New Inotropic Drugs for Heart Failure JAMA 1987

4
New  Inotropic  Drugs  for  Heart  Failure Irvin  F.  Goldenberg,  MD,  Jay  N.  Cohn,  MD DEPRESSION  of myocardial  contrac- tility  along  with  abnormalities  in  the peripheral  circulation and  the  neuroen- docrine system  lead  to  the  syndrome  of congestive  heart  failure.  Patients  with heart failure have limited  exercise toler- ance  because  of  breathlessness  and/or fatigue.  These symptoms  are  likely  to be related  to  an  exercise-induced rise in pulmonary capillary  pressure  and  inad- equate  blood flow to  exercising  skeletal muscle.  Optimal  treatment of heart  fail- ure  is  based  on manipulation  of  the three  principal  determinants  of  cardiac performance:  preload,  impedance,  and contractility.  Vasodilator  therapy  may reduce  preload  and/or  impedance  and improve  cardiac  function.  This  report will  not  deal  with  vasodilator  treat- ment,  which  has  been  the  subject  of  a recent  review,1  b ut  will  focus  on  newer inotropic  agents  aimed  at  increasing myocardial  contractility. RATIONALE The  rationale fo r  inotropic therapy  is based  on  the  observation  that  contrac- tility  of failing myocardium  can  be  aug- mented.2  Studies  in  animal  models with myocardial  dysfunction  and i n  th e  fail- ing  human  heart  have  suggested  the existence  of  this  residual  myocardial contractile  reserve.  The  only  oral  in¬ otropic  drugs  presently  approved  for clinical  use in  this  country  are the  car¬ diac glycosides.  Because of their limited inotropic potent ial  and  low  therapeutic/  toxic ratio and because of renewed inter¬ est  in  the  pharmacologie  management of  heart  failure,  the  search  for  new inotropic drugs  has  accelerated. The  ideal  inotropic  agent  for  the treatment  of  congestive  heart  failure should  improve  cardiac  contractility,  in¬ crease oxygen  delivery  to  the  tissues, optimize regional  blood  flow,  and  relieve pulmonary congestion  without  causing unacceptable  increases  in  heart  rate, arrhythmias,  or myocardial  oxygen consumption.  The  drug  should be  active in  both  intravenous  and oral forms  and have  both  short-  and long-term effects and  minimal  noncardiac  side  effects. Perhaps  most  importantly,  i t  should  r lieve symptoms  of  heart  failure  and ideally  would  inhibit  progression  of  the syndrome  and  prolong  life. MECHANISMS Most  available  inotropic  agents  ap¬ pear  to  work  at  least  in part by  increas¬ ing  the  amount  o f  intracellular  calcium available  to  react  with  contractile  pro¬ teins to  generate a greater force of myo¬ cardial  contraction.3  Some  drugs  (eg, pimobendan,  DP I  201-206,  sulmazole) may  also  increase  contractile  protein sensitivity  to  intracellular calcium.3"5 Cardiac  glycosides  inhibit  Na+,  K+- ATPase  activity.  The  resultant cyto- plasmic  accumulation  of  Na+  probably raises  intracellular  Ca++  by  means of  a Na+-Ca++  exchange  mech anism. The catecholamines  produce  their  inotropic action  by  stimulation  of ß,-receptors, leading  to  an  increase  in  activity  of the membrane-bound  adenylate cyclase and  in  intracellular  cyclic  AMP.  This increase  in cyclic  A MP  stimulates  pro¬ tein  kinases  that  phosphorylate  sub¬ stances  on both  the  cell  membrane  and the  intracellular  sarcoplasmic  reticu- lum.6  These  changes  lead  to  enhanced Ca++  flux  that  increases  cytoplasmic Ca++  and  the  intensity  of  actin  and myosin  interaction  and  thus  the  force of  myocardial  contraction.  More  recent evidence  suggests  that  catecholamines also  may  increase  myocardial  contrac¬ tion  by  ß2-  and a,-receptor  stimula¬ tion.7,8 These mechanisms could become more important  in  a  heart  in whi ch B,-receptors  are down-regulated.8 Many  ofthe  newer noncatecholamine, nonglycoside inotropic agents probably cause  at  least part  of  their  inotropic effect  by  increasing  intracellular  cyclic AMP. Although  other  mechanisms  for the  increased  contractility  may  exist,4 amrinone,  milrinone,  sulmazole,  enox- imone,  and  piroximone  all  are  phos- phodiesterase  (PDE)  inhibitors  and increase  cyclic AMP  levels  by this mech¬ anism.9,10  By raising  cyclic  AM P levels, these  drugs  enhance  slow Ca++  inward current  and  increase  the  force  of  myo- cardial  contraction.  However,  because the maximum  increase  in  contractility with  some  of  these  agents  occurs prior to  maximum  increases  in  cyclic  AMP levels,  other  mechanisms  for  their  in¬ otropic  effect  m ay  be involved." Sulmazole,  pimobendan,  and  DPI 201-106 are  unique agents  that  appear to exert  some  of  their  inotropic  effect  by increasing  the  contractile  protein  sensi¬ tivity  to  calcium.4,5 The  extent  to  which this  increased  sensitivity  t o  Ca++  con¬ tributes  to  improved myocard ial  per¬ formance  is unknown. Some agents (eg,  D PI  201-106)  appear to  cause  an increase  in  contractility by activation  of  Na+  channels.12  The  in¬ crease  in  intracellular  Na+ competes with calcium  fo r extrusion  via the  Na+- Ca++  exchange  system.  The  net  result is  an increase  in  intracellular  Ca+  + . Because  patients  with  congestive heart  failure  have  been  found  to  be deficient  in  some compounds associated with  myocardial  energy  metabolism (eg,  coenzyme Q10),  an attempt has been made  to  increase  contractility  by  re¬ placement  of  these  compounds.  Re¬ placement  therapy  of  coenzyme  Q10  is now being evaluated  in  this  manner.13 Many  of the  new inotropic agents  also have  direct  vasodilator  effects14  that may  also improve  ventricular  perform¬ ance.  It  often  is  difficult  to  determine whether  the  inotropic  or  vasodilator effect  predominates  in  improving  myo¬ cardial  function.  The Tabl e  lists  the proposed mechanism of acti on of some of the  new inotropic drugs. INOTROPIC AGENTS [VAdrenoceptor Agonists Isoproterenol  is  the  classic ß,-ago- nist,  b ut  its  potent  ß2-dilator effect,  the prominent  direct  and reflex  tachycardia in  response  to its  administration,  and its unsuitability  for  oral  administration make  it  unattractive  for  treatment  of heart  failure.  Dopamine  hydrochloride and  dobutamine  hydrochloride  have partially  solved  the vasod ila tor  and chronotropic  problems  of  isoproterenol hydrochloride,  but  these  ßragonists are still  not  orally  absorbed. One  direction  for  drug  development has  been  the  synthesis  of  compounds that  interact  with ß,-receptors  to  block the receptor  b ut  at  the  same time  pro- This  article  is  one  of  a  series  sponso red by  the American  Heart  Association. From  the Minneapolis  Heart  Institute  (Dr  Golden- berg)  and the  Cardiovascular Division,  Department  of Medicine,  University  of  Minnes ota Medical  School, Minneapolis (Dr  Cohn). Reprint  requests to  the Minneapolis  Heart  Institute, Suite  160,  920  E  28th  St,  Minneapolis,  MN  55407  (Dr Goldenberg). Downloaded From: http://jama.jama network.com/ by a UNIV OF MINN LIBRARIES User on 02/18/2014

Transcript of New Inotropic Drugs for Heart Failure JAMA 1987

Page 1: New Inotropic Drugs for Heart Failure JAMA 1987

8/10/2019 New Inotropic Drugs for Heart Failure JAMA 1987

http://slidepdf.com/reader/full/new-inotropic-drugs-for-heart-failure-jama-1987 1/4

New Inotropic Drugs for Heart  FailureIrvin   F.  Goldenberg,  MD, Jay N. Cohn,   MD

DEPRESSION   of myocardial   contrac-tility  along  with   abnormalities   in   the

peripheral   circulation  and  the  neuroen-

docrine system lead  to  the  syndrome ofcongestive  heart  failure.   Patients  withheart failure have limited exercise toler-ance   because   of   breathlessness  and/or

fatigue.   These symptoms   are   likely   tobe related  to  an  exercise-induced rise in

pulmonary capillary pressure and inad-equate  blood flow to  exercising skeletalmuscle. Optimal treatment of heart fail-ure   is   based   on manipulation   of   thethree principal  determinants  of  cardiacperformance: preload,   impedance,   and

contractility.   Vasodilator   therapy   mayreduce  preload   and/or   impedance   and

improve   cardiac   function.   This   reportwill   not   deal   with   vasodilator   treat-ment,   which   has  been   the subject  of   a

recent review,1  but  will   focus   on   newer

inotropic   agents   aimed   at   increasingmyocardial contractility.

RATIONALE

The  rationale for inotropic therapy isbased   on  the   observation   that   contrac-

tility  of failing myocardium  can  be  aug-mented.2  Studies in  animal models with

myocardial dysfunction  and in  the   fail-

ing   human   heart   have  suggested   theexistence   of   this   residual   myocardialcontractile   reserve.   The   only   oral   in¬

otropic   drugs   presently   approved   forclinical   use   in  this   country   are   the   car¬diac glycosides.  Because of their limitedinotropic potential and  low  therapeutic/ toxic ratio and because of renewed inter¬est   in   the  pharmacologie  managementof   heart   failure,   the   search   for   new

inotropic drugs  has  accelerated.The   ideal   inotropic   agent   for   the

treatment   of  congestive   heart   failureshould improve cardiac  contractility, in¬crease oxygen  delivery   to   the   tissues,optimize regional blood flow,  and relievepulmonary congestion   without  causingunacceptable   increases   in   heart   rate,

arrhythmias,  or

myocardial   oxygenconsumption.  The drug should be activein  both  intravenous  and oral forms andhave  both  short-  and long-term  effectsand   minimal   noncardiac   side   effects.

Perhaps most importantly,  i t should  re¬lieve symptoms   of   heart   failure   and

ideally would  inhibit progression of the

syndrome  and  prolong life.

MECHANISMSMost   available   inotropic   agents   ap¬

pear  to  work at  least in part by increas¬ing the  amount  of intracellular  calciumavailable   to   react  with   contractile   pro¬

teins to generate a greater force of myo¬cardial   contraction.3   Some   drugs   (eg,pimobendan,   DPI   201-206,   sulmazole)may   also   increase   contractile   proteinsensitivity  to  intracellular calcium.3"5

Cardiac  glycosides   inhibit  Na+,   K+-ATPase   activity.   The   resultant cyto-plasmic  accumulation   of  Na+   probablyraises  intracellular Ca++ by   means of  aNa+-Ca++   exchange   mechanism. Thecatecholamines  produce   their inotropicaction   by   stimulation   of ß,-receptors,leading   to   an   increase   in   activity   ofthe membrane-bound adenylate cyclaseand   in   intracellular   cyclic   AMP.   This

increase   in cyclic AMP   stimulates   pro¬tein   kinases   that  phosphorylate   sub¬stances   on both  the  cell membrane  andthe   intracellular   sarcoplasmic   reticu-lum.6  These   changes   lead   to   enhancedCa++   flux   that   increases   cytoplasmicCa++   and   the   intensity   of   actin   and

myosin   interaction   and   thus   the   forceof myocardial  contraction.   More  recentevidence  suggests  that  catecholaminesalso   may   increase  myocardial   contrac¬tion   by   ß2-   and a,-receptor   stimula¬tion.7,8 These mechanisms could becomemore important   in   a   heart   in whichB,-receptors   are down-regulated.8

Many ofthe  newer noncatecholamine,nonglycoside inotropic agents probablycause   at   least part   of   their   inotropiceffect by increasing intracellular cyclicAMP. Although   other   mechanisms   forthe   increased   contractility   may   exist,4amrinone, milrinone,   sulmazole,   enox-

imone,   and   piroximone   all   are   phos-phodiesterase   (PDE)   inhibitors   andincrease cyclic AMP  levels by this mech¬anism.9,10 By raising cyclic AMP  levels,these drugs  enhance  slow  Ca++   inwardcurrent  and   increase   the   force  of  myo-

cardial   contraction.   However,  because

the maximum   increase   in   contractilitywith   some  of  these agents  occurs priorto   maximum   increases   in  cyclic  AMPlevels,   other   mechanisms   for   their   in¬

otropic effect  m ay  be involved."Sulmazole,   pimobendan,   and   DPI

201-106 are unique agents that appear toexert   some   of  their inotropic   effect byincreasing the  contractile protein sensi¬

tivity to  calcium.4,5 The  extent to  whichthis   increased  sensitivity  to   Ca++   con¬tributes   to   improved myocardial   per¬formance   is unknown.

Some agents (eg, DPI 201-106) appear

to   cause   an  increase in   contractility byactivation   of   Na+   channels.12   The   in¬crease   in   intracellular   Na+ competeswith calcium for extrusion via the  Na+-Ca++ exchange system.   The  net  resultis   an  increase in  intracellular  Ca+  +

.

Because   patients   with   congestiveheart   failure   have   been   found   to   bedeficient in   some compounds associatedwith   myocardial   energy   metabolism(eg,  coenzyme Q10),   an attempt has beenmade   to   increase   contractility   by   re¬placement   of   these   compounds.   Re¬

placement   therapy   of   coenzyme   Q10   isnow being evaluated  in  this  manner.13

Many of the  new inotropic agents alsohave   direct   vasodilator   effects14   thatmay  also  improve   ventricular perform¬ance.   It   often   is  difficult   to  determinewhether   the   inotropic   or   vasodilatoreffect predominates   in  improving   myo¬cardial   function.   The Table   lists   the

proposed mechanism of action of some ofthe   new inotropic drugs.

INOTROPIC AGENTS

[VAdrenoceptor AgonistsIsoproterenol   is   the   classic ß,-ago-

nist, but its  potent ß2-dilator effect, theprominent direct and reflex tachycardiain response to its administration, and itsunsuitability   for   oral   administrationmake   it   unattractive   for   treatment   ofheart  failure.  Dopamine hydrochlorideand   dobutamine   hydrochloride   have

partially   solved   the vasodilator   and

chronotropic  problems  of isoproterenolhydrochloride,   but   these   ßragonistsare still not  orally absorbed.

One direction   for  drug  developmenthas   been   the   synthesis   of   compoundsthat  interact with ß,-receptors to  blockthe receptor  but  at the   same   time  pro-

This   article   is   one   of   a   series   sponsored by   theAmerican   Heart Association.

From   the Minneapolis   Heart   Institute   (Dr   Golden-berg)   and the   Cardiovascular  Division,   Department ofMedicine,   University   of   Minnesota Medical   School,Minneapolis (Dr  Cohn).

Reprint  requests  to   the  Minneapolis  Heart   Institute,Suite  160,   920   E   28th  St,   Minneapolis,   MN  55407  (DrGoldenberg).

ownloaded From: http://jama.jamanetwork.com/ by a UNIV OF MINN LIBRARIES User on 02/18/2014

Page 2: New Inotropic Drugs for Heart Failure JAMA 1987

8/10/2019 New Inotropic Drugs for Heart Failure JAMA 1987

http://slidepdf.com/reader/full/new-inotropic-drugs-for-heart-failure-jama-1987 2/4

Positive Inotropic  Effects and   Main  Mechanisms  of  Action

CardlotonlcAgent_Main Mechanisms o f Inotropic Effect*

Digitalis  glycosides   Na-K ATPase inhibition

CatecholaminesEpinephrineNorepinephrineIsoproterenol   hydrochlorideDobutamine   hydrochlorideDopamine hydrochlorideLevodopaIbopamine hydrochlorideButopamine

ß,-Adrenergic  partial agonistPrenalterol  hydrochloride   ß,-Stimulation—increased  cyclic  A MP

Xamoterol   fumerate

Bipyridine  derivativesAmrinone   Phosphodiesterase   inhibition—increased cyclic AMP,  vasodilationMilrinone

Imldazollne derivativesEnoximone Phosphodiesterase   inhibition—increased cyclic AMP,  vasodilator   effect

Piroximone

Benzimidazole  derivativesSulmazole   Phosphodiesterase  inhibition—increased cyclic AMP,  increased sensitivity of

Pimobendan_contractile proteins tocalcium_ Methylxanthines

Caffeine   Phosphodiesterase   inhibition—increased cyclic  AMP

Theophylline ethylenediamineGlucagon hydrochloride   Increased cyclic AMP,  effect independent of   ß,-adrenergic  receptors and  n ot

Histamine phosphate_due to phosphodiesterase inhibition_ OPC-8212_Increased cyclic AMP,   mechanismunknown_ 

DPI   201 -106   Prolongs Na  +

channel activity,  increased sensitivity of  contractile protein to

 _Ca++_ Coenzyme  Q10   Possible replacement therapy of  deficient compound

Bay K   8644   Calcium agonist,  increases Ca+   influx by prolonging  mean time Ca+  +

slow  channel gates  open

ß,-Stimulation—increases  cyclic AMP,  increase  in  slow  calcium   inward

current, increase  in  calcium uptake by  sarcoplasmic reticulum,   some exertvasodilation secondary to ß2  or dopamine receptor stimulation

*AMP  indicates  adenosine monophosphate.

duce   a partial agonistic   effect.  Prenal-terol hydrochloride,   a ß,-agonist with   amaximum  effect   of  80%   of that  achiev¬

able   with   isoproterenol,   is   orally   ab¬sorbed and  has been studied in patientswith heart failure.15 Despite short-termimprovement  in  indices of left ventricu¬lar function and reports of symptomatic

improvement   in   some   uncontrolledstudies,16   long-term   treatment   in   dou¬

ble-blind,   placebo-controlled   studieshas   shown   lack   of  sustained   improve¬ment.15,17   Furthermore,   some   authorshave reported hemodynamic  deteriora¬

tion,  ventricular arrhythmias,  and sud¬den death   soon after administering the

drug.16   The  drug   has   been  withdrawnfrom  further clinical testing.

Another   partial   ß,-agonist,   xamo-

terol   fumarate   (Corwin),   is   less potentthan prenalterol  (40% of isoproterenol'sagonistic   activity)   and   may   be   bettertolerated.   Early  clinical   trials   suggestsome possible short- and long-termben¬efits in  at  least  a  subset of patients  withcongestive  heart   failure.18,19  The ration¬ale   behind   therapy  with   these   partialagonists—which   also   can be viewed   as

ßrblockers  with  intrinsic  ß,-sympatho-mimetic  activity—is   that   producing   a

titratable ß-agonist   effect  while   simul¬taneously blocking the  endogenous  car¬diac   sympathomimetic  activity  will   fa¬

vorably affect cardiac performance and/ or   prevent   the   adverse   effect   of   en¬hanced sympathetic discharge.  Further

controlled  trials will be  needed to  provethis   thesis.

The failure  to  market  a ßragonist for

long-term oral use has encouraged some

to  seek the  solution with long-term  am¬

bulatory   intravenous  administration  ofdobutamine.20  Reports   have   suggestedoccasionally   dramatic   responses   to   in¬

termittent   infusion   of   dobutamine.20Controlled   trials   have   not   yet   provedefficacy  of this   form   of therapy   nor  hasan appropriate adm inistration  schedulebeen selected   to  mount   a pivotal study.If   such   therapy   proves   successful,   itwould   be  necessary   to  accept   the   con¬

cept that intermittent inotropic supportcan have   a  sustained   beneficial effect.

ß2-Adrenergic AgonistsAlbuterol sulfate,  terbutaline sulfate,

fenoterol hydrobromide,  and pirbuterolhydrochloride   are   ß2-adrenergic  drugsthat   probably   possess   both   inotropic(possibly due  to  ß2 stimulation and/or ß,stimulation of the  heart  vs reflex releaseof catecholamines) and vasodilator prop¬erties.   It   is   not   clear   which   of   thesemechanisms   for  improving cardiac  per¬formance predominate.   Of   the   ß2-ago-nists,   pirbuterol   has   undergone   themost   thorough   investigation.   Despiteimprovement   in  acute hemodynamics,21long-term  studies with pirbuterol  have

given   variable   results.21,22   Some havedemonstrated   sustained   benefits21whereas  others   have  suggested   loss   of

efficacy   during   long-term   administra¬

tion,   possibly   related   to   down-regula¬tion   of   ß-receptors.22   Ventricular   ar¬rhythmias, tremors,  and  muscle crampshave been the  most frequently reportedside  effects.

Dopaminergic AgonistsDopamine  exerts   an  inotropic   effect

through   a  direction  action   on ßrrecep-tors

  and/or   through  induction   of

  localnorepinephrine   release.23   Dopaminealso has vasodilator effects   on the renaland mesenteric vascular beds  as well  asregional   vasoconstrictor   effects   and

presynaptic   effects   to   inhibit   norepi¬nephrine  release.   The  multiple  actionsof dopamine   are critically   dose  depen¬dent.  Because of the  favorable hemody-namic effects   of   dopamine   infusion   inheart   failure,   a  search   has   been   madefor   an orally   effective   dopaminergicagent.   There   are   at   present   several

drugs undergoing investigation that ei¬ther   convert   to   dopamine   (levodopa)

and/or   have   dopaminergic   properties(ibopamine hydrochloride,   fenoldopammesylate)   on oral  administration.

Levodopa is   an  oral drug that is   con¬verted  by  the  enzyme dopa-decarboxy-lase to  dopamine.   Rajfer  et  al24  showedacute hemodynamic improvement in tenpatients given this drug.  Furthermore,they   found   a significant   correlation   be¬tween plasma dopamine   levels   and   im¬

provement in  cardiac index, suggestinga   link   between   dopamine   productionand hemodynamic  effects.  They reportthat   five   patients  given  long-term   (6.8months) therapy with levodopa had per¬

sistent   hemodynamic   and   clinical   im¬provement.   Shah  et  al,25 however,   have

reported acute deterioration in patientssoon   after   starting   therapy  with   thisdrug.  This  acute deterioration has  been

postulated to be due  to the  vasoconstric¬tor   effects of  dopamine.   This   variable

response  could   relate   to   the   amount   of

dopamine generated.   Lower   dopamineblood   levels   may  produce   an inotropicand   vasodilator   response,   but   higherlevels may result in vasoconstriction and

hemodynamic deterioration.Ibopamine is  the diisobutyric ester of

N-methyldopamine.   It   has   both   ino¬

tropic   and   vasodilator   properties.   Thepredominant  mechanism by  which   this

drug improves cardiac function  still   re¬

quires  further  clarification;   however,   it

probably acts  on ß,-,  ß2-, DAr,  and DA2-receptors.   Early   uncontrolled   studieshave   demonstrated   a   favorable   clinicalresponse   to  this drug.26,27

Phosphodiesterase  Inhibitors

Blocking the normal rapid breakdownof cyclic nucleotides by phosphodiester-ases  (PDEs) should  increase intracellu-

ownloaded From: http://jama.jamanetwork.com/ by a UNIV OF MINN LIBRARIES User on 02/18/2014

Page 3: New Inotropic Drugs for Heart Failure JAMA 1987

8/10/2019 New Inotropic Drugs for Heart Failure JAMA 1987

http://slidepdf.com/reader/full/new-inotropic-drugs-for-heart-failure-jama-1987 3/4

lar cyclic  AMP  levels and   increase   con¬

tractility. Although the traditional PDE

inhibitors,   such   as theophylline ethyl-enediamine,   exert   this   effect,   this   ac¬

tion   is   nonselective   and   not  potent.   Incontrast,   a  ne w series of PDE  inhibitorsthat  appear  to  be  selective for  the  myo¬cardial cyclic AMP  PDE   (PDE III)  hasbeen synthesized.  These agents  appearto   produce   a prominent hemodynamic

effect  when given   to   man.10Certain   features   of the   inotropic   ef¬fect  of PD E   inhibitors   are predictable.A   vasodilator   effect   accompanies   thecardiac   stimulation   and   a tendencytoward tachycardia and  possible  aggra¬vation   of arrhythmias  would   be   antici¬

pated.   Since  the  drugs  exert this  effectdirectly   on cyclic   AMP   concentrationand not  on a receptor mechanism, toler¬ance   due   to   receptor   down-regulationwould  not be anticipated.

Furthermore,   the  inotropic  effect ofthe drugs would be expected to  be  most

prominent   when cyclic  AMP   levels   are

high   due   to   adenylate   cyclase  stimula¬tion,   such  as by sympathetic discharge.The   bipyridine   and   imidazole   deriva¬tives   are the   two  groups  of PD E   inhib¬itors   most   studied   as inotropes   in   pa¬tients with congestive heart  failure.

Bipyridine Derivatives.—Amrinoneand milrinone  are bipyridine derivativeswith   both   inotropic   and   vasodilator

properties.   Their   inotropic   effects   are

independent   of ß-receptors   and   Na-KATPase and  a re probably  at  least partlydue   to   PDE   inhibition.10   Controversyexists   as   to  whether their predominantaction   is   an inotropic   or   a  vasodilator

effect.While   amrinone   exerts   short-term

hemodynamic   effects   similar   to   dobu¬

tamine,28   milrinone   causes   a greaterdecrease   in   left   ventricular   diastolicpressure   and   mean   arterial   pressureprobably secondary   to   its  vasodilatoryproperties.29 Patients who  have failed torespond to   catecholamines may  respondto   these drugs.30

While   the   short-term  hemodynamicresponse   to   amrinone   has   been   favor¬

able,28 long-term studies have given  var¬

iable results.3134 Amrinone in   one study

improved exercise tolerance and  caused

a deterioration of the clinical state withwithdrawal of drug therapy.32  This  hadbeen   taken   as   evidence   for   efficacy;however,   prospectively   randomizeddouble-blind  studies  have   failed   to  con¬firm   a   favorable   clinical   response.33,34Unfortunately,   the   evaluation   of theclinical   response   to   oral   amrinone   hasbeen complicated by  the high drop-outrate   from  side  effects.34  Because  of thelack of efficacy with  oral amrinone, onlythe intravenous form has been approved.

Milrinone  appears   to  have fewer  side

effects   and   early   uncontrolled   trialshave revealed both short- and long-termimprovement   in   ventricular   functionand in exercise tolerance.3638 Controlledtrials   are   currently  under   way   to   con¬firm  this  beneficial effect.  Of particularconcern,   however,   has   been   the   highmortality  rate   in patients   treated  withmilrinone.35   Although   this   experiencemay  merely reflect the short life expec¬

tancy in the severely ill patients enteredinto  these trials,  controlled studies willbe   necessary   to  exclude  the  possibilityof  an  adverse effect of the drug.

Imidazolone Derivatives.—Enoximone   (MDL   17,043)   and   pirox-imone   (MDL   19,205)   are   the   two   im-idazoline   derivatives  with   known  PDE

inhibitory  properties   that   have   under¬

gone the most study. Enoximone, pirox-imone,   and   dobutamine   cause   similarincreases   in   cardiac   index   but   enox¬

imone   and   piroximone   cause a greaterdecrease   in   pulmonary   arterial  wedgepressure.39 While  acute  hemodynamicsimprove   with   enoximone,   long-termstudies evaluating clinical improvementhave given variable  results.40"42 Of greatconcern  is   the  reported high morbidityand mortality.42  While piroximone   alsocauses   short-term hemodynamic   im¬

provement,39 long-term studies have notconfirmed   a   favorable   response   to   this

drug.43Benzimidazole   Derivative.—Sul¬

mazole (AR-L 115-BS) is  a noncatechol-amine,   nonglycoside   agent   with   ino¬tropic and vasodilator properties shownto   produce   short-term   hemodynamicimprovement   in   patients   with   severe

heart failure.44 The  main mechanism bywhich   this  drug   increases   contractilityis unclear. Although sulmazole is a phos¬phodiesterase   inhibitor   and   increasescyclic AMP,   the increase in cyclic AM Pbecomes significant only after this drugproduces   its  positive  inotropic   effect.45The  drug   appears   to   increase   the   cal¬cium  sensitivity  of the  contractile   pro¬tein.4   When   compared   with   dobu¬

tamine,   both  drugs   increased  ejectionfraction  by   similar   amounts.   El   Allafet   al46   have  reported  sustained   clinicalbenefit in  patients  receiving this  drug.

Recently this

 drughas been

 reported to

cause hepatocarcinogenic  effects  in  therat   and   this   has   led   to   sulmazole's   re¬moval   from   further   clinical   investiga¬tion.   However,   pimobendan,   a   sulma¬zole   analogue,   is   now undergoingclinical trials.

Future  AgentsIn   addition   to   the   glycosides,   cate¬

cholamines, and PDE inhibitors,   newer

inotropic   drugs   with   additional   andsometimes unknown mechanisms of  ac¬tion   are being investigated.

DPI   201-106   is   an interesting   new

agent with  both inotropic and  vasodila¬tor properties.   In isolated cardiac  mus¬

cle,   two possible  modes   of  action  havebeen found. DPI  201-106 has been shownto prolong Na+ channel activity and alsoto sensitize the contractile apparatus toCa+  + .6,12 Which   of these  mechanisms  ismost  important   to   the  development   ofthe   inotropic   response   is   unclear.   In

isolated   vascular  smooth muscle,   it  ap¬pears that vasodilation may result fromCa++   channel   inhibition.   In   the   intactanimal,   there   is evidence   that   it   mayalso   limit   the   inotropic   response   to

isoproterenol,   but   the   mechanism   ofthis   effect   is   unclear.   Uretsky   et   al47have   demonstrated   that   this agentimproves   hemodynamics   in   patientswith   heart   failure.   A   major   concern

is   that   prolongation   of   the   QT   inter¬val by DPI  201-106  may  be  arrhythmo-genic.

OPC-8212   is   a quinoline   derivativethat   has   positive   inotropic propertieswith little positive chronotropic or  vaso¬dilator effects.   Its  mechanism  of actionis poorly   understood.   The  positive   ino¬

tropic effects  of  OPC-8212   are  effectiveeven   after  ß-blockade.48   OPC-8212   in¬creases the  duration of the action poten¬tial   and   is   a   weak   inhibitor   of  cardiacPDE.   This drug  is   now being  tested   inclinical  trials.

The  calcium agonist  Bay  K  8644 has

undergone   study   as   an inotropicagent.49   It   is   a dihydropyridine deriva¬tive   that   causes   an   increase in   myocar¬dial   contractility by increasing  calciuminflux.   Unfortunately,   this   drug   alsocauses significant   increase   in   total   pe¬ripheral  resistance.  Further   search  fora  cardioselective   calcium  agonist   is   in

progress.Coenzyme  Q10  (ubiquinone) is  a mito-

chondrial respiratory chain   redox   com¬

ponent that   is  important in  myocardialenergy  metabolism. Patients  with   con¬

gestive  heart  failure   have  been shownto  be  deficient in this  compound,  whichmay   be  associated  with   decreased   en¬ergy   production.   Replacement   of thiscompound   has   been   reported   to   be   ofbenefit   to   patients   with   congestiveheart  failure   in   a

double-blind,  double-

crossover study.13  Further evaluation ofthis drug appears warranted.

CLINICAL   APPLICATIONS

Initial treatment of patients with  con¬gestive   heart   failure   now   consists   ofsodium   restriction,   diuretics,   digitalisglycosides,   and  vasodilators,  includingangiotensin-converting   enzyme   inhib¬itors.   The   order   in   which   these  drugsare   introduced   in   clinical   practice   issomewhat   controversial.   Some   physi¬cians now favor early interventions with

ownloaded From: http://jama.jamanetwork.com/ by a UNIV OF MINN LIBRARIES User on 02/18/2014

Page 4: New Inotropic Drugs for Heart Failure JAMA 1987

8/10/2019 New Inotropic Drugs for Heart Failure JAMA 1987

http://slidepdf.com/reader/full/new-inotropic-drugs-for-heart-failure-jama-1987 4/4

vasodilator drugs   rather   than  with   di-

goxin, whereas others prefer to restrictvasodilator use   to patients  who  remain

symptomatic  despite  digoxin   and   diu¬retic   therapy.   Patients   refractory   tothese   measures   have   few   therapeuticoptions.  Experimental drug therapy   isstarted   for   some patients   and   some

proceed to orthotopic cardiac transplan¬tation.   At present,   most   of   the   new

inotropic   agents   discussed   in   this   re¬view   are   not  available   for  widespreadclinical   use. They   should  be considered

investigational   and   should   be   used   in

patients   unresponsive   to   conventionaltherapy   and  willing   to  participate   indouble-blind,  placebo-controlled   trialsto  test their efficacy and safety.

Although   new inotropic   drugs   can

stimulate   the  failing  ventricle   and   im¬

prove hemodynamics, their influence  on

the   natural   history   of  heart   failure   isless clear.  Can they delay progression ofleft ventricular dysfunction? Do they in¬crease  or decrease ventricular arrhyth¬mias  and  the  risk  of sudden   death? Dothey improve   symptoms  and quality  oflife? Can  we identify subsets of patientswho   would   be  responsive?   These   andother issues   can be  answered only withcarefully designed   studies   using   well-tolerated drugs in  appropriate  doses.

The   authors  would   like   to   thank  Gary  Shank,MD, president of The Corporation, for  his thought¬ful review of this article. We would also like to thank

Wendy Markuson,   Annette  Dear,  and  the  networkfor  their excellent  secretarial assistance.

References

1.   Abrams  J:   Vasodilator therapy for  chronic   con-

gestive heart failure.  JAMA   1985;254:3070-3074.2.   Dyke SH,   Urschel CW,  Sonnenblick EH,  et al:Detection   of latent function   in  acutely   ischemicmyocardium  in  the  dog: Comparison of pharmaco-logic   inotropic   stimulation   and   postextrasystolicpotentiation.  Circ  Res  1975;36:490-497.3.   Scholz   H:   Pharmacological   actions   of   various

inotropic   agents.   Eur  Heart   J   1983;4(suppl  A):161-172.4.   Herzig   JW,   Feile   K,   Ruegg   JC:   Activatingeffects of AR-L  115  BS  on  the  Ca2+  sensitive force,stiffness and unloaded shortening velocity (Vmax)inisolated   contractile   structures   from   mammalianheart muscle. Arzneimittelforsch 1981;31:188-191.5.   Herzig JW, Quast U:  Increase in  Ca+  + sensitiv-ity   of  myocardial   contractile   structures   by   DPI

201-106,  abstracted.  J  Mol  Cell   Cardiol  1984,   vol

16, suppl 3,   abstract  6.

6.   Tadu M, Katz AM:  Phosphorylation of the sarco-

plasmic   reticulum   and   sarcolemma.   Annu   Rev

Physiol  1982;44:401-423.7.   Aass H,  Skomedal T, Osnes J-B:  Demonstrationof  an alpha adrenoceptor-mediated  inotropic effectof   norepinephrine   in   rabbit   papillary   muscle.J Pharmacol Exp Ther  1983;226:572-578.8.   Umans V, Ginsburg R, Zera P,  et  al: Efficacy of

beta1/beta2agonists i n   isolated  normal  and  failinghuman   hearts,   abstracted.   Circulation   1985;72:III-329.9.   Colucci   WS,   Wright   RF,   Braunwald   E:   New

positive  inotropic  agents   in  the   treatment   of   con-

gestive   heart   failure:   Mechanisms   of  action   andrecent  clinical developments (second of two  parts).N Engl J Med  1986;314:349-358.10.   El   Allaf   D,   D'Orio   V,   Carlier   J:   The   new

inotropic  phosphodiesterase   inhibitors.   Arch   Int

Physiol Biochim  1984;92:S69-S79.11.   Alousi  AA,   Canter JM,   Montenaro MJ,   et   al:Cardiotonic activity of milrinone,  a  new  and potentcardiac bipyridine,   on the  normal  and  failing heartof experimental  animals.  J  Cardiovasc Pharmacol1983;5:792-803.12.   From  AHL,  Pierpont  GL,   Francis  GS,   et   al:DPI  201-106  has   Na+   channel agonist properties.Circulation  1985;72:111-312.13.   Langsjoen   PH,   Vadhanavikit   S,   Folkers   K:

Response  of patients in   class  III   and   IV of cardio-myopathy  to  therapy  in   a blind  and   crossover trial

with   coenzymes   Q10.   Proc   Natl   Acad   Sci USA1985;82:4240-4244.14.   Cody RJ,   Muller FB,   Kubo SH,  et  al:   Identifi-cation of the  direct   vasodilator  effect  of milrinonewith   an  isolated   limb preparation  in  patients withchronic congestive heart failure. Circulation 1986;73:124-129.15.   Roubin GS, Choong CYP,  Devenish-Meares S,et al: \g=b\-Adrenergicstimulation  of the failing ventri-cle:  A  double-blind,   randomized   trial  of  sustainedoral  therapy  with   prenalterol.   Circulation   1984;69:955-962.16.   Kirlin   PC,   Pitt   B:   Hemodynamic   effects   ofintravenous prenalterol in   severe heart failure. AmJ Cardiol  1981;47:670-675.17.   Lambertz   H,   Meyer  J,   Erbel   R:  Long-termhemodynamic effects of prenalterol  in patientswithsevere congestive  heart failure.   Circulation   1984;69:298-305.18.   Molajo AO,   Bennett   DH:  Effect   of xamoterol(ICI   118,587)   a   new   beta1  adrenoceptor   partialagonist,   on resting  haemodynamic   variables   andexercise tolerance in patients with left ventriculardysfunction.  Br Heart J  1985;54:17-21.19.   Rousseau MF, Poulear H, Vincent M-F: Effectsof  a   cardioselective beta1  partial agonist (Corwin)on left ventricular function and myocardial metabo-lism   in   patients  with  previous myocardial   infarc-tion. Am J  Cardiol  1983;51:1267-1274.20.   Roffman DS,   Applefeld MM,  Grove WR, e t al:Intermittent   dobutamine   hydrochloride   infusionsin   outpatients  with   chronic  congestive  heart fail-ure.  Clin Pharm   1985;4:195-199.21.   Awan  NA,   Needham   K,   Evenson  MK,   et   al:

Therapeutic   efficacy   of oral  pirbuterol   in   severe

chronic   congestive   heart   failure:   Acute   hemody-namic   and   long-term  ambulatory  evaluation.   Am

Heart  J  1981;102:555-563.22.   Colucci   WS,   Alexander   RW,   Williams   GH:Decreased   lymphocyte  beta-adrenergic-receptordensity in patients with heart failure and  toleranceto the beta-adrenergic agonist pirbuterol. N Engl JMed  1981;305:185-190.23.   Weiner   N:   Norepinephrine,  epinephrine,   andthe   sympathomimetic   amines,   in   Gillman   AG,Goodman LS,   Rall TW,   et al  (eds):  Goodman andGilman's The Pharmacological Basis of Therapeu-tics,  ed  7.  N ew York, Macmillan Publishing Co Inc,1985,   pp  145-180.24.   Rajfer SI, Anton AH, Rossen JD, et  al: Benefi-cial hemodynamic effects  of  oral levodopa in  heartfailure.  N Engl J  Med   1984;310:1357-1362.25.   Shah PK,  Amin DK,  Horn  E: Adverse  clinicaland hemodynamic effects oforal levodopa in chronic

congestive   heart   failure.   Am   Heart   J   1985;110:488-489.26.   Goldberg LI,  Rajfer SI:  The role of adrenergicand dopamine receptors. Hosp   Pract 1985;20:67-80.27.   Dei   Cas   L,   Manca   C,   Bernardini   B:   Nonin-vasive   evaluation  of the  effects  of oral   ibopamine(SB 7505)  on  cardiac and renal function in  patientswith congestive heart failure.  J   Cardiovasc Phar-macol 1982;4:436-440.28.   Klein  NA,   Siskind   SJ,   Frishman  WH,   et   al:

Hemodynamic comparison ofintravenous amrinoneand dobutamine  in patients with chronic congestiveheart   failure.  Am J   Cardiol  1981;48:170-175.29.   Grose   RM,   Strain   JE,   Bergman   MJ,   et   al:Milrinone   vs   dobutamine:   A  comparative   study,abstracted.  Circulation  1984;70:11-11.30.   Goenen M,   Pedemonte O,  Baele P,  et  al:  Amri-none in the management of low cardiac output after

open   heart   surgery.   Am   J   Cardiol   1985;56:33B-38B.31.   Weber  KT,   Andrews  V,   Kinasewitz  GT,   et  al:Vasodilator   and   inotropic  agents   in   treatment   ofchronic   cardiac   failure:   Clinical   experience   and

response   in   exercise   performance.   Am  Heart   J1981;102:569-577.32.   Likoff   MJ, Weber KT,  Andrews V,  et  al:  Amri-none   in the   treatment   of   chronic   cardiac   failure.J Am  Coll Cardiol  1984;3:1282-1290.33.   Dibianco R,  Shabetai  R,   Silverman BD,   et  al:Oral   amrinone   for   the   treatment   of  chronic   con-

gestive   heart   failure:   Results   of   a   multicenter

randomized   double-blind   and  placebo-controlledwithdrawal   study.   J   Am   Coll Cardiol   1984;4:855-866.34.   Massie   B, Bourassa   M, Dibianco R, et  al: Long-term oral administration of amrinone for congestiveheart   failure:   Lack   of   efficacy   in   a   multicentercontrolled   trial.  Circulation 1985;71:963-971.35.   Baim   DS,   Colucci   WS,   Monrad   ES,   et   al:Survival   of patients  with   severe   congestive  heartfailure treated   with   oral   milrinone.   J   Am   CollCardiol  1986;7:661-670.36.   Monrad ES,  Baim DS, Smith HS, et  al: Effectsof milrinone   on coronary  hemodynamics  and  myo-cardial energetics in patients with congestive heartfailure.  Circulation   1985;71:972-979.37.   Baim   DS,   McDowell   AV,   Cherniles   J,   et   al:Evaluation   of   a   new  bipyridine  inotropic   agent\p=m-\milrinone\p=m-\inpatients   with   severe congestiveheart  failure.  N

 Engl J  Med

  1983;309:748-756.38.   Timmis AD, Smyth P,  Jewitt DE :   Milrinone inheart   failure: Effects   on   exercise  haemodynamicsduring short  term treatment.  Br Heart J 1985;54:42-47.39.   Petein M,  Levine TB, Cohn JN: Hemodynamiceffects of a  new  inotropic agent,  piroximone (MDL19205), in  patients with chronic heart failure. J AmColl Cardiol   1984;4:364-371.40.   Kereiakes   D,   Chatterjee   K,   Parmley   WW,et   al:   Intravenous   and   oral   MDL   17043   (a   new

inotrope-vasodilator agent) in congestive heart fail-ure:  Hemodynamic   and   clinical evaluation   in   38

patients.  J  Am  Coll   Cardiol  1984;4:884-889.41.   Rubin  SA,  Tabak  L:  MDL   17,043:   Short-  and

long-term cardiopulmonary   and  clinical   effects   in

patients   with   heart   failure.   J   Am   Coll   Cardiol1985;5:1422-1427.42.   Shah  PK,   Amin  D,   Hulse  S,   et  al:   Inotropic

therapy for refractory congestive heart failure withoral  fenoximone (MDL-17,043):  Poor long-term  re-

sults   despite  early   hemodynamic   and   clinical   im-

provement.  Circulation   1985;71:326-331.43.   Petein   M,   Levine   TB,   Cohn   JN:   Persistenthemodynamic   effects   without   long-term   clinicalbenefits   in   response   to   oral   piroximone   (MDL19,205)   in   patients  with  congestive  heart   failure.Circulation 1986;73:III-230-III-236.44.   Hauf  GF,   Bubenheimer  P,   Roskamm   H:   Theacute effect of a new positive inotropic agent (AR-L115 BS) on  cardiac hemodynamics and contractilityin   patients   with   severe congestive heart   failure.Arzneimittelforsch 1981;31:253-256.45.   Endoh   M,   Yanagisawa   T,   Morita   T,   et   al:Differential  effects of sulmazole  (ARL   115 BS)   on

contractile   force   and  cyclic A MP   levels   in   canineventricular muscle: Comparison with  MDL  17,043.J Pharmacol Exp Ther 1985;234:267-273.46.   El  Allaf,   D'Orio V,   Dresse A,  et  al:  Sustainedbeneficial effects of oral  AR-L   115 BS  in  patientswith   severe congestive  heart   failure,   abstracted.EurJ Clin Invest   1983;13:A26.47.   Uretsky BF,  Murali  S, Reddy S,   et al:  Hemo-

dynamic   and   electrocardiographic   effects   on   thefast   channel   activator   DPI   201-106,   abstracted.J Am  Coll Cardiol   1987;9:II-161-A.48.   Hori M, Kitakaze M, Nakajina S,  et  al:  Cardio-tonic   activity  of  a   new  inotropic  agent  OPC-8212

(2(1H)-quinoline derivative) under \g=b\-blockade.Cir-culation   1984;70:11-241.49.   Gross R,  Schramm M,  Thomas G,  et  al:  Bay K

8644,  a  positive inotropic dihydropyridinewith 'Ca-

agonist' properties, abstracted. J  Mol Cell Cardiol1983;15(suppl  4):29.

l d d F htt //j j t k / b UNIV OF MINN LIBRARIES U 02/18/2014