, can dynaicay adjt rward

    aatin bad n th crrnt bdy tat f th indi-ida153. Th DPlFC can witch btwn cptingbhaira prgra bad n th rrr igna itrci fr th ACC154.

    Athgh w d nt prp hr that AN i an ina-pcific dirdr, w pcat that an atrd inarpn t fd-ratd tii i an iprtant cp-nnt f thi dirdr. If thi i indd th ca, n wdnd t dtrin whthr ina-pcific intrntin,ch a nitizatin r habitatin f intrcpti ni-tiity thrgh ra-ti nitring f th inar crtx

    actiatin, ight hp. mrr, cptatina dch a th that ha bn prpd fr addictin155ight prid a thrtica apprach t bttr ndrtandth cpx pathgy f thi dirdr.

    Within th frawrk f th ntra and dranrcircit dcribd arir, thr ar a ptn-tia xpanatin fr thr cr cpnnt f cinicadyfnctin in AN. Ngati affct ch a anxityand har aidanc and anhdnia cd b ratdt difficti in accraty cding r intgrating pi-ti and ngati tin within ntra triata cir-cit.Thr i cnidrab rap btwn circitthat dat tinaity and th rwarding apctf fd cnptin156. Fd i parab in hathyindiida bt fding i anxignic in indiida withAN, and taratin ight r t rdc dyphricd tat. Th nrbigic chani rpni-b fr ch bhair rain t b cidatd, bt it ipib that an nhancnt f 5-HT-ratd aritiatin, and/r diinihd DA-ratd apptitidri89,90 cntribt t th bhair.

    Finay, it i pib that prfctini and b-ina prnaity trait ar ratd t xaggratd cgni-ti cntr by th DlPFC. Th DlPFC ight dpxci inhibitry actiity t dapn infratinprcing thrgh rward pathway157. Atrnatiy,incrad actiatin f cgniti pathway ight c-

    pnat fr priary dficit in ibic fnctin: whnthr ar dficit in tina rgatin, rdpnd-nc pn cgniti r i a ranab tratgy ff-anagnt158. Th inabiity t fw n gt(r hart) that i, ak ffcti f intrcp-ti infratin i ipaird in indiida with AN.mrr, thr i a car hift away fr aing i-diat tc t th aciatd with dayd r ng-tr tc. Thi bhair i at cptyppit t that brd in indiida with ach rbtanc ab159 and i cnitnt with th bra-tin that indiida with AN ha w crbidity withdrg and ach dirdr160.

    Conclusions and future directions

    W prp that atic, atnic and icra infr-atin i abrranty prcd in pp wh ar -nrab t dping AN. Brain chang aciatdwith pbrty ight frthr chang th prc.Fr xap, rbita and dratra prfrnta crtxrgin dp graty dring and aftr pbrty161, andincrad actiity f th crtica ara ight b a caf th xci wrry, prfctini and tratgizingin pp with AN. It i pib that in bjct withAN, hypractiity f cgniti ntwrk in th dranrcircit (fr xap, DlPFC t dra triat)dirct tiatd actin whn th abiity f th ntratriata pathway t dirct r atatic r intititiatd rpn i ipaird. Anthr pibiity ithat in indiida with AN (thrwi adqat) ibic-triata infratin prcing in th ntra circit i ttrngy inhibitd by cnrging inpt fr cgnitidain ch a th DlPFC and th parita crtx.

    It i pib that ch trait-ratd ditrbanc arratd t atrd nain nrna datin that

    prdat th nt f AN and cntribt t prrbidtprant and prnaity ypt. spcificay,ditrbanc in th 5-HT yt cntribt t a nr-abiity fr rtrictd ating, bhaira inhibitin anda bia tward anxity and rrr prdictin, whraditrbanc in th DA yt cntribt t an atrdrpn t rward. sra factr ight act n th

    nrabiiti t ca th nt f AN in adcnc.Firt, pbrty-ratd fa gnada trid r ag-ratd chang ight xacrbat 5-HT and DA ytdyrgatin. scnd, tr and/r ctra and ci-ta prr ight cntribt by incraing anxiand bina tprant. Indiida find thatrtricting fd intak i pwrfy rinfrcing bcait prid a tprary rpit fr dyphric d.Pp with AN ntr a ici cyc which cdaccnt fr th chrnicity f thi dirdr bcaating xaggrat, whra fd rfa rdc, ananxi d.

    Th tprant and prnaity trait that ightcrat a nrabiity t dp AN ight a ha apiti apct. Th trait incd attntin t dtai,cncrn abt cnqnc and a dri t accpihand ccd. It i r cinica xprinc that anyindiida wh rcr fr AN d w in if. It itpting t pcat that th abiity t pan ahad, cn-tr ip, and aid har ight ha had highy

    adapti a fr anctr wh id in nirnntwhr fd ppi wr cntraind by ng pridf cd wathr (fr xap, wrry in Jy abt fdppi in Janary). Adcnc i a ti f tranitin:indiida a th crity f thir h nirnntand t arn t baanc idiat and ng-trnd and ga t achi indpndnc158. Fr chindiida, arning t fxiby intract with and atrcpx and ixd ctra and cita ag andprr and cp with tr, ight b diffict andrwhing, which cd xacrbat pib ndr-ying trait f har aidanc and a dir t achiprfctin.

    R E V I E W S

    NATuRe RevIeWs |NeuroscieNce volume 10 | AuGusT 2009 |581

    2009 Macmillan Publishers Limited. All rights reserved

  • 8/14/2019 New insights into symptoms and neurocircuit function of anorexia nervosa

    10/12

    AN ha th hight rtaity rat f any pychi-atric dirdr. It i xpni t trat and w ha

    inadqat thrapi. It i crcia t ndrtand thnrbigic cntribtin and thir intractinwith th nirnnt, in rdr t dp r ffc-ti thrapi. Thrfr, ftr iaging tdi hdfc n charactrizing nra circit, thir fnctin

    and thir ratinhip t bhair in indiida withAN. Gntic tdi ight hd ight n th cpx

    intractin f c within th nra circit.Finay, prpcti and ngitdina tdi hdfc n idntifying th nrbigic trait andxtrna factr (BOX 2) that crat a cptibiity frdping AN.

    Box 2 | From vulnerability to illness the complex aetiology of anorexia nervosa

    Anorexianervosa(AN)isthoughttobeadisorderofcomplexaetiology,inwhichgenetic,biological,psychologicaland

    socioculturalfactors,andinteractionsbetweenthem,seemtocontributesignificantlytosusceptibility10,11,158,162.Because

    nosinglefactorhasbeenshowntobeeithernecessaryorsufficientforcausinganorexianervosa,amultifactorial

    thresholdmodelmightbemostappropriate(forareviewseeREF. 158).Typically,ANbeginswitharestrictivedietand

    weightlossduringteenageyears,whichprogressestoanout-of-controlspiral(FIG. 1).Therefore,individualsmightcross

    athresholdinwhichapremorbidtemperament,interactingwithstressand/orpsychosocialfactors,progressestoan

    illnesswithimpairedinsightandapowerful,obsessivepreoccupationwithdietingandweightloss.Adolescenceisatimeofprofoundbiological,psychologicalandsocioculturalchange,anditdemandsaconsiderabledegreeofflexibilityto

    successfullymanagethetransitionintoadulthood.Psychologically,changemightchallengetheperfectionism,harm

    avoidanceandrigidityofthoseatriskofANandthusfuelanunderlyingvulnerability.Thebiologicalchangesof

    adolescenceorpubertymightalsoincreasetheriskofonsetofeatingdisorders.Thispossibilityissupportedbytwin

    studies163whichimpliedthatpubertymighthavearoleinactivatingthegeneticpredispositionforeatingdisorder

    symptoms.Moreover,thebiologicalchangesassociatedwithadolescencedifferbetweenmalesandfemales,which

    couldexplainthesexualdimorphismofAN.Forexample,menarcheisassociated158witharapidchangeinbody

    compositionandneuropeptidesmodulatingmetabolism.Littleisknownaboutwhethertheriseinoestrogenlevels

    associatedwithpubertyinfemalesiscontributorytoAN,butitcouldaffectneuromodulatorysystemssuchas

    serotonin164orneuropeptides165thataffectfeeding,emotionalityandotherbehaviours.

    1. American Psychiatric Association. Diagnostic and

    Statistical Manual of Mental Disorders 4th edn

    (American Psychiatric Association, Washington, DC

    1994).

    2. Lilenfeld, L. R. et al. A controlled family study of

    anorexia nervosa and bulimia nervosa: psychiatric

    disorders in first-degree relatives and effects of proband

    comorbidity.Arch.Gen.Psychiatry55, 603610

    (1998).

    3. Walters, E. E. & Kendler, K. S. Anorexia nervosa andanorexic-like syndromes in a population-based female

    twin sample.Am. J. Psychiatry152, 6471 (1995).

    4. Berrettini, W. Genetics of psychiatric disease.Annu.

    Rev.Med.51, 465479 (2000).

    5. Bulik, C. et al. Prevalence, heritability and prospective

    risk factors for anorexia nervosa.Arch. Gen.

    Psychiatry63, 305312 (2006).

    6. Wade, T., Martin, N. G. & Tiggemann, M. Genetic and

    environmental risk factors for the weight and shape

    concerns characteristic of bulimia nervosa. Psychol.

    Med.28, 761771 (1998).

    7. Rutherford, J., McGuffin, P., Katz, R. J. & Murray, R. M.

    Genetic influences on eating attitudes in a normal

    female twin population. Psychol.Med.23, 425436.

    8. Bulik, C., Slof-Opt Landt M, van Furth, E. & Sullivan, P.

    The genetics of anorexia nervosa.Ann.Rev.Nutr.27,

    263275 (2007).

    9. Strober, M., Freeman, R., Lampert, C., Diamond, J. &

    Kaye, W. Controlled family study of anorexia nervosa

    and bulimia nervosa: evidence of shared liability andtransmission of partial syndromes.Am.J.Psychiatry

    157, 393401.

    10. Lilenfeld, L., Wonderlich, S., Riso, L. P., Crosby, R. &

    Mitchell, J. Eating disorders and personality: a

    methodological and empirical review. Clin.Psychol.Rev.26, 299320 (2006).

    This paper, which reviews the relationship between

    personality and eating disorders, shows that negative

    emotionality, perfectionism, drive for thinness, poor

    interoceptive awareness, ineffectiveness and obses-

    sive-compulsive personality traits are probable

    predisposing factors for AN and BN.

    11. Stice, E. Risk and maintenance factors for eating

    pathology: a meta-analytic review. Psychopharm. Bull.

    128, 825848 (2002).

    12. Anderluh, M. B., Tchanturia, K., Rabe-Hesketh, S. &

    Treasure, J. Childhood obsessive-compulsive

    personalitiy traits in adult women with eating

    disorders: defining a broader eating disorder

    phenotype.Am.J.Psychiatry. 160, 242247 (2003).

    One of the first studies to find that childhood traits

    reflecting obsessive-compulsive personality seem

    to be important risk factors for the development of

    eating disorders. Such traits may represent

    markers of a broader phenotype for a specific

    subgroup of patients with AN.

    13. Bulik, C. et al. Genetic epidemiology, endophenotypes,

    and eating disorder classification. Int. J. Eat. Disord.40, S52S60 (2007).

    14. Pollice, C., Kaye, W. H., Greeno, C. G. & Weltzin, T. E.

    Relationship of depression, anxiety, and obsessionality

    to state of illness in anorexia nervosa. Int.J.Eat.

    Disord.21, 367376 (1997).

    15. Katzman, D. K. et al. Cerebral gray matter and white

    matter volume deficits in adolescent girls with

    anorexia nervosa.J.Pediat.129, 794803 (1996).

    16. Kaye, W., Wagner, A., Frank, G., U. F. Review of brain

    imaging in anorexia and bulimia nervosa inAnnual

    Review of Eating Disorders, Part 2 (eds Wonderlich,

    S., Mitchell, J., De Zwann, M. & Steiger, H.) 113130

    (Radcliffe Publishing Ltd, Abingdon UK, 2006).

    17. Boyar, R. K. et al. Anorexia nervosa. Immaturity of the

    24-hour luteinizing hormone secretory pattern.N. Engl. J. Med.291, 861865 (1974).

    18. Schwartz, M. W., Woods, S. C., Porte, D. Jr, Seeley,

    R. J. & Baskin, D. G. Central nervous system control of

    food intake. Nature404, 661671 (2000).

    19. Inui, A. Eating behavior in anorexia nervosaanexcess of both orexigenic and anorexigenic signalling?

    Mol.Psychiatry. 6, 620624 (2001).

    20. Jimerson, D., Wolfe, B. Psychobiology of eating

    disorders inAnnual Review of Eating Disorders, Part 2

    (eds Wonderlich, S., Mitchell, J., De Zwann, M. &

    Steiger, H.) 115 (Radcliffe Publishing Ltd, Abingdon

    UK, 2006).

    21. Kaye, W. H. et al. Elevated cerebrospinal fluid levels of

    immunoreactive corticotropin-releasing hormone in

    anorexia nervosa: relation to state of nutrition,

    adrenal function, and intensity of depression.J.Clin.

    Endocrinol.Metab.64, 203208 (1987).

    22. Godart, N. et al. Comorbidity studies of eating

    disorders and mood disorders. Critical review of the

    literature.J. Affect. Disord.97, 3749 (2007).

    23. Kaye, W. et al. Comorbidity of anxiety disorders with

    anorexia and bulimia nervosa.Am.J.Psychiatry161,

    22152221 (2004).

    24. Wagner, A. et al. Personality traits after recovery from

    eating disorders: do subtypes differ? Int.J.Eat.

    Disord.39, 276284 (2006).

    25. Steinhausen, H. C. The outcome of anorexia nervosa

    in the 20th century.Am. J. Psychiatry159,

    12841293 (2002).

    26. Strober, M., Freeman, R. & Morrell, W. The long-term

    course of severe anorexia nervosa in adolescents:

    survival analysis of recovery, relapse, and outcome

    predictors over 1015 years in a prospective study.Int.J.Eat. Disord.22, 339360 (1997).

    27. Casper, R. C. Personality features of women with good

    outcome from restricting anorexia nervosa.

    Psychosom. Med.52,156170 (1990).

    28. Srinivasagam, N. M. et al. Persistent perfectionism,

    symmetry, and exactness after long-term recovery

    from anorexia nervosa.Am.J.Psychiatry 152,

    16301634 (1995).

    29. Phillips, M., Drevets, W. R. & Rauch, S. L. Neurobiology

    of emotion perception II: implications for major

    psychiatric disorders Biol.Psych.54, 515528 (2003).

    30. Phillips, M., Drevets, W. R., Rauch S. L. & Lane, R.

    Neurobiology of emotion perception I: The neural

    basis of normal emotion perception Biol.Psych.54,

    504514 (2003).

    References 29 and 30 provide an outstanding

    synthesis of neural processes underlying emotional

    perception, as well as how distinct patterns of

    structural and functional abnormalities in neural

    systems important for emotion processing areassociated with specific symptoms of schizophrenia

    and bipolar and major depressive disorder.

    31. Gordon, I., Lask, B., Bryant-Waugh, R., Christie, D. &

    Timimi, S. Childhood-onset anorexia nervosa: towards

    identifying a biological substrate. Int.J. Eat.Disord.

    22, 159165 (1997).

    32. Rastam, M. et al. Regional cerebral blood flow in

    weight-restored anorexia nervosa: a preliminary

    study. Dev.Med.Child.Neurol.43, 239242 (2001).

    33. Uher, R. et al. Recovery and chronicity in anorexia

    nervosa: brain activity associated with differential

    outcomes. Biol.Psychiatry54, 934942 (2003).

    One of the first neuroimaging studies to identify

    neural correlates of food stimuli that underlie trait

    and state characteristics of AN.

    34. Drevets, W. R. et al. Serotonin-1A receptor imaging in

    recurrent depression: replication and literature review.

    Nucl.Med.Biol.34, 865877 (2007).

    R E V I E W S

    582 | AuGusT 2009 | volume 10 www.nat.m/w/n

    2009 Macmillan Publishers Limited. All rights reserved

  • 8/14/2019 New insights into symptoms and neurocircuit function of anorexia nervosa

    11/12

    35. Lanzenberger, R. et al. Reduced serotonin-1A receptor

    binding in social anxiety disorder. Biol.Psychiatry61,

    10811089 (2007).

    36. Neumeister, A. et al. Reduced serotinin type 1A

    receptor

    binding in panic disorder.J.Neurosci.24, 589591

    (2004).

    37. Tiihonen, J. et al. Brain serotonin 1A receptor binding in

    bulimia nervosa. Biol.Psychiatry55, 871873 (2004).

    38. Galusca, B. et al. Organic background of restrictive-

    type anorexia nervosa suggested by increased

    serotonin1A

    receptor binding in right frontotemporal

    cortex of both lean and recovered patients: [

    18

    F]MPPFPET scan study. Biol.Psychiatry64, 10091013 (2008).

    39. Bailer, U. F. et al. Exaggerated 5-HT1A

    but normal

    5-HT2A

    receptor activity in individuals ill with anorexia

    nervosa. Biol.Psychiatry61, 10901099 (2007).

    40. Bailer, U. F. et al. Altered brain serotonin 5-HT1A

    receptor binding after recovery from anorexia nervosa

    measured by positron emission tomography and

    [Carbonyl11C]WAY-100635.Arch.Gen.Psychiatry62,

    10321041 (2005).

    41. Simansky, K. J. Serotonergic control of the

    organization of feeding and satiety. Behav.BrainRes.

    73, 3742 (1996).

    42. Soubrie, P. Reconciling the role of central serotonin

    neurons in human and animal behavior. Beh.Brain

    Sci.9, 319364 (1986).

    43. Fairbanks, L., Melega, W., Jorgensen, M., Kaplan, J. &

    McGuire, M. Social impulsivity inversely associated

    with CSF 5-HIAA and fluoxetine exposure in vermet

    monkeys. Neuropsychopharmacology24, 370378

    (2001).

    44. Lesch, K., Merschdorf, U. Impulsivity, aggression, and

    serotonin: a molecular psychobiological perspective.

    Behav.Sci.Law185,581604 (2000).

    45. Mann, J. J. Role of the serotonergic system in the

    pathogenesis of major depression and suicidal behavior.

    Neuropsychopharmacology21, S99S105 (1999).

    46. Brewerton, T. D., Brandt, H. A., Lessem, M. D.,

    Murphy, D. L., Jimerson, D. C. Serotonin in eating

    disorders in Serotonin in Major Psychiatric Disorders

    (Progress in Psychiatry). (eds Coccaro, E. F. & Murphy,

    D. L.) 155184 (American Psychiatric Press,

    Washington DC, 1990) .

    47. Kaye, W. H., Frank, G., Bailer, U. F. & Henry, S.

    Neurobiology of anorexia nervosa: clinical implications

    of alterations of the function of serotonin and other

    neuronal systems. Int.J.Eat. Disord.37, S15S19

    (2005).

    48. Stanley, M., Traskman-Bendz, L. & Dorovini-Zis, K.

    Correlations between aminergic metabolites

    simultaneously obtained from human CSF and brain.

    LifeSci.37, 12791286 (1985).49. Frank, G. K. et al. Reduced 5-HT2A receptor binding

    after recovery from anorexia nervosa. Biol.Psychiatry

    52, 896906 (2002).

    50. Bailer, U. F. et al. Altered 5-HT2A

    receptor binding after

    recovery from bulimia-type anorexia nervosa:

    relationships to harm avoidance and drive for thinness.

    Neuropsychopharmacology 29, 11431155 (2004).

    51. Audenaert, K. et al. Decreased 5-HT2a

    receptor

    binding in patients with anorexia nervosa.J.Nucl.

    Med.44, 163169 (2003).

    52. Frank, G. K. et al. Altered response to meta-

    chlorophenylpiperazine in anorexia nervosa: support

    for a persistent alteration of serotonin activity after

    short-term weight restoration. Int.J.Eat. Disord.30,

    5768 (2001).

    53. Kaye, W. H. et al. Anxiolytic effects of acute

    tryptophan depletion in anorexia nervosa. Int.J.Eat.

    Disord.33, 257267 (2003).

    54. Cloninger, C. R., Przybeck, T. R., Svrakic, D. M.,

    Wetzel, R. D. in The temperament and characterinventory (TCI): a guide to its development and use .

    (Center for Psychobiology of Personality, Washington

    University, St Louis, Missouri, USA, 1994).

    55. File, S. E., Kenny, P. J. & Cheeta, S. The role of the

    dorsal hippocampal serotonergic and cholinergic

    systems in the modulation of anxiety. Pharmacol.

    Biochem.Behav.66, 6572 (2000).

    56. Tauscher, J. et al. Inverse relationship between

    serotonin 5-HT1A

    receptor binding and anxiety: a [11C]

    WAY-100635 PET investigation in healthy volunteers.

    Am.J.Psychiatry158,13261328 (2001).

    57. Weisstaub, N. et al. Cortical 5-HT2A receptor signaling

    modulates anxiety-like behaviors in mice. Science

    313, 536540 (2006).

    58. Moresco, F. M. et al.In vivo serotonin 5HT2A

    receptor

    binding and personality traits in healthy subjects: A

    positron emission tomography study. NeuroImage17,

    14701478 (2002).

    59. Amargos-Bosch, M. et al. Co-expression and in vivo

    interaction of serotonin1A

    and serotonin2A

    receptors in

    pyramidal neurons of prefrontal cortex. Cereb. Cortex

    14, 281299 (2004).

    60. Varnas, K., Halldin, C. & Hall, H. Autoradiographic

    distribution of serotonin transporters and receptor

    subtypes in human brain. Hum.Brain Mapp. 22,

    246260 (2004).

    61. Santana, N., Bortolozzi, A., Serrats, J., Mengod, G. &

    Artigas, F. Expression of serotoinin1A

    and serotonin2A

    receptor in pyramidal and GABAergic neurons of the

    rat prefrontal cortex. Cereb. Cortex. 14, 11001109(2004).

    62. Carli, M., Baviera, M., Invernizzi, R. & Balducci, C.

    Dissociable contribution of 5-HT1A and 5-HT2A

    receptors in the medial prefrontal cortex to different

    aspects of executive control such as impulsivity and

    compulsive perseveration in rats

    Neuropsychopharmacology31, 757767 (2006).

    63. Winstanley, C. A. et al. Intra-prefrontal 8-OH-DPAT

    and M100907 improve visuospatial attention and

    decrease impulsivity on the five-choice serial reaction

    time task in rats. Psypchopharmacology(Berl.)167,

    304314 (2003).

    64. Krebs-Thomson, K. & Geyer, M. A. Evidence for a

    functional interaction between 5-HT1A

    and 5-HT2A

    receptors in rats. Psychopharmacology(Berl.)140,

    6974 (1998).

    65. Strober, M. Family-genetic perspectives on anorexia

    nervosa and bulimia nervosa. in Eating Disorders and

    Obesity - A Comprehensive Handbook (eds Brownell,

    K. & Fairburn, C.) 212218 (The Guilford Press, New

    York,1995).

    66. Vitousek, K. & Manke, F. Personality variables and

    disorders in anorexia nervosa and bulimia nervosa.

    J. Abnorm.Psychol.103,137147 (1994).

    67. Fernstrom, J. D. & Wurtman, R. J. Brain serotonin

    content: physiological regulation by plasma neutral

    amino acids. Science178, 414416 (1972).

    68. Kaye, W. H., Gwirtsman, H. E., George, D. T. & Ebert,

    M. H. Altered serotonin activity in anorexia nervosa

    after long-term weight restoration. Does elevated

    cerebrospinal fluid 5-hydroxyindoleacetic acid level

    correlate with rigid and obsessive behavior?Arch.

    Gen.Psychiatry48, 556562 (1991).

    69. Simansky, K. J. et al. A 5-HT2C

    agonist elicits

    hyperactivity and oral dyskinesia with hypophagia in

    rabbits. Physiol.Behav.82, 97107 (2004).

    70. Young, S. N. & Gauthier, S. Effect of tryptophan

    administration on tryptophan, 5- hydroxyindoleacetic

    acid and indoleacetic acid in human lumbar and

    cisternal cerebrospinal fluid.J. Neurol. Neurosurg.

    Psychiatry44, 323327 (1981).71. Anderson, I. M., Parry-Billings, M., Newsholme, E. A.,

    Fairburn, C. G. & Cowen, P. J. Dieting reduces plasma

    tryptophan and alters brain 5-HT function in women.

    Psychol.Med.20, 785791 (1990).

    72. Schweiger, U., Warnhoff, M., Pahl, J. & Pirke, K. M.

    Effects of carbohydrate and protein meals on plasma

    large neutral amino acids, glucose, and insulin

    plasma levels of anorectic patients. Metabolism35,

    938943 (1986).

    73. Attia, E., Wolk, S., Cooper, T., Glasofer, D. & Walsh, B.

    Plasma tryptophan during weight restoration in

    patients with anorexia nervosa. Biol.Psychiatry57,

    674678 (2005).

    74. Kaye, W. H., Gwirtsman, H. E., George, D. T.,

    Jimerson, D. C. & Ebert, M. H. CSF 5-HIAA

    concentrations in anorexia nervosa: reduced values

    in underweight subjects normalize after weight gain.

    Biol.Psychiatry23, 102105 (1988).

    75. Klump, K. et al. Personality characteristics of women

    before and after recovery from an eating disorder.Psych. Med.34,14071418 (2004).

    76. Frank, G. et al. Increased dopamine D2/D3 receptor

    binding after recovery from anorexia nervosa

    measured by positron emission tomography and

    [11C]raclopride. Biol.Psychiatry58, 908912

    (2005).

    77. Kaye, W. H., Frank, G. K. & McConaha, C. Altered

    dopamine activity after recovery from restricting-type

    anorexia nervosa. Neuropsychopharmacology21,

    503506 (1999).

    78. Bergen, A. et al. Association of multiple DRD2

    polymorphisms with anorexia nervosa.

    Neuropsychopharmacology30,17031710 (2005).

    79. Lawrence, A. Impaired visual discrimination learning in

    anorexia nervosa.Appetite20, 8589 (2003).

    80. Montague, R., Hyman, S. & Cohen, J. Computational

    roles for dopamine in behavioural control. Nature

    431, 760767 (2004).

    81. Schultz, W. Neural coding of basic reward terms of

    animal learning theory, game theory, microeconomics

    and behavioural ecology. Science14, 139147 (2004).

    This is an excellent summary of the new approach

    proposed by Schultz and others as to the function

    of dopamine in learning and reward. Specifically, it

    implicates dopamine as a key learning signal that

    functions to alter relative preferences among

    available choices.

    82. Wagner, A. et al. Altered reward processing in women

    recovered from anorexia nervosa.Am.J.Psych.

    164,18421849 (2007).83. Delgado, M., Nystrom, L., Fissel, C., Noll, D. & Fiez, J.

    Tracking the hemodynamic responses to reward and

    punishment in the striatum.J.Neurophysiol. 84,

    30723077 (2000).

    84. Berridge, K. & Robinson, T. What is the role of

    dopamine in reward: hedonic impact, reward learning,

    or incentive salience? BrainRes.28, 309369 (1998).

    85. Halmi, K. et al. Predictors of treatment acceptance

    and completion in anorexia nervosa.Arch.Gen.

    Psychiatry62, 776781 (2005).

    86. Tricomi, E. M., Delgado, M. R. & Fiez, J. A. Modulation

    of caudate activity by action contingency. Neuron41,

    281292 (2004).

    87. Lopez, C. et al. An examination of the concept of

    central coherence in women with anorexia nervosa.

    Int.J.Eat.Disord.41, 143152 (2008).

    88. Zastrow, A. et al. Neural correlates of impaired

    cognitive-behavioral flexibility in anorexia nervosa.Am.J.Psychiatry166, 608616 (2009).

    This paper shows that impaired behavioural response

    shifting in AN is associated with hypoactivation in the

    ventral anterior cingulate-striato-thalamic loop that is

    involved in motivation-related behaviour. By contrast,

    subjects with AN have predominant activation of

    frontoparietal networks that is indicative of effortful

    and supervisory cognitive control during task

    performance.

    89. Daw, N. D., Kakade, S. & Dayan, P. Opponent

    interactions between serotonin and dopamine. Neural

    Networks15, 603616 (2002).

    90. Cools, R., Roberts, A. & Robbins, T. Serotoninergic

    regulation of emotional and behavioural control

    processes. TrendsCogn.Sci.12, 3140 (2008).

    91. De Deurwaerdere, P., Navailles, S., Berg, K., Clarke, W.

    & Spampinato, U. Constitutive activity of the

    serotonin2C receptor inhibits in vivo dopamine release

    in the rat striatum and nucleus accumbens.J.

    Neurosci.24, 32353241 (2004).

    92. Di Matteo, V., Di Giovanni, G., Di Mascio, M. &

    Esposito, E. Biochemical and electrophysiological

    evidence that RO 600175 inhibits mesolimbicdopaminergic function through serotonin

    2Creceptors.

    BrainRes.865, 8590 (2000).

    93. Schweighofer, N., Tanaka, S. & Doya, K. Serotonin and

    the evaluation of future rewards: theory, experiments,

    and possible neural mechanisms.Ann.NYAcad.Sci.

    1104, 289300 (2007).

    94. McClure, S., Laibson, D., Loewenstein, G. & Cohen, J.

    Separate neural systems value immediate and delayed

    monetary rewards. Science306, 503507 (2004).

    A study in which the authors propose that two

    competing systems, that is, the prefrontal cortex

    and the subcortical striatum, underlie the

    computation of the immediate and delayed value.

    95. Westergaard, G. et al. Physiological correlates of

    aggression and impulsivity in free-ranging female

    primates. Neuropsychopharmacology28,

    10451055 (2003).

    96. Attia, E., Schroeder, L. Pharmacologic treatment of

    anorexia nervosa: where do we go from here? Int.J.

    Eat.Disord.37, S60S63 (2005).97. Tollefson, G. D. Selective serotonin reuptake inhibitors.

    in Textbook of Psychopharmacology. (Schatzberg,

    A. F. & Nemeroff, C. B.) 161182 (American

    Psychiatric Press, Inc. Washington DC,1995).

    98. Blier P, de Montigny, C. Serotonin and drug-induced

    therapeutic responses in major depression, obsessive-

    compulsive and panic disorders.

    Neuropsychopharmacology21, S91S98 (1999).

    99. Bissada, H., Tasca, G. A., Barber, A. M. & Bradwejn, J.

    Olanzapine in the treatment of low body weight and

    obsessive thinking in women with anorexia nervosa: a

    randomized, double-blind, placebo-controlled trial.

    Am. J. Psych.165,12811288 (2008).

    100. Elman, I., Borsook, D. & Lukas, S. E. Food intake and

    reward mechanisms in patients with schizophrenia:

    implications for metabolic disturbances and treatment

    with second-generation antipsychotic agents.

    Neuropsychopharmacology31, 20912120 (2006).

    R E V I E W S

    NATuRe RevIeWs |NeuroscieNce volume 10 | AuGusT 2009 |583

    2009 Macmillan Publishers Limited. All rights reserved

  • 8/14/2019 New insights into symptoms and neurocircuit function of anorexia nervosa

    12/12

    101. Kelley, A. E. Ventral striatal control of appetite

    motivation: role in ingestive behavior and reward-related

    learning. Neurosci. Biobehav. Rev.27, 765776 (2004).

    102. Saper, C. B., Chou, T. C., Elmquist, J. K. The need to

    feed: homeostatic and hedonic control of eating.

    Neuron36:199211 (2002) .

    103. Fernstrom, M. H., Weltzin, T. E., Neuberger, S.,

    Srinivasagam, N. & Kaye, W. H. Twenty-four-hour food

    intake in patients with anorexia nervosa and in healthy

    control subjects. Biol.Psychiatry36, 696702 (1994).

    104. Drewnowski, A., Pierce, B. & Halmi, K. A. Fat aversion

    in eating disorders.Appetite10, 119131 (1988).105. Garfinkel, P., Moldofsky, H. & Garner, D. M. The

    stability of perceptual disturbances in anorexia

    nervosa. Psychol.Med.9, 703708 (1979).

    106. Santel, S., Baving, L., Krauel, K., Mnte, T. & Rotte, M.

    Hunger and satiety in anorexia nervosa: fMRI during

    cognitive processing of food pictures. BrainRes.1114,

    138148 (2006).

    107. Small, D. Central gustatory processing in humans.Adv.

    Otorhinolaryngol. 63, 191220 (2006).

    108. Chandraskekar, J., Hoon, M., Ryba, N. & Zuker, C. The

    receptors and cells for mammalian taste. Nature444,

    288294 (2006).

    109. Ogawa, H. Gustatory cortex of primates: anatomy and

    physiology. Neurosci.Res.20, 113 (1994).

    110. Scott, T. R., Yaxley, S., Sienkiewicz, Z. & Rolls, E.

    Gustatory responses in the frontal opercular cortex of

    the alert cynomolgus monkey.J.Neurophysiol. 56,

    876890 (1986).

    111. Yaxley, S., Rolls, E. & Sienkiewicz, Z. Gustatory

    responses of single neurons in the insula of the macaque

    monkey.J.Neurophysiol.63, 689700 (1990).

    112. Faurion, A. et al. Human taste cortical areas studied

    with functional magnetic resonance imaging: evidence

    of functional lateralization related to handedness.

    Neurosci.Lett.277, 189192 (1999).

    113. Schoenfeld, M. et al. Functional magnetic resonance

    tomography correlates of taste perception in the

    human primary taste cortex. Neuroscience127,

    347353 (2004).

    114. ODoherty, J., Kringelbach, M. L., Rolls, E. T., Hornak,

    J. & Andrews, C. Abstract reward and punishment

    representations in the human orbitofrontal cortex.

    NatureNeuroscience 4, 95102 (2001).

    115. Schultz, W., Tremblay, L. & Hollerman, J. R. Reward

    processing in primate orbitofrontal cortex and basal

    ganglia. Cereb. Cortex10, 272284 (2000).

    116. Small, D. Toward an understanding of the brain

    substrates of reward in humans. Neuron22, 668671

    (2002).

    117. Small, D. M., Zatorre, R. J., Dagher, A., Evans, A. C. &

    Jones-Gotman, M. Changes in brain activity related toeating chocolate: from pleasure to aversion. Brain

    124,17201733 (2001).

    118. Freedman, L. J., Insel, T. R. & Smith, Y. Subcortical

    projections of area 25 (subgenual cortex) of the macaque

    monkey.J. Comp. Neurol.421, 172188 (2000).

    119. Ongur, D., An, X. & Price, J. Prefrontal cortical

    projections to the hypothalamus in macaque monkeys.

    J.Comp.Neurol.401, 480505 (1998).

    120. Carter, C. S., Botvinick, M. M. & Cohen, J. D. The

    contribution of the anterior cingulate cortex to

    executive processes in cognition. Rev.Neurosci.10,

    4957 (1999).

    121. Critchley, H. D., Mathias, C. J. & Dolan, R. J. Neural

    activity in the human brain relating to uncertainty and

    arousal during anticipation. Neuron29, 537545

    (2001).

    122. Critchley, H. D. et al. Human cingulate cortex and

    autonomic control: converging neuroimaging and

    clinical evidence. Brain126, 21392152 (2003).

    123. Furuyashiki, T., Holland, P. & Gallagher, M.Rat orbitofrontal cortex separately encodes response

    and outcome information during performance of goal-

    directed behavior.J.Neurosci.28, 51275138

    (2008).

    124. Gottfried, J., ODoherty, J. & Dolan, R. Encoding

    predictive reward value in human amygdala and

    orbitofrontal cortex. Science301, 11041107 (2003).

    125. Hare, T. A., ODoherty, J., Camerer, C. F., Schultz, W. &

    Rangel, A. Dissociating the role of the orbitofrontal

    cortex and the striatum in the computation of goal

    values and prediction errors.J.Neurosci.28,

    56235630 (2008).

    126. Roberts, A. Primate orbitofrontal cortex and adaptive

    behaviour. TrendsCogn.Sci.10, 8390 (2006).

    127. Tataranni, P. A. et al. Neuroanatomical correlates of

    hunger and satiation in humans using positron

    emission tomography. Proc.NatlAcad.Sci.USA96,

    45694574 (1999).

    128. Morris, J. S. & Dolan, R. J. Involvement of human

    amygdala and orbitofrontal cortex in hunger-enhanced

    memory for food stimuli.J.Neurosc. 21, 53045310

    (2001).

    129. Kringelbach, M. L., ODoherty, J., Rolls, E. & Andrews, C.

    Activation of the human orbitofrontal cortex to a liquid

    food stimulus is correlated with its subjective

    pleasantness. Cereb. Cortex13, 10641071 (2003).

    130. Uher, R., Treasure, J., Heining, M., Brammer, M. C. &

    Campbell I. C. Cerebral processing of food-related

    stimuli: effects of fasting and gender. Behav.Brain

    Res.169, 111119 (2006).131. Chikama, M., McFarland, N., Amaral, D. H. & Haber

    S. N. Insular cortical projections to functional regions

    of the striatum correlate with cortical cytoarchitectonic

    organization in the primate.J.Neurosci.17,

    96869705 (1997).

    132. Fudge, J., Breitbart, M., Danish, M. & Pannoni, V. Insular

    and gustatory inputs to the caudal ventral striatum in

    primates.J.Comp.Neurol.490,101118 (2005).

    133. Wagner, A. et al. Altered insula response to a taste

    stimulus in individuals recovered from restricting-type

    anorexia nervosa. Neuropsychopharmacology33,

    513523 (2008).

    134. Ellison, Z. et al. Functional anatomy of calorie fear in

    anorexia nervosa. Lancet 352,1192 (1998).

    135. Gordon, C. M. et al. Neural substrates of anorexia

    nervosa: a behavioral challenge study with positron

    emission tomography.J.Pediatr.139, 5157 (2001).

    136. Naruo, T. et al. Characteristic regional cerebral blood

    flow patterns in anorexia nervosa patients with binge/

    purge behavior.Am.J.Psychiatry157,15201522

    (2000).

    137. Nozoe, S. et al. Changes in regional cerebral blood

    flow in patients with anorexia nervosa detected

    through single photon emission tomography imaging.

    Biol.Psychiatry34, 578580 (1993).

    138. Uher, R. et al. Medial prefrontal cortex activity

    associated with symptom provocation in eating

    disorders.Am.J.Psychiatry. 161,12381246 (2004).

    139. Devinsky, O., Morrell, M. J. & Vogt, B. A.

    Contributions of anterior cingulate cortex to

    behaviour. Brain118, 279306 (1995).

    140. Critchley, H., Wiens, S., Rotshtein, P., Ohman, A. &

    Dolan, R. Neural systems supporting interoceptive

    awareness. NatureNeurosci.7, 189195 (2004).

    One of the first neuroimaging studies to demonstrate

    a direct association between interoceptive awareness

    and perceived emotions. In a paradigm that asked

    subjects to detect their heartbeat as accurately as

    possible, activation of an interoceptive circuit

    involving the anterior insula/frontal operculum (AI/FO)

    was identified. AI/FO activation predicted accuracy inheartbeat detection, which in turn correlated with

    indices of negative emotional experience.

    141. Paulus, M. & Stein, M. B. An insular view of anxiety.

    Biol.Psychiatry60, 383387 (2006).

    142. Craig, A. How do you feel now? The anterior insula

    and human awareness. NatureRev.Neurosci.10,

    5970 (2008).

    143. Craig, A. D. How do you feel? Interoception: the sense

    of the physiological condition of the body. NatureRev.

    Neurosci.3, 655666 (2002).

    This paper reviews the afferent neural system in

    non-human and human primates that represents all

    aspects of the physiological condition of the physical

    body. This system constitutes a representation of the

    material me, and thus might provide a foundation for

    subjective feelings, emotion and self-awareness.

    144. Craig, A. Human feelings: why are some more aware

    than others? TrendsCogn.Sci.8, 239241 (2004).

    145. Damasio, A. et al. Subcortical and cortical brain

    activity during the feeling of self-generated emotions.NatureNeurosci.3, 10491056 (2000).

    146. Bruch, H. Perceptual and conceptual disturbances in

    anorexia nervosa. Psychosom.Med.24, 187194

    (1962).

    147. Fassino, S., Piero, A., Gramaglia, C. & Abbate-Daga,

    G. Clinical, psychopathological and personality

    correlates of interoceptive awareness in anorexia

    nervosa, bulimia nervosa and obesity.

    Psychopathology37, 168174 (2004).

    148. Garner, D. M., Olmstead, M. P. & Polivy, J.

    Development and validation of a multidimensional

    eating disorder inventory for anorexia and bulimia

    nervosa. Int.J.Eat.Disord.2, 1534 (1983).

    149. Pollatos, O. et al. Reduced perception of bodily signals

    in anorexia nervosa. Eat.Behav.9, 381388 (2008).

    150. Preuschoff, K., Quartz, S. & Bossaerts, P. Human

    insula activation reflects risk prediction errors as well

    as risk.J.Neurosci.28, 27452752 (2008).

    This study uses an elegant design to disambiguate

    the role of the insular cortex in risk-related

    processing. In particular, the authors suggest that

    the insula is important for both generating

    prediction errors and risk (variance) related

    processing.

    151. Carter, C. S. et al. Parsing executive processes:

    strategic vs. evaluative functions of the anterior

    cingulate cortex. Proc. Natl Acad. Sci. USA97,

    19441948 (2000).

    152. Ongur, D. & Price, J. L. Organization of networks within

    the orbital and medial prefrontal cortex of rats, monkeys,and humans. Cereb. Cortex10, 206219 (2000).

    153. Rolls, E. T. The orbitofrontal cortex. Philos.Trans.R.

    Soc.Lond. B Biol.Sci.351, 14331443 (1996).

    154. Kerns, J. et al. Anterior cingulate conflict monitoring

    and adjustments in control. Science303, 10231026

    (2004).

    155. Redish, A. Addiction as a computational process gone

    awry. Science306, 19441947 (2004).

    156.Volkow, N. D., Wise, R. A. How can drug addiction help

    us understand obesity? NatureNeurosci.8, 555560

    (2005).

    157. Chambers, R., Taylor, J. & Potenza, M. Developmental

    neurocircuitry of motivation in adolescence: a critical

    period of addiction vulnerability.Am.J.Psych.160,

    10411052 (2003).

    158. Connan, F., Campbell, I., Katzman, M., Lightman, S. &

    Treasure, J. A neurodevelopmental model for anorexia

    nervosa. Physiol.Behav.79, 1324 (2003).

    This excellent synthesis integrates genetic, biological,

    cognitive and psychosocial factors, and interpersonal

    stress, to generate a neurodevelopmental

    hypothesis for the aetiology of AN.

    159. Kirby, K., Petry, N. & Bickel, W. Heroin addicts have

    higher discount rates for delayed rewards than

    non-drug-using controls.J.Exp.Psychol.Gen.128,

    7887 (1999).

    160. Kaye, W., Wisniewski, L. Vulnerability to substance

    abuse in eating disorders. NIDA Res.Monogr.159,

    269311 (1996).

    161. Huttenlocher, P. & Dabholkar, A. Regional differences

    in synaptogenesis in human cerebral cortex.J.Comp.

    Neurol.387, 167178 (1997).

    162. Jacobi, C., Hayward C, de Zwaan, M., Kraemer, H. &

    Agras, W. Coming to terms with risk factors for eating

    disorders: application of risk terminology and suggestions

    for a general taxonomy. Psych. Bull.130, 1965 (2004).

    163. Klump, K., Burt, S., McGue, M. & Iacono, W. Changes

    in genetic and environmental influences on disordered

    eating across adolescence. A longitudinal twin study.

    Arch.Gen.Psychiatry64, 14091415 (2007).

    The authors of this study present data from the firstlongitudinal twin studies in eating disorders.

    Findings highlight the transition from early to mid

    adolescence as a crucial time for the emergence of a

    genetic diathesis for disordered eating. The increase

    in genetic effects during this developmental stage

    corroborates previous research implicating puberty

    in the genetic aetiology of eating disorders.

    164. Rubinow, D. R., Schmidt, P. J. & Roca, C. A. Estrogen-

    serotonin interactions: implications for affective

    regulation. Biol.Psychiatry44, 839850.

    165. Torpy, D. J., Papanicolaou, D. A. & Chrousos, G. P.

    Sexual dismorphism of the human stress response

    may be due to estradiol-mediated stimulation of

    hypothalamic corticotropin-releasing hormone

    synthesis.J.Clin.Endocrinol.Metab.82, 982 (1997).

    166. Kaye, W. H. et al. Reduced cerebrospinal fluid levels of

    immunoreactive pro- opiomelanocortin related

    peptides (including beta-endorphin) in anorexia

    nervosa. Life Sci.41, 21472155 (1987).

    AcknowledgementsMuch of the research incorporated into this Review was sup-

    ported for W.H.K. by the National Institute of Mental Health

    (NIMH) (046001, 042984, 066122 and 001894) and the

    Price Foundation, for J.L.F. by the NIMH (063291) and for

    M.P. by the National Institute on Drug Abuse (016663,

    018307 and 020687) and the Center of Excellence in Stress

    and Mental Health.

    DATABASESEntrez Gene:http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene

    5HT1A

    | 5HT2A

    |DRD2 | DRD3

    FURTHER INFORMATIONWalter H. Kayes homepage:http://eatingdisorders.ucsd.edu/

    All liNks Are AcTive iN The oNliNe pdf

    R E V I E W S

    584 | AuGusT 2009 | volume 10 / /

    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genehttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genehttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3350&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3350&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3356&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3356&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1813&ordinalpos=9&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1813&ordinalpos=9&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1814&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1814&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://eatingdisorders.ucsd.edu/http://eatingdisorders.ucsd.edu/http://eatingdisorders.ucsd.edu/http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1814&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1813&ordinalpos=9&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3356&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3350&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genehttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene