New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of...

34
New Horizons for the No-Core Shell Model Robert Roth

Transcript of New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of...

Page 1: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

New Horizons for the No-Core Shell Model

Robert Roth

Page 2: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Robert Roth - TU Darmstadt - February 2018

No-Core Shell Model & Friends

2

No-Core Shell Model

In-Medium Similarity Renormalization Group

Many-Body Perturbation Theory

• solution of matrix eigenvalue problem in truncated many-body model space

• universality: all nuclei and all bound-state observables on the same footing

• but: limited by model-space convergence

• power-series expansion of energies and states

• simplicity: low-order contributions can be evaluated very easily and efficiently

• but: order-by-order convergence problematic

• decoupling ground-state from excitations through unitary transformation via flow equation

• efficiency: favorable scaling gives access to medium-mass nuclei

• but: limited to ground-state observables

Page 3: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Robert Roth - TU Darmstadt - February 2018

No-Core Shell Model & Friends

§ complementarity of advantages and limitations of the different methods

§ combine NCSM with other methods to overcome limitations

§ expand reach in terms of observables, particle number or model-space size

§ target: spectroscopy of fully open-shell medium-mass nuclei

3

No-Core Shell Model

In-Medium Similarity Renormalization Group

Many-Body Perturbation Theory

Page 4: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Robert Roth - TU Darmstadt - February 2018 4

Hybrid NCSM Methods

IM-SRG decoupling

MBPTbasis optimization

NCSMmany-body solution

NCSMreference state

MBPTconvergence booster

NCSMmany-body solution

NCSMmany-body solution

NAT-NCSM IM-NCSMNCSM-PTNCSM

ground state

NCSMstrength distribution

SF-NCSM

Page 5: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Natural-Orbital NCSM

Page 6: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Robert Roth - TU Darmstadt - February 2018

J. Müller, A. Tichai, K. Vobig, R. Roth, in prep.

6

Natural-Orbital NCSM

NCSMmany-body solution

MBPTbasis optimization

• construct HF basis in large single-particle space

• compute perturbative corrections to one-body density matrix up to second order

• determine natural orbitals from one-body density matrix and transform matrix elements

• NCSM calculation with natural-orbital basis

• use importance truncation for large spaces and heavier nuclei (optional)

• use normal-order two-body approximation to include 3N interactions (optional)

cf. work of Ch. Constantinou, M. A. Caprio, J. P. Vary, P. Maris on construction of natural-orbital basis from NCSM solutions

Page 7: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Robert Roth - TU Darmstadt - February 2018

Natural Orbitals from MBPT

§ perform constrained spherical Hartree-Fock calculation to obtain unperturbed single-particle basis and ground state

§ compute MBPT corrections to HF ground state up to second order

7

§ write density-matrix corrections in terms of single-particle summations, evaluation only takes minutes…

§ solve eigenvalue problem of one-body density matrix, eigenvectors define expansion coefficients of natural-orbital single-particle states

§ transform all input matrix elements to natural-orbital basis

J. Müller, A. Tichai, K. Vobig, R. Roth, in prep.

§ evaluate one-body density matrix with perturbed state up to second order

<latexit sha1_base64="HtZmTYnn+p0V8TSZAqs1erp+7tY=">AAACvHiclVHdShwxFM6M2upo261eehO6FBRkmZGCliIKguyNsIVuFcw6ZDLHNe5kMibZZSXm2XyOPkFfw8w6F1b3oh5IOPn+4CNZVXBt4vhPEC4sLr17v7wSra59+Pip9Xn9t5ZjxaDPZCHVeUY1FLyEvuGmgPNKARVZAWfZ6LjmzyagNJflL3NXwUDQYcmvOKPGQ2nrL1HX8tJudU+2XWr5jcMHmAhqFJ+C7Z44S2Rlqbu0JKdDl3L89E5vXM1i8mOH3N6OaR41OfHum3NIT3Pv9MY5eUkyJ69xeOo/cmsVjtJWO+7Es8Gvl6RZ2qiZXtp6ILlkYwGlYQXV+iKJKzOwVBnOCnARGWuoKBvRIVz4taQC9MDOPsThrx7J8ZVU/pQGz9DnDkuF1nci80rf6Vq/5GpwPqdg4ts8h6a64DnU0p1pfQvKlHRR3Th52e/10t/tfO8kP7+1j/ab6stoE31BWyhBe+gIdVEP9RELTgMd3AcuPAwhHIXiSRoGjWcD/TPh5BFmGtrO</latexit>

<latexit sha1_base64="nyH0PbSgZwW2g8jF8RFMJ4Stgxc=">AAACIXicbY/PSwJBHMVn7Zdtv7Y6dhmSwChkV4LqEAhBeOhg4KagJrPjqJM7O8vMKMqy/01/Qf9A907RqehUf0m7tlJqD2Z4fN77Hp7ju1Qq03zXUguLS8sr6VV9bX1jc8vY3rmVvC8wsTF3uag6SBKXesRWVLmk6guCmOOSitO7jPPKgAhJuVdWI580GOp4tE0xUhFqGtd10eV3QbZUPgybAb0P4QVMUPFqgo5gfgLN/C9MkGUlSG8aGTNnjgXnjZWYDEhUahpP9RbHfUY8hV0kZc0yfdUIkFAUuyTU631JfIR7qENqkfUQI7IRjFeH8CAiLdjmInqegmP69yJATMoRc6ImQ6orZ7MY/p8JMgjhFBpKl7ZIXD0exj9DWPBQjxdbs/vmjZ3Pneesm5NM4SyZngZ7YB9kgQVOQQEUQQnYAINH8AY+wZf2oD1rL9rrTzWlJTe7YEraxzfv1aFr</latexit>

<latexit sha1_base64="DtZUz6mqYjY7maLgbIySSpJn4u4=">AAACF3icbY/LSsNAGIUn9VbjLerSzWARKkpJiqAuhKIgXUZobaGpZTKd1qEzSZiZlpaQF/EJfAtdiSvBlfo2JjGLXjwww+E7518cN2BUKtP80XJLyyura/l1fWNza3vH2N27l/5QYFLHPvNF00WSMOqRuqKKkWYgCOIuIw13cJPkjRERkvpeTU0C0uao79EexUjFqGNcOwOiQseW9CEs2rXjKIJXMGXV2wiewOnYStJZVI5RxyiYJTMVXDRWZgogk90xXpyuj4eceAozJGXLMgPVDpFQFDMS6c5QkgDhAeqTVmw9xIlsh+nWCB7FpAt7voifp2BKpy9CxKWccDducqQe5XyWwP8zQUYRnEFjyWiXJNXTcfJzhIUf6Xq82Jrft2jq5dJlybo7K1Qusul5cAAOQRFY4BxUQBXYoA4weAYf4At8a0/aq/amvf9Vc1p2sw9mpH3+AsdEnl8=</latexit>

Page 8: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

ℏΩ [MeV]

E[MeV

]

14 16 18 20 22 24 26 28

-170

-165

-160

-155

-150

-145

-140

Natural Orbitals

NN

-onl

y, α

=0.

08 fm

4 , e

max

=12

ℏΩ [MeV]

E[MeV

]

14 16 18 20 22 24 26 28

-170

-165

-160

-155

-150

-145

-140

Robert Roth - TU Darmstadt - February 2018

J. Müller, A. Tichai, K. Vobig, R. Roth, in prep.

8

NCSM Convergence: Energies

§ MBPT natural-orbital basis eliminates frequency dependenceand accelerates convergence of NCSM

Harmonic Oscillator

16ONmax=2

12

4

6

Hartree-Fock

ℏΩ [MeV]

E[MeV

]

14 16 18 20 22 24 26 28

-170

-165

-160

-155

-150

-145

-140

Page 9: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

ℏΩ [MeV]

E[MeV

]

12 14 16 18 20 22 24 26 28

-130

-120

-110

-100

-90

ℏΩ [MeV]

E[MeV

]

12 14 16 18 20 22 24 26 28

-130

-120

-110

-100

-90

Robert Roth - TU Darmstadt - February 2018

J. Müller, A. Tichai, K. Vobig, R. Roth, in prep.

9

NCSM Convergence: Energies

Natural Orbitals

NN

+3N

(400

), α

=0.

08 fm

4 , e

max

=12

§ MBPT natural-orbital basis eliminates frequency dependenceand accelerates convergence of NCSM

Harmonic Oscillator

Nmax=2

10

4

6

Hartree-Fock

ℏΩ [MeV]

E[MeV

]

12 14 16 18 20 22 24 26 28

-130

-120

-110

-100

-90

8

16O

Page 10: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

ℏΩ [MeV]

E[MeV

]

12 14 16 18 20 22 24 26 28

-130

-120

-110

-100

-90

ℏΩ [MeV]

E[MeV

]

12 14 16 18 20 22 24 26 28

-130

-120

-110

-100

-90

Robert Roth - TU Darmstadt - February 2018

J. Müller, A. Tichai, K. Vobig, R. Roth, in prep.

10

NCSM Convergence: Energies

Natural Orbitals

NN

+3N

(400

), α

=0.

08 fm

4 , e

max

=12

§ MBPT natural-orbital basis eliminates frequency dependenceand accelerates convergence of NCSM

Harmonic Oscillator

Nmax=2

10

4

6

Hartree-Fock

ℏΩ [MeV]

E[MeV

]

12 14 16 18 20 22 24 26 28

-130

-120

-110

-100

-90

8

16O ●◆ ... explicit 3N○◇△... NO2B

Page 11: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

ℏΩ [MeV]

Rp,rms

[fm]

12 14 16 18 20 22 24 26 28

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

ℏΩ [MeV]

Rp,rms

[fm]

12 14 16 18 20 22 24 26 28

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

Robert Roth - TU Darmstadt - February 2018

J. Müller, A. Tichai, K. Vobig, R. Roth, in prep.

11

NCSM Convergence: Radii

Natural Orbitals

NN

+3N

(400

), α

=0.

08 fm

4 , e

max

=12

§ MBPT natural-orbital basis eliminates frequency dependenceand accelerates convergence of NCSM

Harmonic Oscillator

Nmax=2

10

4

6

Hartree-Fock

ℏΩ [MeV]

Rp,rms

[fm]

12 14 16 18 20 22 24 26 28

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

16O ●◆ ... explicit 3N○◇△... NO2B

Page 12: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

ℏΩ [MeV]

Rp,rms

[fm]

12 14 16 18 20 22 24 26 28

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

ℏΩ [MeV]

Rp,rms

[fm]

12 14 16 18 20 22 24 26 28

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

Robert Roth - TU Darmstadt - February 2018

J. Müller, A. Tichai, K. Vobig, R. Roth, in prep.

12

NCSM Convergence: Radii

Natural Orbitals

NN

+3N

(400

), α

=0.

08 fm

4 , e

max

=12

§ MBPT natural-orbital basis eliminates frequency dependenceand accelerates convergence of NCSM

Harmonic Oscillator

Nmax=2

10

4

6

Hartree-Fock

ℏΩ [MeV]

Rp,rms

[fm]

12 14 16 18 20 22 24 26 28

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

16O ●◆ ... explicit 3N○◇△... NO2B

Page 13: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Nmax

E x(1+)

[MeV

]

2 4 6 8 100

2

4

6

8

10

Nmax

E[MeV

]

2 4 6 8 10

-100

-95

-90

-85

-80

Robert Roth - TU Darmstadt - February 2018

J. Müller, A. Tichai, K. Vobig, R. Roth, in prep.

13

NCSM Convergence: Spectroscopy

NN+3N(500), α=0.08 fm4, emax=12

Nmax

E x(2+)

[MeV

]

2 4 6 8 100

2

4

6

8

10

Nmax

Q(2+)

[efm2]

2 4 6 8 100

1

2

3

4

5

6

Nmax

B(E2,2+

→0+

)[e2fm4]

2 4 6 8 100

1

2

3

4

5

6

Nmax

B(M1,1+

→0+

)[μN2]

2 4 6 8 100

0.01

0.02

12C

ground-state energy

2+ excitation energy 1+ excitation

energy

2+ quadrupolemoment

E2 transitionstrength

M1 transitionstrength

ħΩ

⦁ 16 MeV◆ 20 MeV

24 MeV

Page 14: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Robert Roth - TU Darmstadt - February 2018

J. Müller, A. Tichai, K. Vobig, R. Roth, in prep.

14

Oxygen Isotopes

Nmax

E[MeV

]

2 4 6 8 10 12 14-170

-160

-150

-140

-130

-120

-110

-100

-90

-80

14O

15O

16O

...

24O

§ excellent convergence with natural-orbital basis for all oxygen isotopes

chiral NN+3N Λ3N=400 MeV α=0.08 fm4

ħΩ=20 MeV emax=12

Page 15: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Robert Roth - TU Darmstadt - February 2018

J. Müller, A. Tichai, K. Vobig, R. Roth, in prep.

15

Oxygen Isotopes

§ excellent convergence with natural-orbital basis for all oxygen isotopes

§ very good agreement with experimental systematics and dripline

§ NO2B instead of explicit 3N causes ~1% overbinding

A

E[MeV

]

14 16 18 20 22 24 26

-170

-160

-150

-140

-130

-120

-110

-100

-90

AO

chiral NN+3N Λ3N=400 MeV α=0.08 fm4

ħΩ=20 MeV emax=12

⦁ NAT-NCSM, explicit 3N

⦁ NAT-NCSM, NO2B

Page 16: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Perturbatively Improved NCSM

Page 17: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

• multi-configurational MBPT at second order for individual unperturbed states

• capture couplings in huge model-space through perturbative corrections

Robert Roth - TU Darmstadt - February 2018

Perturbatively Improved NCSM

17

• eigenstates from NCSM at small Nmax as unperturbed states

• access to all open-shell nuclei and systematically improvable

NCSMmany-body solution

MBPTconvergence booster

Tichai, Gebrerufael, Vobig, Roth; arXiv:1703.05664

Page 18: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Robert Roth - TU Darmstadt - February 2018

Tichai, Gebrerufael, Vobig, Roth; arXiv:1703.05664

Multi-Configurational Perturbation Theory

§ prior NCSM calculation: reference or unperturbed state is superposition of Slater determinants from reference space

18

§ define partitioning and unperturbed Hamiltonian

§ evaluate second-order correction to the energy at many-body level

§ reformulation in terms of single-particle summations gives access to very large model spaces

|�refi =X

�2Mref

C� |��i

E(2) = �X

� /2Mref

|h�� |H |�refi|2

�� � �ref

H0 = �ref |�refih�ref| +X

� /2Mref

�� |��ih�� |

Page 19: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Robert Roth - TU Darmstadt - February 2018

Tichai, Gebrerufael, Vobig, Roth; arXiv:1703.05664

19

Oxygen Isotopes

A

E[MeV

]

14 16 18 20 22 24 26

-170

-160

-150

-140

-130

-120

-110

-100

-90

AO

chiral NN+3N Λ3N=400 MeV α=0.08 fm4

ħΩ=20 MeV emax=12

HF basis Nmax=2 reference

Computational CostNAT-NCSM, expl. 3N 20000 CPU-hNAT-NCSM, NO2B 16000 CPU-hNCSM-PT 1000 CPU-h

§ excellent agreement with direct NCSM

§ all isotopes are accessible due simple m-scheme implementation

NCSM-PT

⦁ NAT-NCSM, explicit 3N

⦁ NAT-NCSM, NO2B

Page 20: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Robert Roth - TU Darmstadt - February 2018

Tichai, et al.; in prep.

20

Oxygen Isotopes: Excited 2+ States

A

E*(2+)

[MeV

]

14 16 18 20 22 24 260

2

4

6

8

10

AO§ all methods can treat

excited states natively

§ example: first 2+ states in even oxygen isotopes

§ excellent agreement among methods except for closed (sub-)shells 22O, 24O…

chiral NN+3N Λ3N=400 MeV α=0.08 fm4

ħΩ=20 MeV emax=12

HF basis Nmax=2 reference

NCSM-PT

⦁ NAT-NCSM, explicit 3N

⦁ NAT-NCSM, NO2B

Page 21: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Robert Roth - TU Darmstadt - February 2018

Tichai, Gebrerufael, Vobig, Roth; arXiv:1703.05664

21

Exploring sd-Shell PhenomenaE

[MeV

]

-170

-160

-150

-140

-130

-120

A

E[MeV

]

16 18 20 22 24 26 28 30 32-200-190-180-170-160-150-140-130-120

w/o chiral 3Nwith chiral 3N

§ exploring sd-shell phenomena, e.g., oxygen anomaly

§ low computational cost enables surveys with different interactions

AO

AF

NCSM-PT chiral NN+3N Λ3N=400 MeV α=0.08 fm4

ħΩ=20 MeV emax=12 HF basis Nmax=2 reference

Page 22: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

In-Medium NCSM

Page 23: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Robert Roth - TU Darmstadt - February 2018

In-Medium NCSM

23

• use in-medium evolved Hamiltonian for a subsequent NCSM calculation

• access to ground and excited states and full suite of observables

• IM-SRG evolution of multi-reference normal-ordered Hamiltonian (and other operators)

• decoupling of particle-hole excitations, i.e., pre-diagonalization in many-body space

• ground-state from NCSM at small Nmax as reference state for multi-reference IM-SRG

• access to all open-shell nuclei and systematically improvable

NCSMreference state

IM-SRG decoupling

NCSMmany-body solution

talk by Klaus Vobig

on Thursday

Page 24: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Robert Roth - TU Darmstadt - February 2018

Gebrerufael, Vobig, Hergert, Roth; PRL 118, 152503 (2017)

24

Oxygen Isotopes

A

E[MeV

]

14 16 18 20 22 24 26

-170

-160

-150

-140

-130

-120

-110

-100

-90

AO

chiral NN+3N Λ3N=400 MeV α=0.08 fm4

ħΩ=20 MeV emax=12

HF basis Nmax=0 reference

§ excellent agreement with direct NCSM

§ IM-SRG evolution limited to J=0 reference states and thus even-mass isotopes

◆ IM-NCSM

⦁ NAT-NCSM, explicit 3N

⦁ NAT-NCSM, NO2B

Page 25: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Robert Roth - TU Darmstadt - February 2018

Vobig, Gebrerufael, Roth; in prep.

25

Oxygen Isotopes

A

E[MeV

]

14 16 18 20 22 24 26

-170

-160

-150

-140

-130

-120

-110

-100

-90

AO§ excellent agreement with

direct NCSM

§ IM-SRG evolution limited to J=0 reference states and thus even-mass isotopes

§ odd-mass nuclei via simple particle attachment or removal in final NCSM run

chiral NN+3N Λ3N=400 MeV α=0.08 fm4

ħΩ=20 MeV emax=12

HF basis Nmax=0 reference

IM-NCSM attached▼ IM-NCSM removed

◆ IM-NCSM

⦁ NAT-NCSM, explicit 3N

⦁ NAT-NCSM, NO2B

Page 26: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Strength-Function NCSM

Page 27: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

• prepare pivot vector by applying transition operator to ground-state vector

• use simplistic Lanczos iterations to generate strength distribution

Robert Roth - TU Darmstadt - February 2018

Strength-Function NCSM

27

• regular NCSM calculation for ground state for a range of Nmax truncations

• access to all open-shell nuclei

NCSMground state

NCSMstrength distribution

Stumpf, Wolfgruber, Roth; arXiv:1709.06840

Page 28: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Stumpf, Wolfgruber, Roth; arXiv:1709.06840

Robert Roth - TU Darmstadt - February 2018

Strength-Function NCSM

§ perform NCSM calculation for ground state

§ prepare pivot vector with transition operator

§ perform Lanczos algorithm with Hamiltonian: obtain eigenvectors as superposition of Lanczos vectors

28

10�3

10�2

10�1

100

101100 LV

10�3

10�2

10�1

100

101200 LV

10�3

10�2

10�1

100

101400 LV

20 40 60 80 100E� [MeV]

10�3

10�2

10�1

100

101800 LV

R(E2)[e2fm

4MeV�1]

16O

, N

N-o

nly,

α=

0.08

fm

4 , H

F ba

sis,

ħΩ

=20

MeV

, e

max

=12

, N

max

=4

<latexit sha1_base64="oW0TF0NjWJs//zcw2N/Rz6anF9U=">AAAB23icbU9NS8NAFHypX7V+VT16CRbBg5RERPFWEMFjBWMrbS2b7WtdupsNu5vSEnLzJN7Em/4V/4f/xqTmYFsH3mOYmQdv/JAzbRzn2yosLa+srhXXSxubW9s75d29ey0jRdGjkkvV9IlGzgL0DDMcm6FCInyODX94lfmNESrNZHBnJiF2BBkErM8oMan00B6iia+7TtItV5yqM4W9SNycVCBHvVv+avckjQQGhnKidct1QtOJiTKMckxK7UhjSOiQDLCV0oAI1J14+nBiH6VKz+5LlU5g7Kn69yImQuuJ8NOkIOZJz3uZ+L+ncJTYM9JYc9bDLHoyzrYgVMmklBZ25+stEu+0ell1b88qtfO8eREO4BCOwYULqMEN1MEDCgLe4AM+rUfr2XqxXn+jBSu/2YcZWO8/wVWIeQ==</latexit>

<latexit sha1_base64="Djjp+TfxbGmANDWlMy0Hr/Cn5s0=">AAACZ3icbVDtShwxFM1M69fUj7GCCP4wuggKup3xR4tIQZCCv6oFVwWzDpnMdRs282GSXVZCnqLv0/foK/gG/uvMOMK6eiG5h3PPPXBuXAiudBD8c9wPH6emZ2bnvE/zC4tL/vLnS5UPJIMOy0Uur2OqQPAMOpprAdeFBJrGAq7i/kk1vxqCVDzPLvRDAd2U9jJ+xxnVJRX5f0gftBlGocXfMUmp/s2oMD8tOcIkL8xZRERpllCLa+GPKLDYI/f3A5ocPTdvbKvxkHwEtdTUHjYyLy63hiS0Z/Ekb2v5rdkPvxzYyG8F7aAu/BaEDWihps4j/y9JcjZIIdNMUKVuwqDQXUOl5kyA9chAQUFZn/bgpoQZTUF1TX08i7dLJsF3uSxfpnHNjm8Ymir1kMalsgqqJmcV+f5MwrA61hg1UoInUEn3RtWfUiZz65WBw8l4b0HnoH3YDn8FreOvTfJZtI620A4K0Td0jE7ROeoghp6cDWfH2XUeXd9dddeepa7T7KygV+Vu/gfk9Lqa</latexit>

<latexit sha1_base64="Yv2Onlskjjad94u8XZcpN6AzNZY=">AAAB23icbU9NS8NAFHxbv2r9qnr0EiyCBymJB8VbQQSPFYyttLVstq916W427G5LS8jNk3gTb/pX/B/+G5Oag60OvMcwMw/eBJHgxrruFyksLa+srhXXSxubW9s75d29O6NGmqHPlFC6GVCDgofoW24FNiONVAYCG8HwMvMbY9SGq/DWTiPsSDoIeZ8zalPpvj1EG191w6RbrrhVdwbnL/FyUoEc9W75s91TbCQxtExQY1qeG9lOTLXlTGBSao8MRpQN6QBbKQ2pRNOJZw8nzlGq9Jy+0umE1pmpvy9iKo2ZyiBNSmofzaKXif97GseJMydNjOA9zKInk2xLyrRKSmlhb7HeX+KfVi+q3o1bqZ3lzYtwAIdwDB6cQw2uoQ4+MJDwCu/wQR7IE3kmLz/RAslv9mEO5O0bGUSIsw==</latexit>

<latexit sha1_base64="BnCauYEobTkz8WhFQuvcT6/rUEE=">AAACBnicbY9NSsNAHMUn9avWr6hLN4NFqCAlKaKIFApF0F0FYwtNGybTaR06k4TMpLSEOYA38BauxF1xp1fwNiaxC9v6YIYf773/4rkBo0IaxreWW1ldW9/Ibxa2tnd29/T9g0fhRyEmFvaZH7ZcJAijHrEklYy0gpAg7jLSdIf1NG+OSCio7z3ISUA6HA082qcYycRy9Io9JDK+cTwFq9AWEXdiWjVVN75T9jWsO7Qbl7zTlLPiyKHK0YtG2cgEl8GcQRHM1HD0qd3zccSJJzFDQrRNI5CdGIWSYkZUwY4ECRAeogFpJ+ghTkQnzrYpeJI4Pdj3w+R5Embu34sYcSEm3E2aHMknsZil5v9ZSEYKzlljwWiPpNWzcfpzhENfFZLB5uK8ZbAq5auyeX9erF3MlufBETgGJWCCS1ADt6ABLIDBC5iCT/ClPWuv2pv2/lvNabObQzAn7eMHxy2Y4Q==</latexit>

§ first coefficient provides transition matrix element

§ construct discrete strength distribution

<latexit sha1_base64="56tvaD39UFWkH09G4hOtIg7i5oQ=">AAACJnicbU/bSsMwGE7nac5T1UtvikNQkNGKKCKCMASvdIpzgp0lTf/NsPRAko1JyAP5Bl75Cl6JeCPe6WPY1l6o84OEL9+B8PkJo0La9qtRGhufmJwqT1dmZufmF8zFpUsR9zmBJolZzK98LIDRCJqSSgZXCQcc+gxafq+e+a0BcEHj6ELeJdAOcTeiHUqwTCXPPK97zo1ajza0dWC5Psc9kGrgOVodeVGuhVjeEszUiXb38xenQ0hdWys3TtSp9pTL0g8DrL9Lnlm1a3YOa5Q4BamiAg3PfHSDmPRDiCRhWIhrx05kW2EuKWGgK25fQIJJD3fhOqURDkG0Vb5dW2upElidmKcnklau/mwoHApxF/ppMlsi/nqZ+L/HYaCtX9JQMBpAFt0cZneICY91JR3s/J03Sppbtb2ac7ZdPdwplpfRClpF68hBu+gQHaMGaiKCHtAb+kCfxr3xZDwbL9/RklF0ltEvGO9feP6mxA==</latexit>

<latexit sha1_base64="9AwvB4qzHMOKPUS2cPvZ7eEUDUw=">AAACOnicbVBNSyMxGM6461f9quvRS7QIrWiZEXFZilCQwt5Wxapg6pDJvNVgMjMkqVSm+Wn6C/wDe97Tsrdlb7uHTescbPWBhIfnI/AkygTXxve/e1MfPk7PzM7NlxYWl5ZXyqufznXaUwzaLBWpuoyoBsETaBtuBFxmCqiMBFxEd0dD/+IelOZpcmYeMuhIepPwLmfUOCksd0+rLSJcPqY7uHW9XcOHmOieDBPSwANMJDWK9yFvhb7NycaApFn+zYZ50bEDsmGdmVg8uN7DpEFiEIZW3Ut4F1edseuatVpYrvh1fwT8lgQFqaACx2H5icQp60lIDBNU66vAz0wnp8pwJsCWSE9DRtkdvYErRxMqQXfy0X9YvOWUGHdT5U5i8Eh93cip1PpBRi7p9t3qSW8ovu8puLd4TOprwWMYRnf6w1tSplJbcoODyXlvSXuv/qUenOxXmgfF8jm0jjZRFQXoM2qir+gYtRFDz+g3+ov+eY/eD++n9+slOuUVnTU0Bu/Pf1PsqtA=</latexit>

Page 29: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Stumpf, Wolfgruber, Roth; arXiv:1709.06840

Robert Roth - TU Darmstadt - February 2018

Strength-Function NCSM

§ works with simplest Lanczos algorithm (no reorthogonalization, Lanczos vectors discarded)

§ same computational reach as regular NCSM

§ no ad-hoc truncations, convergence in Nmax and Lanczos iterations can be demonstrated explicitly

§ full convergence of individual transitions in the relevant energy regime after ~800 iterations

§ full access to fine structure of giant resonances

§ full access to below-threshold features

29

10�3

10�2

10�1

100

101100 LV

10�3

10�2

10�1

100

101200 LV

10�3

10�2

10�1

100

101400 LV

20 40 60 80 100E� [MeV]

10�3

10�2

10�1

100

101800 LV

R(E2)[e2fm

4MeV�1]

16O

, N

N-o

nly,

α=

0.08

fm

4 , H

F ba

sis,

ħΩ

=20

MeV

, e

max

=12

, N

max

=4ab initio approach to

strength distributions with many advantages

Page 30: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Robert Roth - TU Darmstadt - February 2018

Stumpf, Wolfgruber, Roth; arXiv:1709.06840

30

Discrete Strength Distribution

10�2

10�1

10016O

10�2

10�1

100

10�2

10�1

100

101

10�2

10�1

10018O

10�2

10�1

100

10�2

10�1

100

101

10�2

10�1

10020O

10�2

10�1

100

10�2

10�1

100

101

10�2

10�1

10022O

10�2

10�1

100

10�2

10�1

100

101

0 10 20 30 40 50 60E� [MeV]

10�2

10�1

10024O

0 10 20 30 40 50 60E� [MeV]

10�2

10�1

100

0 10 20 30 40 50 60E� [MeV]

10�2

10�1

100

101

R(E0)[e2fm

4MeV�1]

R(E1)[e2fm

2MeV�1]

R(E2)[e2fm

4MeV�1]

isoscalar E0 isovector E1 isoscalar E2

chiral

NN

+3N

(400

), α=

0.08

fm

4 ,

HF

basi

s, ħΩ

=20

MeV

, e

max

=12

, N

max

=8/

9, 1

000L

V• discrete strength distribution, even above particle-emission threshold, since we work with bound-state basis

• escape width: cannot be described, expected to be a few 100 keV in resonance region

• spreading width: fully included through configuration mixing, dominant in resonance region

• description of escape width needs continuum basis (Gamow)

• however, typical experimental resolution for unstable isotopes ~1 MeV, i.e., escape width is not resolved

• traditional approach: fold discrete strength distribution with Lorentzian of ~1 MeV width

Page 31: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

0.20.40.60.81.0 16O

0.2

0.4

0.6

2

468

10

0.2

0.4

0.6

0.8 18O

0.1

0.2

0.3

2

4

6

8

0.5

1.0

1.5 20O

0.1

0.2

0.3

2468

10

0.5

1.0

1.5

2.0 22O

0.2

0.4

0.6

5

10

15

0 10 20 30 40 50 60E� [MeV]

0.5

1.0

1.5

2.0 24O

0 10 20 30 40 50 60E� [MeV]

0.2

0.4

0.6

0 10 20 30 40 50 60E� [MeV]

5

10

15

R(E0)[e2fm

4MeV�1]

R(E1)[e2fm

2MeV�1]

R(E2)[e2fm

4MeV�1]

Robert Roth - TU Darmstadt - February 2018

Stumpf, Wolfgruber, Roth; arXiv:1709.06840

31

Strength Distribution

chiral

NN

+3N

(400

) &

N2L

O-S

AT,

α=

0.08

fm

4 ,

HF

basi

s, ħΩ

=20

MeV

, e

max

=12

, N

max

=8/

9, 1

MeV

sm

earing

isoscalar E0 isovector E1 isoscalar E2

Page 32: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Robert Roth - TU Darmstadt - February 2018

Stumpf, Wolfgruber, Roth; arXiv:1709.06840

Comparison with RPA and SRPA

§ collective excitations traditionally described in RPA or SRPA

§ RPA (1p1h) cannot describe fragmentation, therefore, go to SRPA (2p2h)

§ NCSM shows much more fine structure than SRPA and resolves notorious problem with pathological SRPA energy-shifts

32

10�2

100

16O

10�2

100

10�2

100

10�2

100

10�2

100

10�2

100

10 20 30 40 50 60E� [MeV]

10�2

100

10 20 30 40 50 60E� [MeV]

10�2

100

10 20 30 40 50 60E� [MeV]

10�2

100

R(E0)[e2fm

4MeV�1]

R(E1)[e2fm

2MeV�1]

R(E2)[e2fm

4MeV�1]

isoscalar E0 isovector E1 isoscalar E2

NC

SM

RP

AS

RP

A

chiral

NN

+3N

(400

), α=

0.08

fm

4 ,

HF

basi

s, ħΩ

=20

MeV

, e

max

=12

, N

max

=8/

9

Page 33: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Robert Roth - TU Darmstadt - February 2018

Conclusions

§ hybrids built on the NCSM enable comprehensive access to ground and excited states of arbitrary open-shell nuclei

§mass reach: A≲30 if large Nmax is needed: NAT-NCSM, SF-NCSMA≲70 if small Nmax is sufficient: IM-NCSM, NCSM-PT

§more hybrids: NCSM with Continuum, HORSE,...

33

IM-SRG decoupling

MBPTbasis optimization

NCSMmany-body solution

NCSMreference state

MBPTconvergence booster

NCSMmany-body solution

NCSMmany-body solution

NAT-NCSM IM-NCSMNCSM-PTNCSM

ground state

NCSMstrength distribution

SF-NCSM

Page 34: New Horizons for the No-Core Shell Model · No-Core Shell Model & Friends §complementarity of advantages and limitations of the different methods §combine NCSM with other methods

Robert Roth - TU Darmstadt - February 2018

� S. Alexa, D. Derr, M. Dupper, A. Geißel, S. Graf, T. Hüther, J. Kaltwasser, M. Knöll, L. Mertes, J. Müller, S. Schulz, C. Stumpf, T. Tilger, K. Vobig, R. WirthTechnische Universität Darmstadt

� A. Tichai CEA Saclay

� P. Navrátil TRIUMF, Vancouver

� H. HergertNSCL / Michigan State University

� J. Vary, P. MarisIowa State University

� E. Epelbaum, H. Krebs & the LENPIC CollaborationUniversität Bochum, …

Epilogue

§ thanks to my group and my collaborators

34

Epilogue

■ thanks to my group & my collaborators

● S. Binder, J. Braun, A. Calci, S. Fischer,E. Gebrerufael, H. Spiess, J. Langhammer, S. Schulz,C. Stumpf, A. Tichai, R. Trippel, R. Wirth, K. VobigInstitut für Kernphysik, TU Darmstadt

● P. NavrátilTRIUMF Vancouver, Canada

● J. Vary, P. MarisIowa State University, USA

● S. Quaglioni, G. HupinLLNL Livermore, USA

● P. PiecuchMichigan State University, USA

● H. HergertOhio State University, USA

● P. PapakonstantinouIBS/RISP, Korea

● C. ForssénChalmers University, Sweden

● H. Feldmeier, T. NeffGSI Helmholtzzentrum

JUROPA LOEWE-CSC EDISON

COMPUTING TIME

46