Network Calculations

46
ADVANCED POWER SYSTEM 2-NETWORK CALCULATIONS 1 Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

description

Network Calculations

Transcript of Network Calculations

Page 1: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

1

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

Page 2: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

2

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

NETWORK CALCULATIONS

The steady state analysis of an interconnected power system during normal conditions is considered when calculating networks. The power system is assumed to be operating under balanced condition and can be represented by a single-line diagram. The power system network contains hundreds of buses and branches with impedances specified in per-unit on a common MVA base. Power flow studies, commonly referred to as load flow, are essentials of power system design and analysis. Load flow studies are necessary for planning, economic operation, scheduling and exchange of power between utilities. Load flow study is also required for many other analysis such as transient stability, dynamic stability, contingency and state estimation.

Network equations can be formulated in a variety of forms. However, node

voltage method is commonly used for power system analysis. The network equations which are in the nodal admittance form results in complex linear simultaneous algebraic equations in terms of node currents. The load flow results give the bus voltage magnitude and phase angles and hence the power flow through the transmission lines, line losses and power injection at all buses.

NODE EQUATIONS The junctions formed when two or more pure elements (R, L and C or an ideal

source of voltage or current) are connected to each other at their terminal are called nodes. Systematic formulation of equations determined at nodes of a circuit by applying Kirchhoffโ€™s current law is the basis of some excellent computer solutions of power system problems. Usually it is convenient to consider only those nodes to which more than two elements are connected and to call these junction pointsโ€™ major nodes.

In order to examine some features of node equations, always begin with the

one-line diagram of a simple power system. In order to further understand node equations, consider the power system diagram given below.

Page 3: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

3

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

a

b

c

4

1

3

2

In the figure above, generators are connected through transformers to

high tension buses 1 and 3 and supply a synchronous motor load at bus 2. For the purpose of analysis, all machines at any one bus are treated as single machine and represented by a single emf and series reactance.

Next is to draw the reactance diagram of the one-line diagram, thus

4

1

3

2

Ea

0

Eb

Ec

XaXT1

Xc XT3

XbXT2

X13

X34

X23

X14

X24

Page 4: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

4

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

4

1

3

2

Ea

0

Eb

Ec

Za

Zc

Zb

X13

X34

X23

X14

X24

Za=Xa+XT1

Zc=Xc+XT3

Zb=Xb+XT2

Where:

Nodes are indicated by dots, but numbers are assigned only to major nodes.If

the circuit is redrawn with the emfs and the impedances in series connecting them to the major nodes replaced by the equivalent current sources and shunt admittances, the result is the circuit below.

4

1

3

2

I1

0

I2

I3

Ya

Yb

Yc

Yf

Yd

Yg

Ye

Yh

Page 5: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

5

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

Single-subscript notation will be used to designate the voltage of each bus with respect to the neutral taken as the reference node 0. Applying Kirchhoffโ€™s current Law, we have

At node 1

๐ผ1 = ๐‘‰1๐‘Œ๐‘Ž + ๐‘‰1 โˆ’ ๐‘‰3 ๐‘Œ๐‘“ + ๐‘‰1 โˆ’ ๐‘‰4 ๐‘Œ๐‘‘

At node 2 ๐ผ2 = ๐‘‰2๐‘Œ๐‘ + ๐‘‰2 โˆ’ ๐‘‰3 ๐‘Œ๐‘” + ๐‘‰2 โˆ’ ๐‘‰4 ๐‘Œ๐‘•

At node 3 ๐ผ3 = ๐‘‰3๐‘Œ๐‘ + ๐‘‰3 โˆ’ ๐‘‰1 ๐‘Œ๐‘“ + ๐‘‰3 โˆ’ ๐‘‰2 ๐‘Œ๐‘” + ๐‘‰3 โˆ’ ๐‘‰4 ๐‘Œ๐‘’

At node 4 0 = ๐‘‰4 โˆ’ ๐‘‰1 ๐‘Œ๐‘‘ + ๐‘‰4 โˆ’ ๐‘‰2 ๐‘Œ๐‘• + ๐‘‰4 โˆ’ ๐‘‰3 ๐‘Œ๐‘’

Rearranging these equations will yield to; At node 1

๐ผ1 = ๐‘‰1๐‘Œ๐‘Ž + ๐‘‰1 โˆ’ ๐‘‰3 ๐‘Œ๐‘“ + ๐‘‰1 โˆ’ ๐‘‰4 ๐‘Œ๐‘‘

๐‘ฐ๐Ÿ = ๐‘ฝ๐Ÿ ๐’€๐’‚ + ๐’€๐’‡ + ๐’€๐’… โˆ’ ๐‘ฝ๐Ÿ‘๐’€๐’‡ โˆ’ ๐‘ฝ๐Ÿ’๐’€๐’…

At node 2

๐ผ2 = ๐‘‰2๐‘Œ๐‘ + ๐‘‰2 โˆ’ ๐‘‰3 ๐‘Œ๐‘” + ๐‘‰2 โˆ’ ๐‘‰4 ๐‘Œ๐‘•

๐‘ฐ๐Ÿ = ๐‘ฝ๐Ÿ ๐’€๐’ƒ + ๐’€๐’ˆ + ๐’€๐’‰ โˆ’ ๐‘ฝ๐Ÿ‘๐’€๐’ˆ + โˆ’๐‘ฝ๐Ÿ’๐’€๐’‰

At node 3

๐ผ3 = ๐‘‰3๐‘Œ๐‘ + ๐‘‰3 โˆ’ ๐‘‰1 ๐‘Œ๐‘“ + ๐‘‰3 โˆ’ ๐‘‰2 ๐‘Œ๐‘” + ๐‘‰3 โˆ’ ๐‘‰4 ๐‘Œ๐‘’

๐‘ฐ๐Ÿ‘ = โˆ’๐‘ฝ๐Ÿ๐’€๐’‡โˆ’๐‘ฝ๐Ÿ๐’€๐’ˆ + ๐‘ฝ๐Ÿ‘ ๐’€๐’ˆ + ๐’€๐’„ + ๐’€๐’‡ + ๐’€๐’† โˆ’ ๐‘ฝ๐Ÿ’๐’€๐’†

At node 4

0 = ๐‘‰4 โˆ’ ๐‘‰1 ๐‘Œ๐‘‘ + ๐‘‰4 โˆ’ ๐‘‰2 ๐‘Œ๐‘• + ๐‘‰4 โˆ’ ๐‘‰3 ๐‘Œ๐‘’

๐ŸŽ = โˆ’๐‘ฝ๐Ÿ๐’€๐’… โˆ’ ๐‘ฝ๐Ÿ๐’€๐’‰ โˆ’ ๐‘ฝ๐Ÿ‘๐’€๐’† + ๐‘ฝ๐Ÿ’ ๐’€๐’… + ๐’€๐’‰ + ๐’€๐’† In the above equations, it is apparent that the current flowing into the network

from the current sources connected to anode is equated to the sum of several products.

Page 6: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

6

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

At any node, one product is the voltage of the node times the sum of all the admittances which terminate or connected on that node. This product accounts for the current that flows away from the node if the voltage is zero at each other node. Each other product equals negative of the voltage at another node times the admittance connected directly between the othe node and the node at which the equation is formulated.

The standard form for the four independent equations in matrix form is,

๐‘ฐ๐Ÿ๐‘ฐ๐Ÿ๐‘ฐ๐Ÿ‘๐‘ฐ๐Ÿ’

=

๐’€๐Ÿ๐Ÿ ๐’€๐Ÿ๐Ÿ

๐’€๐Ÿ๐Ÿ ๐’€๐Ÿ๐Ÿ

๐’€๐Ÿ๐Ÿ‘ ๐’€๐Ÿ๐Ÿ’

๐’€๐Ÿ๐Ÿ‘ ๐’€๐Ÿ๐Ÿ’

๐’€๐Ÿ‘๐Ÿ ๐’€๐Ÿ‘๐Ÿ

๐’€๐Ÿ’๐Ÿ ๐’€๐Ÿ’๐Ÿ

๐’€๐Ÿ‘๐Ÿ‘ ๐’€๐Ÿ‘๐Ÿ’

๐’€๐Ÿ’๐Ÿ‘ ๐’€๐Ÿ’๐Ÿ’

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ‘

๐‘ฝ๐Ÿ’

The symmetry of the equations in this form makes them easy to remember, and

their extension to any number of nodes is apparent. The order of the Y subscripts is effect-cause; that is, the first subscript is that of the node at which the current is being expressed and the second subscript is that of the voltage causing this component of current.

The Y matrix is designated Ybus and called the BUS ADMITTANCE MATRIX.

Y11, Y22, Y33 and Y44 - is called the self-admittances or driving point admittancesat the nodes

- is equal to the sum of all admittances terminating on the node identified by the repeated subscripts.

Other admittances - is called the mutual admittances or transfer admittances of

the nodes, and each equals the negative of the sum of all admittances connected directly between the nodes identified by the double subscripts.

Page 7: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

7

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

BUS ADMITTANCE MATRIX To clearly illustrate the bus admittance matrix, let us consider the below

Starting with the three node equation expressed in the form of matrix as

๐‘ฐ๐Ÿ๐‘ฐ๐Ÿ๐‘ฐ๐Ÿ‘

=

๐’€๐Ÿ๐Ÿ ๐’€๐Ÿ๐Ÿ ๐’€๐Ÿ๐Ÿ‘

๐’€๐Ÿ๐Ÿ ๐’€๐Ÿ๐Ÿ ๐’€๐Ÿ๐Ÿ‘

๐’€๐Ÿ‘๐Ÿ ๐’€๐Ÿ‘๐Ÿ ๐’€๐Ÿ‘๐Ÿ‘

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ‘

And expanding this to equations, we have

๐‘ฐ๐Ÿ = ๐’€๐Ÿ๐Ÿ๐‘ฝ๐Ÿ + ๐’€๐Ÿ๐Ÿ๐‘ฝ๐Ÿ + ๐’€๐Ÿ๐Ÿ‘๐‘ฝ๐Ÿ‘ ๐‘ฐ๐Ÿ = ๐’€๐Ÿ๐Ÿ๐‘ฝ๐Ÿ + ๐’€๐Ÿ๐Ÿ๐‘ฝ๐Ÿ + ๐’€๐Ÿ๐Ÿ‘๐‘ฝ๐Ÿ‘ ๐‘ฐ๐Ÿ‘ = ๐’๐Ÿ‘๐Ÿ๐‘ฝ๐Ÿ + ๐’๐Ÿ‘๐Ÿ๐‘ฝ๐Ÿ + ๐’๐Ÿ‘๐Ÿ‘๐‘ฝ๐Ÿ‘

If V1 and V2 are reduced to zero by shorting nodes 1 and 3 to the reference node

and current I2 is injected at node 2, the self- admittance at node 2 is

๐’€๐Ÿ๐Ÿ = ๐‘ฐ๐Ÿ๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ=๐‘ฝ๐Ÿ‘=๐ŸŽ

Remember that self-admittance of a particular node could be measured by shorting all other nodes to the reference and then finding the ratio of the current injected at the node to the voltage resulting at that node. The result is obviously equivalent to adding all the admittances directly connected to the node, as has been our procedure up to now.

Page 8: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

8

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

To find the mutual admittance, at node 1 and node 3 the equation obtained are

๐’€๐Ÿ๐Ÿ = ๐‘ฐ๐Ÿ๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ=๐‘ฝ๐Ÿ‘=๐ŸŽ

And

๐’€๐Ÿ‘๐Ÿ = ๐‘ฐ๐Ÿ‘๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ=๐‘ฝ๐Ÿ‘=๐ŸŽ

Thus, the mutual admittances are measuredby shorting all nodes except node 2

to the reference node and injecting a current I2 at node 2. Then Y12 is the ratio of the negative of the current leaving the network in the short circuit at node 1 to the voltage V2. The negative of the current leaving node 1 is used since I1 is defined as the current entering the network. The resultant admittance is the negative of the admittance directly connected between node 1 and 2, as we would expect. BUS IMPEDANCE MATRIX The Inverse of the bus admittance matrix is known as the bus impedance matrix Zbus. It is conceptually simple to invert Ybus to find the bus impedance matrix Zbus, but such direct inversion is rarely employed when the systems to be analyzed are large scale. In practice, Zbus is rarely explicitly required and so the triangular factors of Ybus are used to generate elements of Zbus only as they are needed since this is often the most computationally efficient method. By setting computational considerations aside, however, and regarding Zbus as being already constructed and explicitly available, the power system analyst can derive a great deal of insight.

The bus impedance matrix can be directly constructed element by element using simple algorithms to incorporate one element at a time into the system representation. The work entailed in constructing Zbus is much greater than that required constructing Ybus, but the information content of bus impedance is far greater than that of Ybus. We shall see, for example, that each diagonal element of Zbus reflects important characteristics of the entire system in the form of the Thevenin impedance at the corresponding bus. Unlike Ybus, the bus impedance matrix of an interconnected system is never sparse and contains zeros only when the system is regarded as being subdivided into independent parts by open circuits.

Page 9: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

9

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

If we invert Ybus to Zbus, by definition, we will have

๐‘๐‘๐‘ข๐‘  = ๐‘Œ๐‘๐‘ข๐‘ โˆ’1

And for a network of three independent nodes the standard form is

Since Ybus is symmetrical around the principal diagonal, Zbus must also be symmetrical. The bus admittance matrix need not be determined in order to obtain Zbus, and in this topic we see how Zbus may be formulated directly. The impedance elements of Zbus on the principal diagonal are called driving-point impedances of the buses, and the off-diagonal elements are called the transfer impedances of the buses. The bus impedance matrix is important and very useful in making fault calculations. In order to understand the physical significance of the various impedances in the matrix, we compare them with the bus admittances. We can easily do so by looking at the equations at a particular bus. For instance, starting with the node equations expressed as

๐‘ฝ = ๐’๐’ƒ๐’–๐’”๐‘ฐ We must remember when dealing with Zbus that V and I are column matrices of the node voltages and the currents entering the nodes from current sources, respectively. Expanding the matrix for the three networks of three independent nodes yields to

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ‘

=

๐’๐Ÿ๐Ÿ ๐’๐Ÿ๐Ÿ ๐’๐Ÿ๐Ÿ‘

๐’๐Ÿ๐Ÿ ๐’๐Ÿ๐Ÿ ๐’๐Ÿ๐Ÿ‘

๐’๐Ÿ‘๐Ÿ ๐’๐Ÿ‘๐Ÿ ๐’๐Ÿ‘๐Ÿ‘

๐‘ฐ๐Ÿ๐‘ฐ๐Ÿ๐‘ฐ๐Ÿ‘

Converting the matrix form to equation form, we obtain

๐‘ฝ๐Ÿ = ๐’๐Ÿ๐Ÿ๐‘ฐ๐Ÿ + ๐’๐Ÿ๐Ÿ๐‘ฐ๐Ÿ + ๐’๐Ÿ๐Ÿ‘๐‘ฐ๐Ÿ‘ ๐‘ฝ๐Ÿ = ๐’๐Ÿ๐Ÿ๐‘ฐ๐Ÿ + ๐’๐Ÿ๐Ÿ๐‘ฐ๐Ÿ + ๐’๐Ÿ๐Ÿ‘๐‘ฐ๐Ÿ‘ ๐‘ฝ๐Ÿ‘ = ๐’๐Ÿ‘๐Ÿ๐‘ฐ๐Ÿ + ๐’๐Ÿ‘๐Ÿ๐‘ฐ๐Ÿ + ๐’๐Ÿ‘๐Ÿ‘๐‘ฐ๐Ÿ‘

Page 10: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

10

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

To solve for the driving-point impedances Z11, Z22, and Z33, open circuit the current sources in the remaining nodes indicated by the first subscript of impedance. The figure below shows the circuit described. Thus, for example, to determine Z22, open circuit the current sources at nodes 1 and 3 and inject the current source I2 at node 2. So,

๐’๐Ÿ๐Ÿ = ๐‘ฝ๐Ÿ

๐‘ฐ๐Ÿ ๐‘ฐ๐Ÿ=๐‘ฐ๐Ÿ‘=๐ŸŽ

To enable us to measure some transfer impedances, current sources I1 and I3 should be open circuited, so we can have

๐’๐Ÿ๐Ÿ = ๐‘ฝ๐Ÿ

๐‘ฐ๐Ÿ ๐‘ฐ๐Ÿ=๐‘ฐ๐Ÿ‘=๐ŸŽ

And

๐’๐Ÿ‘๐Ÿ = ๐‘ฝ๐Ÿ‘

๐‘ฐ๐Ÿ ๐‘ฐ๐Ÿ=๐‘ฐ๐Ÿ‘=๐ŸŽ

Thus we can measure the transfer impedances Z12 and Z32 by injecting current at node 2 and finding the ratios of V1 and V2 to I2 with the sources open at all nodes except node 2.

Page 11: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

11

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

THEVENINโ€™S THEOREM AND THE ZBUS The bus impedance matrix provides important information reagarding the power system network which we can use to advantage in network calculations. In this topic, we examine the relationship between the elements of Zbus and the Thevenin impedance presented by the network at each bus. To establish notation, let us denote the bus voltages corresponding to the initial values I0 of the bus currents of I bu V0=ZbusI

0. The voltages V1

0 to VN0 are the effective open-circuit voltages, which can be measured by

voltmeter between the buses of network and the reference node. When the bus currents are changed from the initial to the new values I0=ฮ”I, the new bus voltages are given by the superposition equation,

where ฮ”V represents the changes in the bus voltages from their original values

Page 12: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

12

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

Figure (a) shows network with bus k and reference node extracted voltages ฮ”Vn, at bus n is caused by current ฮ”Ik entering the network. (b) Thevenin equivalent circuit at node k. A large-scale system in schematic form with a representative bus k extracted along with the reference node of the system. Initially, we consider the circuit not to be energized so that the bus currents Iยฐ and voltages V0 are zero. Then, into bus k a current of ฮ”k amp (or ฮ”k per unit for Zbus in per unit) is injected in to the system from a current source connected to the reference node. The resulting voltage changes at the buses of the network, indicated by the incremental quantities ฮ”Vk to ฮ”Vn, are give n by

with the only nonzero entry in the current vector equal to ฮ”Ik in row k. Row-by-column multiplication in Eq. above yields the incremental bus voltages

which are numerically equal to the entries of k of Zbus multiplied by the current ฮ”Ik. Adding these voltage changes to the original voltages at the buses according to equation above yields to bus k.

๐‘ฝ๐’Œ = ๐‘ฝ๐’Œ๐ŸŽ+๐’๐’Œ๐’Œโˆ†๐‘ฐ๐’Œ

Page 13: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

13

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

The circuit corresponding to this equation is shown in figure (b) from which it is evident that the Thevenin impedance Zth at a representative bus k of the system is given by

๐’๐’•๐’‰ = ๐’๐’Œ๐’Œ where Zkk is the diagonal entry in row k and column k of Zbus. With k set equal to 2, ths is essentially the same result obtained in Z22 equation for the driving point impedance at bus 2. In similar manner, we can determine the Thevenin impedance between any two buses j and k of the network. As shown in the figure below (a), the otherwise dead network is energized by the current injections ฮ”Ij at bus j and ฮ”Ik at bus k.

Denoting the changes in the bus voltages resulting from the combination of these two current injections by ฮ”V1 to ฮ”Vn, we obtain

Page 14: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

14

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

in which the right-hand vector is numerically equal to the product of ฮ”Ij at bus j and ฮ”Ik at bus k of Zbus. Adding these voltages changes to original bus voltages, we obtain at buses j and k

๐‘ฝ๐’‹ = ๐‘ฝ๐’‹๐ŸŽ + ๐’๐’‹๐’‹โˆ†๐‘ฐ๐’‹ + ๐’๐’‹๐’Œโˆ†๐‘ฐ๐’Œ

๐‘ฝ๐’Œ = ๐‘ฝ๐’Œ๐ŸŽ+๐’๐’Œ๐’‹โˆ†๐‘ฐ๐’‹ + ๐’๐’Œ๐’Œโˆ†๐‘ฐ๐’Œ

Adding and subtracting ๐’๐’Œ๐’‹โˆ†๐‘ฐ๐’‹ and likewise ๐’๐’‹๐’Œโˆ†๐‘ฐ๐’Œ in the equation above will give,

๐‘ฝ๐’‹ = ๐‘ฝ๐’‹๐ŸŽ + ๐’๐’‹๐’‹ โˆ’ ๐’๐’‹๐’Œ โˆ†๐‘ฐ๐’‹ + ๐’๐’‹๐’Œ โˆ†๐‘ฐ๐’‹ + โˆ†๐‘ฐ๐’Œ

๐‘ฝ๐’Œ = ๐‘ฝ๐’Œ๐ŸŽ + ๐’๐’Œ๐’‹ โˆ†๐‘ฐ๐’‹ + โˆ†๐‘ฐ๐’Œ + ๐’๐’Œ๐’Œ โˆ’ ๐’๐’Œ๐’‹ โˆ†๐‘ฐ๐’Œ

Since Zbus is symmetrical Zjk equals to Zkj and the circuit corresponding to these two equations shown in figure (b) below which represents the Thevenin equivalent circuit of the system between buses j and k.

Inspection of the figure (b) hows that the open-circuit voltage from bus k to bus j is

๐‘ฝ๐’Œ๐ŸŽ โˆ’ ๐‘ฝ๐’‹

๐ŸŽ, and the impedance encountered by the short-circuit Isc from bus k to bus j is

evidently the Theveninโ€™s impedance

๐’๐’•๐’‰,๐’Œ๐’‹ = ๐’๐’‹๐’‹ + ๐’๐’Œ๐’Œ โˆ’ ๐Ÿ๐’๐’‹๐’Œ

This result is readily confirmed by substituting Isc = ฮ”Ij = -ฮ”Ik in above equations and by

setting the difference ๐‘ฝ๐’Œ๐ŸŽ โˆ’ ๐‘ฝ๐’‹

๐ŸŽ between the resultant equations equal to zero. As for

external connections to the buses j and k are concerned figure (b) represents the effect of the original system. From bus j to the reference node, we can trace the Thevenin

impedance ๐’๐’‹๐’‹ = ๐’๐’‹๐’‹ โˆ’ ๐’๐’‹๐’Œ + ๐’๐’‹๐’Œ and the open-circuit voltage ๐‘ฝ๐’‹๐ŸŽ.

Page 15: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

15

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

From bus k to the reference node we have the Thevenin impedance ๐’๐’Œ๐’Œ =

๐’๐’Œ๐’Œ โˆ’ ๐’๐’‹๐’Œ + ๐’๐’Œ๐’‹, and the open- circuit ๐‘ฝ๐’Œ๐ŸŽ; and between buses j and k , the Thevenin

equation of ๐’๐’•๐’‰,๐’Œ๐’‹ = ๐’๐’‹๐’‹ + ๐’๐’Œ๐’Œ โˆ’ ๐Ÿ๐’๐’‹๐’Œ and open voltage of ๐‘ฝ๐’Œ๐ŸŽ โˆ’ ๐‘ฝ๐’‹

๐ŸŽ is evident. Finally

when the branch impedance Zb is connected between buses j and k, the resulting current Ib is given by

๐‘ฐ๐’ƒ =๐‘ฝ๐’Œ

๐ŸŽ โˆ’ ๐‘ฝ๐’‹๐ŸŽ

๐’๐’•๐’‰,๐’Œ๐’‹ + ๐’๐’ƒ=

๐‘ฝ๐’Œ โˆ’ ๐‘ฝ๐’‹

๐’๐’ƒ

Sample Problem:

1. Write in matrix form the node equations necessary to solve for the voltages of the numbered buses and Find the bus voltages by inverting the bus admittance matrix of the figure below. The emfs are Ea=1.5 cis 0, Eb = 1.5 cis -36.87, and Ec = 1.5 cis 0, all in per unit.

4

1

3

2

j1.15 j0.1Ea

0

j1.15 j0.1

Eb j1.15 j0.1

Ec

j0.25

j0.4

j0.2

j0.125

j0.2

Reqโ€™d: a.) node equations in matrix b.) Find the bus voltages, V1, V2, V3 and V4

Page 16: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

16

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

4

1

3

2

-j0.8

!1

0

-j0.8

-j 4.0

-j 2.5

-j 5.0

-j0.8

!2

!3

-j 8.0

-j 5.0

Ya

Yb

Yc

Yf

Yd

Yg

Ye

Yh

Solโ€™n:

a.) node equations in matrix

๐‘ฐ๐Ÿ๐‘ฐ๐Ÿ๐‘ฐ๐Ÿ‘๐‘ฐ๐Ÿ’

=

๐’€๐Ÿ๐Ÿ ๐’€๐Ÿ๐Ÿ

๐’€๐Ÿ๐Ÿ ๐’€๐Ÿ๐Ÿ

๐’€๐Ÿ๐Ÿ‘ ๐’€๐Ÿ๐Ÿ’

๐’€๐Ÿ๐Ÿ‘ ๐’€๐Ÿ๐Ÿ’

๐’€๐Ÿ‘๐Ÿ ๐’€๐Ÿ‘๐Ÿ

๐’€๐Ÿ’๐Ÿ ๐’€๐Ÿ’๐Ÿ

๐’€๐Ÿ‘๐Ÿ‘ ๐’€๐Ÿ‘๐Ÿ’

๐’€๐Ÿ’๐Ÿ‘ ๐’€๐Ÿ’๐Ÿ’

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ‘

๐‘ฝ๐Ÿ’

1. Draw the equivalent reactance diagram converted to current sources and admittances,

2. Solve for the current sources,

๐ˆ๐Ÿ = ๐ˆ๐Ÿ‘ =1.5โˆ 0

j 1.25= ๐Ÿ. ๐Ÿโˆ  โˆ’ ๐Ÿ—๐ŸŽ = ๐ŸŽ โˆ’ ๐ฃ๐Ÿ.๐Ÿ๐ŸŽ ๐ฉ๐ฎ

๐ˆ๐Ÿ =1.5โˆ  โˆ’ 36.87

j 1.25= ๐Ÿ. ๐Ÿโˆ  โˆ’ ๐Ÿ๐Ÿ๐Ÿ”. ๐Ÿ–๐Ÿ• = โˆ’๐ŸŽ. ๐Ÿ•๐Ÿ โˆ’ ๐ฃ๐ŸŽ. ๐Ÿ—๐Ÿ” ๐ฉ๐ฎ

3. Solve for the self admittances, Y11, Y22, Y33 and Y44. Thus,

๐’€๐Ÿ๐Ÿ = ๐’€๐’‚ + ๐’€๐’‡ + ๐’€๐’…

= โˆ’๐‘—5 โˆ’ ๐‘—4 โˆ’ ๐‘—0.8 ๐’€๐Ÿ๐Ÿ = โˆ’๐’‹๐Ÿ—. ๐Ÿ–

๐’€๐Ÿ๐Ÿ = ๐’€๐’ƒ + ๐’€๐’ˆ + ๐’€๐’‰

= โˆ’๐‘—0.8 โˆ’ ๐‘—2.5 โˆ’ ๐‘—5 ๐’€๐Ÿ๐Ÿ = โˆ’๐’‹๐Ÿ–. ๐Ÿ‘

๐’€๐Ÿ‘๐Ÿ‘ = ๐’€๐’„ + ๐’€๐’† + ๐’€๐’‡ + ๐’€๐’ˆ

= โˆ’๐‘—0.8 โˆ’ ๐‘—8 โˆ’ ๐‘—4 โˆ’ ๐‘—2.5 ๐’€๐Ÿ‘๐Ÿ‘ = โˆ’๐’‹๐Ÿ๐Ÿ“.๐Ÿ‘

๐’€๐Ÿ’๐Ÿ’ = ๐’€๐’… + ๐’€๐’† + ๐’€๐’‰

= โˆ’๐‘—5 โˆ’ ๐‘—5 โˆ’ ๐‘—0.8 ๐’€๐Ÿ’๐Ÿ’ = โˆ’๐’‹๐Ÿ๐Ÿ–

Page 17: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

17

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

4. Solve for the mutual admittances,

๐’€๐Ÿ๐Ÿ = ๐’€๐Ÿ๐Ÿ = ๐ŸŽ ๐’€๐Ÿ๐Ÿ‘ = ๐’€๐Ÿ‘๐Ÿ = +๐’‹๐Ÿ’ ๐’€๐Ÿ๐Ÿ’ = ๐’€๐Ÿ’๐Ÿ = +๐’‹๐Ÿ“

๐’€๐Ÿ๐Ÿ‘ = ๐’€๐Ÿ‘๐Ÿ = +๐’‹๐Ÿ. ๐Ÿ“ ๐’€๐Ÿ๐Ÿ’ = ๐’€๐Ÿ’๐Ÿ = +๐’‹๐Ÿ“ ๐’€๐Ÿ‘๐Ÿ’ = ๐’€๐Ÿ’๐Ÿ‘ = +๐’‹๐Ÿ–

Hence, the node equations in matrix form is,

๐ŸŽ โˆ’ ๐’‹๐Ÿ.๐Ÿโˆ’๐ŸŽ. ๐Ÿ•๐Ÿ โˆ’ ๐’‹๐ŸŽ. ๐Ÿ—๐Ÿ”

๐ŸŽ โˆ’ ๐’‹๐Ÿ.๐Ÿ๐ŸŽ

=

โˆ’๐’‹๐Ÿ—.๐Ÿ– ๐ŸŽ๐ŸŽ โˆ’๐’‹๐Ÿ–.๐Ÿ‘

๐’‹๐Ÿ’ ๐’‹๐Ÿ“๐’‹๐Ÿ.๐Ÿ“ ๐’‹๐Ÿ“

๐’‹๐Ÿ’ ๐’‹๐Ÿ. ๐Ÿ“๐’‹๐Ÿ“ ๐’‹๐Ÿ“

โˆ’๐’‹๐Ÿ๐Ÿ“.๐Ÿ‘ ๐’‹๐Ÿ–๐’‹๐Ÿ– โˆ’๐’‹๐Ÿ๐Ÿ–

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ‘

๐‘ฝ๐Ÿ’

b.) Find the bus voltages, V1, V2, V3 and V4

1. Get the inverse of the bus admittance matrix, that is From,

๐ผ = ๐‘Œ ๐‘‰ We will divide I matrix by Y matrix which will be,

๐ผ

๐‘Œ = ๐‘‰

or ๐ผ ๐‘Œ โˆ’1 = ๐‘‰

To get [Y]-1, remember the inverse matrix formula,

๐’€โˆ’๐Ÿ =๐Ÿ

๐’…๐’†๐’• ๐’€ ๐’„๐’๐’‡๐’‚๐’„๐’•๐’๐’“ ๐’๐’‡ ๐’€ ๐‘ป

Page 18: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

18

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

To start with, a. Form the cofactor matrix of matrix Y,

=

+

โˆ’๐’‹๐Ÿ–. ๐Ÿ‘ ๐’‹๐Ÿ. ๐Ÿ“ ๐’‹๐Ÿ“

๐’‹๐Ÿ. ๐Ÿ“ โˆ’๐’‹๐Ÿ๐Ÿ“. ๐Ÿ‘ ๐’‹๐Ÿ–

๐’‹๐Ÿ“ ๐’‹๐Ÿ– โˆ’๐’‹๐Ÿ๐Ÿ– โˆ’

๐ŸŽ ๐’‹๐Ÿ. ๐Ÿ“ ๐’‹๐Ÿ“

๐’‹๐Ÿ’ โˆ’๐’‹๐Ÿ๐Ÿ“. ๐Ÿ‘ ๐’‹๐Ÿ–

๐’‹๐Ÿ“ ๐’‹๐Ÿ– โˆ’๐’‹๐Ÿ๐Ÿ–

โˆ’

๐ŸŽ ๐’‹๐Ÿ’ ๐’‹๐Ÿ“

๐’‹๐Ÿ. ๐Ÿ“ โˆ’๐’‹๐Ÿ๐Ÿ“. ๐Ÿ‘ ๐’‹๐Ÿ–

๐’‹๐Ÿ“ ๐’‹๐Ÿ– โˆ’๐’‹๐Ÿ๐Ÿ– +

โˆ’๐’‹๐Ÿ—. ๐Ÿ– ๐’‹๐Ÿ’ ๐’‹๐Ÿ“

๐’‹๐Ÿ’ โˆ’๐’‹๐Ÿ๐Ÿ“. ๐Ÿ‘ ๐’‹๐Ÿ–

๐’‹๐Ÿ“ ๐’‹๐Ÿ– โˆ’๐’‹๐Ÿ๐Ÿ–

+

๐ŸŽ โˆ’๐’‹๐Ÿ–. ๐Ÿ‘ ๐’‹๐Ÿ“

๐’‹๐Ÿ’ ๐’‹๐Ÿ. ๐Ÿ“ ๐’‹๐Ÿ–

๐’‹๐Ÿ“ ๐’‹๐Ÿ“ โˆ’๐’‹๐Ÿ๐Ÿ– โˆ’

๐ŸŽ โˆ’๐’‹๐Ÿ–. ๐Ÿ‘ ๐’‹๐Ÿ. ๐Ÿ“

๐’‹๐Ÿ’ ๐’‹๐Ÿ. ๐Ÿ“ โˆ’๐’‹๐Ÿ๐Ÿ“. ๐Ÿ‘

๐’‹๐Ÿ“ ๐’‹๐Ÿ“ ๐’‹๐Ÿ–

โˆ’

โˆ’๐’‹๐Ÿ—. ๐Ÿ– ๐ŸŽ ๐’‹๐Ÿ“

๐’‹๐Ÿ’ ๐’‹๐Ÿ. ๐Ÿ“ ๐’‹๐Ÿ–

๐’‹๐Ÿ“ ๐’‹๐Ÿ“ โˆ’๐’‹๐Ÿ๐Ÿ– +

โˆ’๐’‹๐Ÿ—. ๐Ÿ– ๐ŸŽ ๐’‹๐Ÿ’

๐’‹๐Ÿ’ ๐’‹๐Ÿ. ๐Ÿ“ โˆ’๐’‹๐Ÿ๐Ÿ“. ๐Ÿ‘

๐’‹๐Ÿ“ ๐’‹๐Ÿ“ ๐’‹๐Ÿ–

+ ๐ŸŽ ๐’‹๐Ÿ’ ๐’‹๐Ÿ“

โˆ’๐’‹๐Ÿ–. ๐Ÿ‘ ๐’‹๐Ÿ. ๐Ÿ“ ๐’‹๐Ÿ“

๐’‹๐Ÿ“ ๐’‹๐Ÿ– โˆ’๐’‹๐Ÿ๐Ÿ– _

โˆ’๐’‹๐Ÿ—. ๐Ÿ– ๐’‹๐Ÿ’ ๐’‹๐Ÿ“

๐ŸŽ ๐’‹๐Ÿ. ๐Ÿ“ ๐’‹๐Ÿ“

๐’‹๐Ÿ“ ๐’‹๐Ÿ– โˆ’๐’‹๐Ÿ๐Ÿ–

โˆ’ ๐ŸŽ ๐’‹๐Ÿ’ ๐’‹๐Ÿ“

โˆ’๐’‹๐Ÿ–. ๐Ÿ‘ ๐’‹๐Ÿ. ๐Ÿ“ ๐’‹๐Ÿ“

๐’‹๐Ÿ. ๐Ÿ“ โˆ’๐’‹๐Ÿ๐Ÿ“. ๐Ÿ‘ ๐’‹๐Ÿ– +

โˆ’๐’‹๐Ÿ—. ๐Ÿ– ๐’‹๐Ÿ’ ๐’‹๐Ÿ“

๐ŸŽ ๐’‹๐Ÿ. ๐Ÿ“ ๐’‹๐Ÿ“

๐’‹๐Ÿ’ โˆ’๐’‹๐Ÿ๐Ÿ“. ๐Ÿ‘ ๐’‹๐Ÿ–

+ โˆ’๐’‹๐Ÿ—. ๐Ÿ– ๐ŸŽ ๐’‹๐Ÿ“

๐ŸŽ โˆ’๐’‹๐Ÿ–. ๐Ÿ‘ ๐’‹๐Ÿ“

๐’‹๐Ÿ“ ๐’‹๐Ÿ“ โˆ’๐’‹๐Ÿ๐Ÿ– โˆ’

โˆ’๐’‹๐Ÿ—. ๐Ÿ– ๐ŸŽ ๐’‹๐Ÿ’

๐ŸŽ โˆ’๐’‹๐Ÿ–. ๐Ÿ‘ ๐’‹๐Ÿ. ๐Ÿ“

๐’‹๐Ÿ“ ๐’‹๐Ÿ“ ๐’‹๐Ÿ–

โˆ’ โˆ’๐’‹๐Ÿ—. ๐Ÿ– ๐ŸŽ ๐’‹๐Ÿ“

๐ŸŽ ๐’‹๐Ÿ–. ๐Ÿ‘ ๐’‹๐Ÿ“

๐’‹๐Ÿ’ ๐’‹๐Ÿ. ๐Ÿ“ ๐’‹๐Ÿ– +

โˆ’๐’‹๐Ÿ—. ๐Ÿ– ๐ŸŽ ๐’‹๐Ÿ’

๐ŸŽ โˆ’๐’‹๐Ÿ–. ๐Ÿ‘ ๐’‹๐Ÿ. ๐Ÿ“

๐’‹๐Ÿ’ ๐’‹๐Ÿ. ๐Ÿ“ โˆ’๐’‹๐Ÿ๐Ÿ“. ๐Ÿ‘

=

๐‘—1059.62 ๐‘—822.5๐‘—822.5 ๐‘—1081.22

๐‘—892.1 ๐‘—919.3๐‘—870.5 ๐‘—915.7

๐‘—892.1 ๐‘—870.5๐‘—919.3 ๐‘—915.7

๐‘—1011.62 ๐‘—939.22๐‘—939.22 ๐‘—1050.452

b. Form the transpose matrix of the cofactor matrix of matrix Y that is

๐‘Œ ๐‘‡ =

๐‘—1059.62 ๐‘—822.5๐‘—822.5 ๐‘—1081.22

๐‘—892.1 ๐‘—919.3๐‘—870.5 ๐‘—915.7

๐‘—892.1 ๐‘—870.5๐‘—919.3 ๐‘—915.7

๐‘—1011.62 ๐‘—939.22๐‘—939.22 ๐‘—1050.452

c. Evaluate the determinant of matrix Y

๐’…๐’†๐’• ๐’€ =

โˆ’๐’‹๐Ÿ—. ๐Ÿ– ๐ŸŽ

๐ŸŽ โˆ’๐’‹๐Ÿ–. ๐Ÿ‘

๐’‹๐Ÿ’ ๐’‹๐Ÿ“

๐’‹๐Ÿ. ๐Ÿ“ ๐’‹๐Ÿ“

๐’‹๐Ÿ’ ๐’‹๐Ÿ. ๐Ÿ“

๐’‹๐Ÿ“ ๐’‹๐Ÿ“

โˆ’๐’‹๐Ÿ๐Ÿ“. ๐Ÿ‘ ๐’‹๐Ÿ–

๐’‹๐Ÿ– โˆ’๐’‹๐Ÿ๐Ÿ–

๐’…๐’†๐’• ๐’€ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ—.๐Ÿ‘๐Ÿ•๐Ÿ” * It can be solved by different methods discussed in advanced math like modification, chioโ€™s and pivotal method.

Page 19: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

19

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

d. Divide each element of the transpose cofactor of Y by the value of

determinant of Y.

๐’€โˆ’๐Ÿ =๐Ÿ

๐’…๐’†๐’• ๐’€ ๐’„๐’๐’‡๐’‚๐’„๐’•๐’๐’“ ๐’๐’‡ ๐’€ ๐‘ป

=1

2219.376

๐‘—1059.62 ๐‘—822.5

๐‘—822.5 ๐‘—1081.22

๐‘—892.1 ๐‘—919.3

๐‘—870.5 ๐‘—915.7

๐‘—892.1 ๐‘—870.5

๐‘—919.3 ๐‘—915.7

๐‘—1011.62 ๐‘—939.22

๐‘—939.22 ๐‘—1050.452

๐’€โˆ’๐Ÿ =

๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ•๐Ÿ•๐Ÿ’ ๐’‹๐ŸŽ. ๐Ÿ‘๐Ÿ•๐ŸŽ๐Ÿ”

๐’‹๐ŸŽ. ๐Ÿ‘๐Ÿ•๐ŸŽ๐Ÿ” ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ–๐Ÿ•๐Ÿ

๐’‹๐ŸŽ. ๐Ÿ’๐ŸŽ๐Ÿ๐ŸŽ ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ๐Ÿ’๐Ÿ

๐’‹๐ŸŽ. ๐Ÿ‘๐Ÿ—๐Ÿ๐Ÿ ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ๐Ÿ๐Ÿ”

๐’‹๐ŸŽ. ๐Ÿ’๐ŸŽ๐Ÿ๐ŸŽ ๐’‹๐ŸŽ. ๐Ÿ‘๐Ÿ—๐Ÿ๐Ÿ

๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ๐Ÿ’๐Ÿ ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ๐Ÿ๐Ÿ”

๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ“๐Ÿ“๐Ÿ– ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ๐Ÿ‘๐Ÿ

๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ๐Ÿ‘๐Ÿ ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ•๐Ÿ‘๐Ÿ‘

2. After finding the inverse of the admittance matrix or what we may call now

bus impedance matrix Zbus, multiply it by current matrix, thus

๐‘—0.4774 ๐‘—0.3706๐‘—0.3706 ๐‘—0.4872

๐‘—0.4020 ๐‘—0.4142๐‘—0.3922 ๐‘—0.4126

๐‘—0.4020 ๐‘—0.3922๐‘—0.4142 ๐‘—0.4126

๐‘—0.4558 ๐‘—0.4232๐‘—0.4232 ๐‘—0.4733

0 โˆ’ ๐‘—1.2โˆ’0.72 โˆ’ ๐‘—0.96

0 โˆ’ ๐‘—1.20

=

๐‘‰1

๐‘‰2

๐‘‰3

๐‘‰4

3. Performing the indicated matrix multiplication will yield to,

๐Ÿ.๐Ÿ’๐Ÿ๐Ÿ โˆ’ ๐’‹๐ŸŽ. ๐Ÿ๐Ÿ”๐Ÿ”๐Ÿ–๐Ÿ. ๐Ÿ‘๐Ÿ–๐Ÿ‘๐ŸŽ โˆ’ ๐’‹๐ŸŽ.๐Ÿ‘๐Ÿ“๐ŸŽ๐Ÿ–๐Ÿ. ๐Ÿ’๐ŸŽ๐Ÿ“๐Ÿ— โˆ’ ๐’‹๐ŸŽ.๐Ÿ๐Ÿ–๐Ÿ๐Ÿ’๐Ÿ. ๐Ÿ’๐ŸŽ๐ŸŽ๐Ÿ— โˆ’ ๐’‹๐ŸŽ.๐Ÿ๐Ÿ—๐Ÿ•๐Ÿ

=

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ‘

๐‘ฝ๐Ÿ’

And so, the node voltages are

๐‘ฝ๐Ÿ = ๐Ÿ. ๐Ÿ’๐Ÿ๐Ÿ โˆ’ ๐’‹๐ŸŽ. ๐Ÿ๐Ÿ”๐Ÿ”๐Ÿ– = ๐Ÿ. ๐Ÿ’๐Ÿ‘๐Ÿ”โˆ  โˆ’ ๐Ÿ๐ŸŽ.๐Ÿ•๐Ÿ ๐’‘๐’– ๐‘ฝ๐Ÿ = ๐Ÿ. ๐Ÿ‘๐Ÿ–๐Ÿ‘๐ŸŽ โˆ’ ๐’‹๐ŸŽ.๐Ÿ‘๐Ÿ“๐ŸŽ๐Ÿ– = ๐Ÿ. ๐Ÿ’๐Ÿ๐Ÿ•โˆ  โˆ’ ๐Ÿ๐Ÿ’. ๐Ÿ๐Ÿ’ ๐’‘๐’– ๐‘ฝ๐Ÿ‘ = ๐Ÿ. ๐Ÿ’๐ŸŽ๐Ÿ“๐Ÿ— โˆ’ ๐’‹๐ŸŽ.๐Ÿ๐Ÿ–๐Ÿ๐Ÿ’ = ๐Ÿ. ๐Ÿ’๐Ÿ‘๐Ÿ’โˆ  โˆ’ ๐Ÿ๐Ÿ. ๐Ÿ‘๐Ÿ” ๐’‘๐’– ๐‘ฝ๐Ÿ’ = ๐Ÿ. ๐Ÿ’๐ŸŽ๐ŸŽ๐Ÿ— โˆ’ ๐’‹๐ŸŽ.๐Ÿ๐Ÿ—๐Ÿ•๐Ÿ = ๐Ÿ. ๐Ÿ’๐Ÿ‘๐Ÿโˆ  โˆ’ ๐Ÿ๐Ÿ. ๐Ÿ—๐Ÿ• ๐’‘๐’–

Page 20: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

20

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

2. If a capacitor having a reactance of 5.0 per unit is connected to node 4 of the

circuit in problem 1. Find the current drawn by the capacitor and the resulting voltages at nodes 1, 2, 3 and 4 if Ic is of negative value providing Ea, Eb and Ec remains the same. Reqโ€™d:

1.) Ic 2.) Find the bus voltages, V1, V2, V3 and V4 if IC is negative of the value

obtained in the solution Illustration:

4

1

3

2

j1.15 j0.1Ea

0

j1.15 j0.1

Eb j1.15 j0.1

Ec

j0.25

j0.4

j0.2

j0.125

j0.2

Solโ€™n:

1. To solve for IC, a.) Create the Theveninโ€™s equivalent circuit for node 4. Making sources short

circuited except node 4. Thus,

Page 21: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

21

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

From,

4

1

3

2

Ea

0

Eb

Ec

j0.25

j0.4

j0.2

j0.125

j0.2

It becomes

V4 = Vth

Z44 = Zth

XC = ZC

b.) To solve for Theveninโ€™s equivalent of the circuit behind node 4, the theveninโ€™s

voltage at node 4 before the capacitor is connected has an emf of

๐‘‰4 = ๐‘‰๐‘‡๐‘• = 1.4009 โˆ’ ๐‘—0.2971 = 1.432โˆ  โˆ’ 11.97 ๐‘๐‘ข c.) To find the Theveninโ€™s impedance, the emfs are short-circuited or current

sources are open circuited, and the impedance between node 4 and the reference node must be determined. Hence,

๐‘‰4 = ๐‘41๐ผ1 + ๐‘42๐ผ2 + ๐‘43๐ผ3 + ๐‘44๐ผ4

With emfs short-circuited (or with emfs and their series impedances replaced by

the equivalent current sources and shunt admittances with the current source open) no current is entering the circuit from the sources at nodes 1, 2, and 3. The ratio of a voltage applied at node 4 to current in the network is Z44, and this impedance is known since Zbus was calculated. Then,

๐‘๐‘‡๐‘• = ๐‘44 = ๐‘—0.4733

Page 22: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

22

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

d.) Thus the current drawn by the capacitor is,

๐‘‰๐‘‡๐‘• = ๐‘๐‘‡๐‘• + ๐‘๐ถ ๐ผ๐ถ

๐ผ๐ถ = ๐‘‰๐‘‡๐‘•

๐‘๐‘‡๐‘• + ๐‘๐ถ

= 1.432โˆ  โˆ’ 11.97 ๐‘๐‘ข

๐‘—0.4733 โˆ’ ๐‘—5

๐‘ฐ๐‘ช = ๐‘ฐ๐Ÿ’ = ๐ŸŽ. ๐Ÿ‘๐Ÿ๐Ÿ”โˆ ๐Ÿ•๐Ÿ–.๐ŸŽ๐Ÿ‘ ๐’‘๐’–

2.) Find the bus voltages, V1, V2, V3 and V4

With original emfs short-circuited, the voltages at the nodes due only to the injected current will be calculated by making use of the bus impedance network. The required impedances are in column 4 of Zbus. The voltages with all emfs shorted are

๐‘‰1 = ๐ผ4๐‘14 = โˆ’0.316โˆ 78.03 ๐‘—0.4142 = 0.1309โˆ โˆ’ 11.97ยฐ ๐‘‰2 = ๐ผ4๐‘24 = โˆ’0.316โˆ 78.03 ๐‘—0.4126 = 0.1304โˆ โˆ’ 11.97ยฐ ๐‘‰3 = ๐ผ4๐‘34 = โˆ’0.316โˆ 78.03 ๐‘—0.4232 = 0.1337โˆ โˆ’ 11.97ยฐ ๐‘‰4 = ๐ผ4๐‘44 = โˆ’0.316โˆ 78.03 ๐‘—0.4733 = 0.1496โˆ  โˆ’ 11.97ยฐ

By superposition, the resulting voltages determined by adding the

voltages caused by the injected current with emfs shorted to the node voltages are;

๐‘ฝ๐Ÿ๐’๐’†๐’˜ = ๐‘‰1 + ๐‘‰1๐‘œ๐‘™๐‘‘ = 0.1309โˆ  โˆ’ 11.97ยฐ + 1.436โˆ  โˆ’ 10.71 = ๐Ÿ. ๐Ÿ“๐Ÿ”๐Ÿ•โˆ  โˆ’ ๐Ÿ๐ŸŽ. ๐Ÿ–๐Ÿ ๐’‘๐’– ๐‘ฝ๐Ÿ๐’๐’†๐’˜ = ๐‘‰2 + ๐‘‰2๐‘œ๐‘™๐‘‘ = 0.1304โˆ  โˆ’ 11.97ยฐ + 1.427โˆ  โˆ’ 14.24 = ๐Ÿ.๐Ÿ“๐Ÿ“๐Ÿ•โˆ  โˆ’ ๐Ÿ๐Ÿ’. ๐Ÿ’๐Ÿ๐’‘๐’– ๐‘ฝ๐Ÿ‘๐’๐’†๐’˜ = ๐‘‰3 + ๐‘‰3๐‘œ๐‘™๐‘‘ = 0.1337โˆ  โˆ’ 11.97ยฐ + 1.434โˆ  โˆ’ 11.36 = ๐Ÿ. ๐Ÿ“๐Ÿ”๐Ÿ–โˆ  โˆ’ ๐Ÿ๐Ÿ. ๐Ÿ’๐Ÿ ๐’‘๐’– ๐‘ฝ๐Ÿ’๐’๐’†๐’˜ = ๐‘‰4 + ๐‘‰4๐‘œ๐‘™๐‘‘ = 0.1496โˆ  โˆ’ 11.97ยฐ + 1.432โˆ  โˆ’ 11.97 = ๐Ÿ. ๐Ÿ“๐Ÿ–๐Ÿโˆ  โˆ’ ๐Ÿ๐Ÿ. ๐Ÿ—๐Ÿ•๐’‘๐’–

Since the changes in voltages due to the injected current are all the same angle and this angle differs little from the angles of the originalvoltages, an approximation will give satisfactory answers. The change in voltage magnitude at a bus is about equal to the product of the magnitude of the per unit current and the magnitude of the appropriate impedances.These values are added to the original voltage magnitude will give the magnitudes of the new voltages very closely.This approximation is valid because the network is purely reactive, but it provides a good estimate where the reactance is considerably larger than the resistance, as usually the case.

Page 23: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

23

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

MATRIX PARTTITIONING: A use method of matrix manipulation is called parttitioning. Consider the 3x3 matrix multiplied by 3x1, ๐‘ช = ๐‘จ๐‘ฉ . . .eq.1

๐ถ =

๐‘Ž11 ๐‘Ž12 ๐‘Ž13

๐‘Ž21 ๐‘Ž22 ๐‘Ž23

๐‘Ž31 ๐‘Ž32 ๐‘Ž33

๐‘11

๐‘21

๐‘31

The matrix A will be partitioned into four submatrices by the horizontal and vertical dashed lines. The matrix may be written,

๐‘จ =

๐‘Ž11 ๐‘Ž12 ๐‘Ž13

๐‘Ž21 ๐‘Ž22 ๐‘Ž23

๐‘Ž31 ๐‘Ž32 ๐‘Ž33

= ๐‘ซ ๐‘ฌ๐‘ญ ๐‘ฎ

where:

๐‘ซ = ๐‘Ž11 ๐‘Ž12

๐‘Ž21 ๐‘Ž22 ๐‘ฌ =

๐‘Ž13

๐‘Ž23

๐‘ญ = ๐‘Ž31 ๐‘Ž32 ๐‘ฎ = ๐‘Ž33

Also the matrix B will be parttitioned,

๐‘ฉ =

๐‘11

๐‘21

๐‘31

= ๐‘ฏ๐‘ฑ

where:

๐‘ฏ = ๐‘11

๐‘21 ๐‘ฑ = ๐‘31

Replacing the eq.1 by letter symbols, we have

๐‘ช = ๐ด๐ต = ๐ท ๐ธ๐น ๐บ

๐ป๐ฝ =

๐‘ซ๐‘ฏ + ๐‘ฌ๐‘ฑ๐‘ญ๐‘ฏ + ๐‘ฎ๐‘ฑ

= ๐‘ด๐‘ต

Page 24: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

24

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

The product is finally determined where C is composed of submatrices M and N. If we wish to find only the submatrix N, we have ๐‘ต = ๐‘ญ๐‘ฏ + ๐‘ฎ๐‘ฑ

= ๐‘Ž31 ๐‘Ž32 ๐‘11

๐‘21 + ๐‘Ž33๐‘31

Hence, ๐‘ต = ๐’‚๐Ÿ‘๐Ÿ๐’ƒ๐Ÿ๐Ÿ + ๐’‚๐Ÿ‘๐Ÿ๐’ƒ๐Ÿ๐Ÿ + ๐’‚๐Ÿ‘๐Ÿ‘๐’ƒ๐Ÿ‘๐Ÿ NODE ELIMINATION There are many ways to remove the need for matrix inversion when solving nodal equations of large scale power system. At the same time, it is also apparent that elimination of variables is identical to network reduction since it leads to a sequence of reduced-order network equivalents by node elimination at each step. This may be important in analyzing a large interconnected power system if there is special interest in the voltages at only some of the buses of the overall system. For instance, electric utility company with interconnection to other companies may wish to continue its study of voltage levels to those substations within its own service territory. By selective numbering of the buses, different methods are used to reduce the Ybus equation of the overall systems to a set which contains only those bus voltages of special interest. The coefficient matrix in the reduced order set of equations then represents the Ybus for an equivalent network containing only those buses which are to be retained. All other buses are eliminated in the mathemarical sense that their bus voltages and current injections do not appear explicitly. Such reduction in size of the equation set leads to efficiency of computation and helps to focus more directly on that portion of the overall network which is the primary interest. Below are following methods used to reduce node or eliminate nodes: A.) By MATRIX PARTITIONING (MATRIX-ALGEBRA) The standard node equations in matrix notation are expressed as

๐‘ฐ = ๐’€๐’ƒ๐’–๐’” ๐‘ฝ where V and I are column matrices and Ybus is a symmetrical square matrix. The

column matrices must be so arranged that elements associated with nodes to be

Page 25: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

25

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

eliminated are in the lower rows of the matrices. Elements of the square admittance matrix are located correspondingly. If the standard node equations in matrix notation will be expanded to its general form, we will have

๐‘ฐ๐‘จ๐‘ฐ๐‘ฟ

= ๐‘ฒ ๐‘ณ๐‘ณ๐‘ป ๐‘ด

๐‘ฝ๐‘จ

๐‘ฝ๐‘ฟ

where: ๐‘ฐ๐‘ฟ = submatrix composed of the currents entering the nodes to be

eliminated. Every element in it is zero, for the nodes could not be eliminated otherwise.

๐‘ฝ๐‘ฟ = submatrix composed of the voltages at the node at which Ix enters

๐‘ฒ = is composed self- and mutual- admittances which are those identified only with nodes to be retained.

๐‘ด = is composed self- and mutual- admittances which are those identified only with nodes to be eliminated. It is a square matrix whose order is equal to the number of nodes to be eliminated.

๐‘ณ ๐‘Ž๐‘›๐‘‘ ๐‘ณ๐‘ป = are composed of only those mutual admittances common to a node to be retained and to be eliminated.

If we will observe the above formula, we can see that column matrices

are partitioned so that the elements associated with nodes to be eliminated are separated from the other elements. The admittance matrix is partitioned so that elements identified only with nodes to be eliminated are separated from the other elements by horizontal and vertical lines.

If we will perform the multiplication indicated in the general formula, it

will give ๐ผ๐ด = ๐พ๐‘‰๐ด + ๐ฟ๐‘‰๐‘‹ eq.1

and ๐ผ๐‘‹ = ๐ฟ๐‘‡๐‘‰๐ด + ๐‘€๐‘‰๐‘‹ eq.2

Since all elements of Ix = 0, then

๐ผ๐‘‹ = ๐ฟ๐‘‡๐‘‰๐ด + ๐‘€๐‘‰๐‘‹ 0 = ๐ฟ๐‘‡๐‘‰๐ด + ๐‘€๐‘‰๐‘‹

โˆ’๐ฟ๐‘‡๐‘‰๐ด = ๐‘€๐‘‰๐‘‹

Page 26: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

26

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

making, โˆ’๐‘€โˆ’1๐ฟ๐‘‡๐‘‰๐ด = ๐‘‰๐‘‹ - substitute to eq.1

will give,

๐ผ๐ด = ๐พ๐‘‰๐ด + ๐ฟ๐‘‰๐‘‹ ๐ผ๐ด = ๐พ๐‘‰๐ด + ๐ฟ โˆ’๐‘€โˆ’1๐ฟ๐‘‡๐‘‰๐ด

Factor out VA, then

๐ผ๐ด = ๐‘‰๐ด ๐พ + ๐ฟ โˆ’๐‘€โˆ’1๐ฟ๐‘‡

๐ผ๐ด๐‘‰๐ด

= ๐พ + ๐ฟ โˆ’๐‘€โˆ’1๐ฟ๐‘‡

Therefore,

๐’€๐‘จ = ๐‘ฒ โˆ’ ๐‘ณ๐‘ดโˆ’๐Ÿ๐‘ณ๐‘ป B.) GAUSSIAN ELIMINATION (KRON REDUCTION) In simple circuits, node elimination can be accomplished by Y-ฮ”

transformations and by working with series and parallel combinations of impedances. The matrix partitioning method is a general method which is thereby more suitable for computer solutions. However, for the elimination of large number of nodes, matrix M whose inverse must be found will be large.

Inverting matrix is avoided by eliminating one node at a time. This

process is what we call gaussian method. Gaussian method is very simple. One voltage bus (also called node) at a time is sequentially removed from the original system of N equations in N unknown. The node to be eliminated must b the highest numbered node and renumbering may be required. The matrix M becomes a single element and M-1 is the reciprocal of the element. The steps of this method are as follows:

Page 27: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

27

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

1. If we have the below matrix,

๐’€๐Ÿ๐Ÿ ๐’€๐Ÿ๐Ÿ

๐’€๐Ÿ๐Ÿ ๐’€๐Ÿ๐Ÿ

๐’€๐Ÿ๐Ÿ‘ ๐’€๐Ÿ๐Ÿ’

๐’€๐Ÿ๐Ÿ‘ ๐’€๐Ÿ๐Ÿ’

๐’€๐Ÿ‘๐Ÿ ๐’€๐Ÿ‘๐Ÿ

๐’€๐Ÿ’๐Ÿ ๐’€๐Ÿ’๐Ÿ

๐’€๐Ÿ‘๐Ÿ‘ ๐’€๐Ÿ‘๐Ÿ’

๐’€๐Ÿ’๐Ÿ‘ ๐’€๐Ÿ’๐Ÿ’

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ‘

๐‘ฝ๐Ÿ’

=

๐‘ฐ๐Ÿ๐‘ฐ๐Ÿ๐‘ฐ๐Ÿ‘๐‘ฐ๐Ÿ’

the variable V1 does not explicitly appear in the resultant (N-1)x(N-1)

system, which fully represents the original network if the actual value of the voltage V1 at bus 1 is not of direct interest. Making

become,

According to equation,

๐’€๐’ƒ๐’–๐’” = ๐’€๐Ÿ๐Ÿ ๐’€๐Ÿ๐Ÿ ๐’€๐Ÿ๐Ÿ‘

๐’€๐Ÿ๐Ÿ ๐’€๐Ÿ๐Ÿ ๐’€๐Ÿ๐Ÿ‘

๐’€๐Ÿ‘๐Ÿ ๐’€๐Ÿ‘๐Ÿ ๐’€๐Ÿ‘๐Ÿ‘

โˆ’1

๐’€๐Ÿ’๐Ÿ’ ๐’€๐Ÿ๐Ÿ’

๐’€๐Ÿ๐Ÿ’

๐’€๐Ÿ‘๐Ÿ’

๐’€๐Ÿ’๐Ÿ ๐’€๐Ÿ’๐Ÿ ๐’€๐Ÿ’๐Ÿ‘

and when indicated manipulation of matrices is accomplished, the

element in row k and column j of the resultiing (N-1)x(N-1) matrix will be,

๐’€๐’Œ๐’‹ ๐’๐’†๐’˜ = ๐’€๐’Œ๐’‹ ๐’๐’“๐’Š๐’ˆ โˆ’๐’€๐’Œ๐’๐’€๐’๐’‹

๐’€๐Ÿ’๐Ÿ’

Page 28: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

28

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

4

1

3

2

!1

0

!2

!3

Ya

Yb

Yc

Yf

Yd

Yg

Ye

Yh

The procedure is to multiply the element to be modified in the last element of the same column and row and then its product must be divided by the cornermost element Y44 (in other books is Ynn) in the matrix to be modified. Finally, subtract the answer to the original element being modified.

2. If knowledge of V2 is also not of prime interest, we can interpret the resultant as (N-2) x (N-2) system as replacing the actual network by an (N-2) bus equivalent with buses 1 and 2 removed and so on. Thus,

๐’€๐Ÿ‘๐Ÿ ๐’€๐Ÿ‘๐Ÿ

๐’€๐Ÿ’๐Ÿ ๐’€๐Ÿ’๐Ÿ

๐‘ฝ๐Ÿ‘

๐‘ฝ๐Ÿ’ =

๐‘ฐ๐Ÿ‘๐‘ฐ๐Ÿ’

SAMPLE PROBLEM:

1.) If the generator and transformer at bus 3 are removed from the circuit of the figure below, eliminate nodes 3 and 4 by the matrix-algebra and gaussian method just described and find the equivalent circuit with these nodes eliminated. Find also the complex power transferred into or out of the network at nodes 1 and 2. Also find the voltage at node 1. The emfs are Ea=1.5 cis 0, Eb = 1.5 cis -36.87, and Ec = 1.5 cis 0, all in per unit.

Reqโ€™d:

a) Ybus by matrix partition b) Ybus by gaussian method

c) equivalent circuit with 3 and 4 eliminated

d) complex power and e) V1

Page 29: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

29

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

Solโ€™n: The bus admittance matrix of the circuit partitioned for elimination of nodes 3 and 4 is

4

1

3

2

-j0.8

!1

0

-j 4.0

-j 2.5

-j 5.0

-j0.8

!2

-j 8.0

-j 5.0

Ya

Yb

Yf

Yd

Yg

Ye

Yh

๐’€๐’ƒ๐’–๐’” =

โˆ’๐’‹๐Ÿ—. ๐Ÿ– ๐ŸŽ

๐ŸŽ โˆ’๐’‹๐Ÿ–. ๐Ÿ‘

๐’‹๐Ÿ’ ๐’‹๐Ÿ“

๐’‹๐Ÿ. ๐Ÿ“ ๐’‹๐Ÿ“

๐’‹๐Ÿ’ ๐’‹๐Ÿ. ๐Ÿ“

๐’‹๐Ÿ“ ๐’‹๐Ÿ“

โˆ’๐’‹๐Ÿ๐Ÿ’. ๐Ÿ“ ๐’‹๐Ÿ–

๐’‹๐Ÿ– โˆ’๐’‹๐Ÿ๐Ÿ–

a) Ybus by matrix partition

๐’€๐’ƒ๐’–๐’” = ๐‘ฒ ๐‘ณ๐‘ณ๐‘ป ๐‘ด

= ๐‘ฒโˆ’๐‘ณ๐‘ดโˆ’๐Ÿ๐‘ณ๐‘ป

=

โˆ’๐’‹๐Ÿ—. ๐Ÿ– ๐ŸŽ

๐ŸŽ โˆ’๐’‹๐Ÿ–. ๐Ÿ‘

๐’‹๐Ÿ’ ๐’‹๐Ÿ“

๐’‹๐Ÿ. ๐Ÿ“ ๐’‹๐Ÿ“

๐’‹๐Ÿ’ ๐’‹๐Ÿ. ๐Ÿ“

๐’‹๐Ÿ“ ๐’‹๐Ÿ“

โˆ’๐’‹๐Ÿ๐Ÿ’. ๐Ÿ“ ๐’‹๐Ÿ–

๐’‹๐Ÿ– โˆ’๐’‹๐Ÿ๐Ÿ–

The inverse of the submatrix in the lower right position is,

๐‘€โˆ’1 =1

๐‘‘๐‘’๐‘ก ๐‘€ ๐‘๐‘œ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘€ ๐‘‡

=1

โˆ’197 โˆ’๐‘—18 โˆ’๐‘—8

โˆ’๐‘—8 โˆ’๐‘—14.5 ๐‘‡

=1

โˆ’197 โˆ’๐‘—18 โˆ’๐‘—8

โˆ’๐‘—8 โˆ’๐‘—14.5

๐‘ดโˆ’๐Ÿ = ๐’‹๐ŸŽ. ๐ŸŽ๐Ÿ—๐Ÿ๐Ÿ’ ๐’‹๐ŸŽ. ๐ŸŽ๐Ÿ’๐ŸŽ๐Ÿ”

๐’‹๐ŸŽ. ๐ŸŽ๐Ÿ’๐ŸŽ๐Ÿ” ๐’‹๐ŸŽ. ๐ŸŽ๐Ÿ•๐Ÿ‘๐Ÿ”

Page 30: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

30

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

Then,

๐’€๐’ƒ๐’–๐’” = ๐‘ฒโˆ’๐‘ณ๐‘ดโˆ’๐Ÿ๐‘ณ๐‘ป

= โˆ’๐‘—9.8 0

0 โˆ’๐‘—8.3 โˆ’

๐‘—4 ๐‘—5

๐‘—2.5 ๐‘—5

๐‘—0.0914 ๐‘—0.0406

๐‘—0.0406 ๐‘—0.0736

๐‘—4 ๐‘—2.5

๐‘—5 ๐‘—5

= โˆ’๐‘—9.8 0

0 โˆ’๐‘—8.3 โˆ’ โˆ’

๐‘—4.9264 ๐‘—4.0736

๐‘—4.0736 ๐‘—3.4264

๐’€๐’ƒ๐’–๐’” = โˆ’๐’‹๐Ÿ’. ๐Ÿ–๐Ÿ•๐Ÿ‘๐Ÿ” ๐’‹๐Ÿ’. ๐ŸŽ๐Ÿ•๐Ÿ‘๐Ÿ”

๐’‹๐Ÿ’. ๐ŸŽ๐Ÿ•๐Ÿ‘๐Ÿ” โˆ’๐’‹๐Ÿ’. ๐Ÿ–๐Ÿ•๐Ÿ‘๐Ÿ”

b) Ybus by gaussian method First, we remove node 4 then node 3. Thus,

๐‘Œ๐‘๐‘ข๐‘  =

โˆ’๐‘—9.8 0

0 โˆ’๐‘—8.3

๐‘—4 ๐‘—5

๐‘—2.5 ๐‘—5

๐‘—4 ๐‘—2.5

๐‘—5 ๐‘—5

โˆ’๐‘—14.5 ๐‘—8

๐‘—8 โˆ’๐‘—18

To get the (N-1)x(N-1) resultant, use

๐’€๐’Œ๐’‹ ๐’๐’†๐’˜ = ๐’€๐’Œ๐’‹ ๐’๐’“๐’Š๐’ˆ โˆ’๐’€๐’Œ๐’๐’€๐’๐’‹

๐’€๐Ÿ’๐Ÿ’

and so,

๐’€๐Ÿ๐Ÿ ๐’๐’†๐’˜ = โˆ’๐‘—9.8 โˆ’๐‘—5 ๐‘—5

โˆ’๐‘—18= โˆ’๐’‹๐Ÿ–.๐Ÿ’๐Ÿ๐Ÿ

๐’€๐Ÿ๐Ÿ ๐’๐’†๐’˜ = ๐’€๐Ÿ๐Ÿ ๐’๐’†๐’˜ = 0 โˆ’๐‘—5 ๐‘—5

โˆ’๐‘—18= ๐’‹๐Ÿ. ๐Ÿ‘๐Ÿ–๐Ÿ–๐Ÿ—

๐’€๐Ÿ๐Ÿ‘ ๐’๐’†๐’˜ = ๐’€๐Ÿ‘๐Ÿ ๐’๐’†๐’˜ = ๐‘—2.5 โˆ’๐‘—5 ๐‘—8

โˆ’๐‘—18= ๐’‹๐Ÿ”. ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

๐’€๐Ÿ๐Ÿ ๐’๐’†๐’˜ = โˆ’๐‘—8.3 โˆ’๐‘—5 ๐‘—5

โˆ’๐‘—18= โˆ’๐’‹๐Ÿ”.๐Ÿ—๐Ÿ๐Ÿ๐Ÿ

๐’€๐Ÿ๐Ÿ‘ ๐’๐’†๐’˜ = ๐’€๐Ÿ‘๐Ÿ ๐’๐’†๐’˜ = ๐‘—2.5 โˆ’๐‘—5 ๐‘—8

โˆ’๐‘—18= โˆ’๐’‹๐Ÿ’. ๐Ÿ•๐Ÿ๐Ÿ๐Ÿ

๐’€๐Ÿ‘๐Ÿ‘ ๐’๐’†๐’˜ = โˆ’๐‘—14.5 โˆ’๐‘—5 ๐‘—5

โˆ’๐‘—18= โˆ’๐’‹๐Ÿ๐ŸŽ. ๐Ÿ—๐Ÿ’๐Ÿ’๐Ÿ’

Page 31: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

31

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

After determining the new value of elements, Reducing the above matrix to node 3,

๐‘Œ๐‘๐‘ข๐‘  =

โˆ’๐‘—8.411 ๐‘—1.3889 ๐‘—6.2222๐‘—1.3889 โˆ’๐‘—6.9111 โˆ’๐‘—4.7222๐‘—6.2222 โˆ’๐‘—4.7222 โˆ’๐‘—10.9444

Having,

๐’€๐Ÿ๐Ÿ ๐’๐’†๐’˜๐Ÿ = ๐’€๐Ÿ๐Ÿ ๐’๐’†๐’˜๐Ÿ = โˆ’๐‘—8.411 โˆ’๐‘—6.2222 ๐‘—6.2222

โˆ’๐‘—10.9444= โˆ’๐’‹๐Ÿ’.๐Ÿ–๐Ÿ•๐Ÿ‘๐Ÿ”

๐’€๐Ÿ๐Ÿ ๐’๐’†๐’˜๐Ÿ = ๐’€๐Ÿ๐Ÿ ๐’๐’†๐’˜๐Ÿ = ๐‘—1.3889 โˆ’โˆ’๐‘—4.7222 ๐‘—6.2222

โˆ’๐‘—10.9444= โˆ’๐’‹๐Ÿ’.๐ŸŽ๐Ÿ•๐Ÿ‘๐Ÿ”

Therefore,

๐’€๐’ƒ๐’–๐’” = โˆ’๐’‹๐Ÿ’. ๐Ÿ–๐Ÿ•๐Ÿ‘๐Ÿ” ๐’‹๐Ÿ’. ๐ŸŽ๐Ÿ•๐Ÿ‘๐Ÿ”

๐’‹๐Ÿ’. ๐ŸŽ๐Ÿ•๐Ÿ‘๐Ÿ” โˆ’๐’‹๐Ÿ’. ๐Ÿ–๐Ÿ•๐Ÿ‘๐Ÿ”

c) equivalent circuit with 3 and 4 eliminated

To get the equivalent circuit, we can examine from the Ybus matrix that the admittance between the bus 1 and 2 is โ€“j4.0736. Making,

1

2

!1

0

!2

Ya

Yb

Y12=-j4.0376

But we still donโ€™t know the value of admittance between bus 1 and reference, Ya. To get it, we consider the value of the self admittance Y11 formula, which is

๐’€๐Ÿ๐Ÿ = ๐’€๐’‚ + ๐’€๐Ÿ๐Ÿ + ๐’€๐Ÿ๐Ÿ’

Page 32: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

32

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

But since bus 4 has been eliminated then Y14=0, yet we have

๐’€๐Ÿ๐Ÿ = ๐’€๐’‚ + ๐’€๐Ÿ๐Ÿ โˆ’๐‘—4.8736 = ๐‘Œ๐‘Ž + โ€“ j4.0736

๐’€๐’‚ = โˆ’๐’‹๐ŸŽ.๐Ÿ–

๐’€๐Ÿ๐Ÿ = ๐’€๐’ƒ + ๐’€๐Ÿ๐Ÿ โˆ’๐‘—4.8736 = ๐‘Œ๐‘Ž + โ€“ j4.0736

๐’€๐’ƒ = โˆ’๐’‹๐ŸŽ. ๐Ÿ– The resulting circuit now is,

1

2

I1

0

I2

Ya=-j0.8

Yb=-j0.8

Y12=-j4.0376

To get the value the Power from reference to bus 1 and reference to bus 2, S1 and S2, we redraw the circuit and solve for the V and the current. For current, transform the above ckt to voltage-impedance ckt. Making this,

1 2

I1= 0-j1.2

0

I2= -0.72- j0.96Ya=-j0.8 Yb=-j0.8

Y12=-j4.0376

Page 33: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

33

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

to

1 2

0

E2=1.5 -36.87

Za=j1.25 Zb=j1.25Z12=-j0.2455

E1 =1.5 0I

But,

๐ผ =๐ธ1 โˆ’ ๐ธ2

๐‘๐‘Ž + ๐‘12 + ๐‘๐‘

=1.5โˆ 0 โˆ’ 1.5โˆ  โˆ’ 36.87

๐‘—1.25 + ๐‘—0.2455 + ๐‘—1.25

๐‘ฐ = ๐ŸŽ. ๐Ÿ‘๐Ÿ’๐Ÿ“๐Ÿ“โˆ  โˆ’ ๐Ÿ๐Ÿ–. ๐Ÿ’๐Ÿ’ ๐’‘๐’–

Hence; ๐‘†1 = ๐ผโˆ—๐ธ1

= 0.3455โˆ 18.44 1.5โˆ 0 ๐‘บ๐Ÿ = ๐ŸŽ. ๐Ÿ’๐Ÿ—๐Ÿ + ๐’‹๐ŸŽ. ๐Ÿ๐Ÿ”๐Ÿ’ ๐’‘๐’–

๐‘†2 = ๐ผโˆ—๐ธ2 = 0.3455โˆ 18.44 1.5โˆ  โˆ’ 36.87

๐‘บ๐Ÿ = ๐ŸŽ. ๐Ÿ’๐Ÿ—๐Ÿ โˆ’ ๐’‹๐ŸŽ. ๐Ÿ๐Ÿ”๐Ÿ’ ๐’‘๐’–

The reactive power in the circuit equals to, ๐‘„ = ๐ผ2๐‘๐‘‡

= 0.3455 2 ๐‘—1.25 + ๐‘—0.2455 + ๐‘—1.25 ๐‘ธ = ๐ŸŽ.๐Ÿ‘๐Ÿ๐Ÿ• ๐’‘๐’– The voltage at node 1 will be, ๐‘‰1 = ๐ธ1 โˆ’ ๐ผ๐‘๐‘Ž

= 1.5โˆ 0 โˆ’ 0.3455โˆ  โˆ’ 18.44 ๐‘—1.25 ๐‘ฝ๐Ÿ = ๐Ÿ. ๐Ÿ‘๐Ÿ”๐Ÿ‘ โˆ’ ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ๐ŸŽ ๐’‘๐’–

Page 34: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

34

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

MODIFICATION OF EXISTING BUS IMPEDANCE

Since Zbus is such an important tool in power-system analysis, we shall examine how an existing Zbus may be modified to add new buses or connected new lines to established buses. Of course we create new Ybus and invert it, but direct methods are very much simpler than a matrix inversion even for small number of buses. Also when we know how to modify Zbus we can see how to build it directly.

We recognize several types of modifications involving the addition of a branch

having impedance Zb to a network whose original bus Zbus is known and is identified as Zorig, an nxn matrix.

In our analysis, existing buses will be identified by numbers or letters and letter k will designate a new bus to be added to the network to convert Zorig to an (n+1) x (n+1) matrix. Case I: Adding Zb from a new bus k to the reference bus.

Zb is added from a new bus to the reference bus r (i.e. a new branch is added and the dimension of Zbus goes up by one). The addition of the new bus k connected to the reference bus through Zb without a connection to any buses of the original network cannot alter the original bus voltages when a current Ik is injected at the new bus. Thus,

The new Zbus will be,

Page 35: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

35

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

Making,

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ

โ‹ฎ๐‘ฝ๐’

๐‘ฝ๐’Œ

=

๐’๐’๐’“๐’Š๐’ˆ

๐ŸŽ๐ŸŽโ‹ฎ๐ŸŽ

๐ŸŽ ๐ŸŽ โ‹ฏ ๐ŸŽ ๐’๐’ƒ

๐‘ฐ๐Ÿ๐‘ฐ๐Ÿโ‹ฎ๐‘ฐ๐’๐‘ฐ๐’Œ

Note; Vk = ZbIk ; Zb = Zkk ; Zki = Zik = 0 Case II: Adding Zb from a new bus k to an existing bus j.

Zb is added from a new bus k to old bus j. The addition of the new bus k through Zb to an existing bus j with Ik injected at bus k will cause the current entering the original network at bus j to become the sum of Ij which is injected at bus j plus the current Ik coming through Zb. Thus,

The new bus becomes,

Page 36: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

36

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

Making,

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ

โ‹ฎ๐‘ฝ๐’

๐‘ฝ๐’Œ

=

๐’๐’๐’“๐’Š๐’ˆ

๐’๐Ÿ๐’‹

๐’๐Ÿ๐’‹

โ‹ฎ๐’๐’๐’‹

๐’๐’‹๐Ÿ ๐’๐’‹๐Ÿ โ‹ฏ ๐’๐’‹๐’ ๐’๐’‹๐’‹ + ๐’๐’ƒ

๐‘ฐ๐Ÿ๐‘ฐ๐Ÿโ‹ฎ๐‘ฐ๐’๐‘ฐ๐’Œ

where: ๐‘‰๐‘˜ = ๐ผ1๐‘๐‘—1 + ๐‘๐‘—2๐ผ2 + โ‹ฏ + ๐‘๐‘—๐‘› ๐ผ๐‘› + ๐‘๐‘—๐‘— + ๐‘๐‘ ๐ผ๐‘˜

= ๐‘‰๐‘˜ ๐‘œ๐‘Ÿ๐‘–๐‘” + ๐‘๐‘—๐‘— + ๐‘๐‘ ๐ผ๐‘˜

= ๐‘‰๐‘˜ ๐‘œ๐‘Ÿ๐‘–๐‘” + ๐‘๐‘—๐‘— ๐ผ๐‘˜ + ๐ผ๐‘˜๐‘๐‘

= ๐‘‰๐‘˜ ๐‘›๐‘’๐‘ค + ๐ผ๐‘˜๐‘๐‘

๐‘ฝ๐’Œ = ๐‘ฝ๐’‹ + ๐‘ฐ๐’Œ๐’๐’ƒ

Case III: Adding Zb from an existing bus j to the reference bus r. To see how to alter Z orig by connecting an imedance Zb from an existing bus j to the reference bus, we shall add a new bus k through the Zb to the bus j. Thus,

Then we short circuit bus k to the reference by letting Vk equal to zero to yield the same matrix equation as in case II except that Vk is zero. So for modification, we proceed to create new row and column exactly the same as in case 2 but we then eliminate the (n+1) x (n+1) column, which is possible because of the zero in column matrix of voltages.

Page 37: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

37

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

Thus,

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ

โ‹ฎ๐‘ฝ๐’

๐ŸŽ

=

๐’๐’๐’“๐’Š๐’ˆ

๐’๐Ÿ๐’‹

๐’๐Ÿ๐’‹

โ‹ฎ๐’๐’๐’‹

๐’๐’‹๐Ÿ ๐’๐’‹๐Ÿ โ‹ฏ ๐’๐’‹๐’ ๐’๐’‹๐’‹ + ๐’๐’ƒ

๐‘ฐ๐Ÿ๐‘ฐ๐Ÿโ‹ฎ๐‘ฐ๐’๐‘ฐ๐’Œ

Eliminate Ik in the set of equations contained in the matrix operation

0 = ๐ผ1๐‘๐‘—1 + ๐‘๐‘—2๐ผ2 + โ‹ฏ + ๐‘๐‘—๐‘› ๐ผ๐‘› + ๐‘๐‘—๐‘— + ๐‘๐‘ ๐ผ๐‘˜

โˆ’ ๐‘๐‘—๐‘— + ๐‘๐‘ ๐ผ๐‘˜ = ๐ผ1๐‘๐‘—1 + ๐‘๐‘—2๐ผ2 + โ‹ฏ + ๐‘๐‘—๐‘› ๐ผ๐‘›

๐‘ฐ๐’Œ =โˆ’๐Ÿ

๐’๐’‹๐’‹+๐’๐’ƒ ๐‘ฐ๐Ÿ๐’๐’‹๐Ÿ + ๐’๐’‹๐Ÿ๐‘ฐ๐Ÿ + โ‹ฏ + ๐’๐’‹๐’๐‘ฐ๐’ โ€ฆโ€ฆ eq.1

Now,

๐‘ฝ๐’Š = ๐‘ฐ๐Ÿ๐’๐’Š๐Ÿ + ๐’๐’Š๐Ÿ๐‘ฐ๐Ÿ + โ‹ฏ + ๐’๐’Š๐’๐‘ฐ๐’ + ๐’๐’Š๐’‹๐‘ฐ๐’Œ โ€ฆ. eq.2

Substituting eq.2 to eq.1, we have

๐‘ฝ๐’Š

๐‘ฐ๐Ÿ๐’๐’Š๐Ÿ + ๐’๐’Š๐Ÿ๐‘ฐ๐Ÿ + โ‹ฏ + ๐’๐’Š๐’๐‘ฐ๐’ + ๐’๐’Š๐’‹=

โˆ’๐Ÿ

๐’๐’‹๐’‹ + ๐’๐’ƒ ๐‘ฐ๐Ÿ๐’๐’‹๐Ÿ + ๐’๐’‹๐Ÿ๐‘ฐ๐Ÿ + โ‹ฏ + ๐’๐’‹๐’๐‘ฐ๐’

Equation can be written in the matrix form,

๐’๐’ƒ๐’–๐’” (๐’๐’†๐’˜) = ๐’๐’ƒ๐’–๐’” (๐’๐’“๐’Š๐’ˆ) โˆ’๐Ÿ

๐’๐’‹๐’‹ + ๐’๐’ƒ

๐’๐Ÿ๐’‹

โ‹ฎ๐’๐’๐’‹

๐’๐’‹๐Ÿ โ‹ฏ ๐’๐’‹๐’

Or simply,

๐’๐’‰๐’Š (๐’๐’†๐’˜) = ๐’๐’‰๐’Š (๐’๐’“๐’Š๐’ˆ) โˆ’๐’๐’‰ (๐’+๐Ÿ)๐’(๐’+๐Ÿ)๐’Š

๐’๐’‹๐’‹ + ๐’๐’ƒ

Page 38: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

38

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

Case IV: Adding Zb between two existing bus j and i

To add a branch impedance Zb between already established buses i and j, we examine the figure below which shows these buses extracted from the original network. Thus,

The current Ik is shown flowing through Zb from bus j to bus i. We now write some equations for node voltages.

๐‘ฝ๐’Š = ๐‘ฐ๐Ÿ๐’๐’Š๐Ÿ + ๐’๐’Š๐Ÿ๐‘ฐ๐Ÿ + โ‹ฏ + ๐’๐Ÿ๐’Š ๐‘ฐ๐’Š + ๐‘ฐ๐’Œ + ๐’๐’Š๐’‹ ๐‘ฐ๐’‹ โˆ’ ๐‘ฐ๐’Œ + โ‹ฏ + ๐’๐’Š๐’๐‘ฐ๐’

Similar equations follow for other buses. The voltages of the buses i and j are, however, constrained by the equation ๐‘ฝ๐’‹ = ๐‘ฝ๐’Š + ๐‘ฐ๐’Œ๐’๐’ƒ

๐‘ฐ๐Ÿ๐’๐’‹๐Ÿ + ๐’๐’‹๐Ÿ๐‘ฐ๐Ÿ + โ‹ฏ + ๐’๐’‹๐’Š ๐‘ฐ๐’Š + ๐‘ฐ๐’Œ + ๐’๐’‹๐’‹ ๐‘ฐ๐’‹ โˆ’ ๐‘ฐ๐’Œ + โ‹ฏ + ๐’๐’‹๐’๐‘ฐ๐’= ๐‘ฐ๐Ÿ๐’๐’Š๐Ÿ + ๐’๐’Š๐Ÿ๐‘ฐ๐Ÿ + โ‹ฏ + ๐’๐Ÿ๐’Š ๐‘ฐ๐’Š + ๐‘ฐ๐’Œ + ๐’๐’Š๐’‹ ๐‘ฐ๐’‹ โˆ’ ๐‘ฐ๐’Œ + โ‹ฏ

+ ๐’๐’Š๐’๐‘ฐ๐’ + ๐‘ฐ๐’Œ๐’๐’ƒ

Rearranging, we have

0 = ๐’๐’Š๐Ÿ โˆ’ ๐’๐’‹๐Ÿ ๐‘ฐ๐Ÿ + โ‹ฏ + ๐’๐’Š๐’Š โˆ’ ๐’๐’‹๐’Š ๐‘ฐ๐’Š + ๐’๐’Š๐’‹ โˆ’ ๐’๐’‹๐’‹ ๐‘ฐ๐’‹ + โ‹ฏ +

๐’๐’Š๐’ โˆ’ ๐’๐’‹๐’ ๐‘ฐ๐’ + ๐’๐’ƒ + ๐’๐’Š๐’Š + ๐’๐’‹๐’‹ โˆ’ ๐’๐’Š๐’‹ โˆ’ ๐’๐’‹๐’Š ๐‘ฐ๐’Œ

Page 39: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

39

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

Collecting equations similar to case 2 and case 3, we can write

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ

โ‹ฎ๐‘ฝ๐’

๐ŸŽ

=

๐’๐’๐’“๐’Š๐’ˆ

๐’๐Ÿ๐’Š โˆ’ ๐’๐Ÿ๐’‹

๐’๐’Š๐’Š โˆ’ ๐’๐’Š๐’‹

โ‹ฎ๐’๐’๐’Š โˆ’ ๐’๐’๐’‹

๐’๐’Š๐Ÿ โˆ’ ๐’๐’‹๐Ÿ ๐’๐’Š๐’Š โˆ’ ๐’๐’‹๐’Š โ‹ฏ ๐’๐’Š๐’ โˆ’ ๐’๐’‹๐’ ๐’๐’ƒ๐’ƒ

๐‘ฐ๐Ÿ๐‘ฐ๐Ÿโ‹ฎ๐‘ฐ๐’๐‘ฐ๐’Œ

Where:

๐’๐’ƒ๐’ƒ = ๐’๐’ƒ + ๐’๐’Š๐’Š + ๐’๐’‹๐’‹ โˆ’ ๐Ÿ๐’๐’Š๐’‹

Eliminate Ik in the set of equations contained in the matrix operation

๐’๐’ƒ๐’–๐’” (๐’๐’†๐’˜) = ๐’๐’ƒ๐’–๐’” (๐’๐’“๐’Š๐’ˆ) โˆ’๐Ÿ

๐’๐’ƒ + ๐’๐’Š๐’Š + ๐’๐’‹๐’‹ โˆ’ ๐Ÿ๐’๐’Š๐’‹

๐’๐Ÿ๐’Š โˆ’ ๐’๐Ÿ๐’‹

โ‹ฎ๐’๐’๐’Š โˆ’ ๐’๐’๐’‹

๐’๐Ÿ๐’Š โˆ’ ๐’๐Ÿ๐’‹ โ‹ฏ ๐’๐’๐’Š โˆ’ ๐’๐’๐’‹

Or simply,

๐’๐’‰๐’Š (๐’๐’†๐’˜) = ๐’๐’‰๐’Š (๐’๐’“๐’Š๐’ˆ) โˆ’๐’๐’‰ (๐’+๐Ÿ)๐’(๐’+๐Ÿ)๐’Š

๐’๐’ƒ + ๐’๐’Š๐’Š + ๐’๐’‹๐’‹ โˆ’ ๐Ÿ๐’๐’Š๐’‹

With the use of four relationships, bus impedance matrix can be built by a step-by-step procedure (bringing in one branch at a time). This procedure being a mechanical one can be easily computerized. When network is undergoes changes, the modification procedures can be employed to revise the bus impedance matrix of the network.

Page 40: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

40

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

SAMPLE PROBLEM:

1. Modify the bus matrix of the example 2 (page 52) to account for the connection of the capacitor having a reactance of 5.0 per unit between bus 4 and the reference bus. Then find V4 using the impedance of the new matrix and the current source. Compare this value of V4 with that found on example 2.

Reqโ€™d: V4 Solโ€™n: We use and recognize that Zorig is the 4x4 matrix. That k = 4 and that Zb = -j5.0 pu to find.

Before we use the case 2 modification, we first recognize the original Zbus of

the example before the capacitor is being installed from bus 4 to the reference.

๐‘๐‘๐‘ข๐‘  ๐‘œ๐‘Ÿ๐‘–๐‘” =

๐‘—0.4774 ๐‘—0.3706๐‘—0.3706 ๐‘—0.4872

๐‘—0.4020 ๐‘—0.4142๐‘—0.3922 ๐‘—0.4126

๐‘—0.4020 ๐‘—0.3922๐‘—0.4142 ๐‘—0.4126

๐‘—0.4558 ๐‘—0.4232๐‘—0.4232 ๐‘—0.4733

Then apply case 2, we have

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ‘

๐‘ฝ๐Ÿ’

๐ŸŽ

=

๐‘—0.4774 ๐‘—0.3706

๐‘—0.3706 ๐‘—0.4872

๐‘—0.4020 ๐‘—0.4142

๐‘—0.3922 ๐‘—0.4126๐‘—0.4020 ๐‘—0.3922

๐‘—0.4142 ๐‘—0.4126

๐‘—0.4558 ๐‘—0.4232

๐‘—0.4232 ๐‘—0.4733

๐’๐Ÿ๐’‹

๐’๐Ÿ๐’‹

โ‹ฎ๐’๐’๐’‹

๐’๐’‹๐Ÿ ๐’๐’‹๐Ÿ โ‹ฏ ๐’๐’‹๐’ ๐’๐’‹๐’‹ + ๐’๐’ƒ

๐‘ฐ๐Ÿ๐‘ฐ๐Ÿ๐‘ฐ๐Ÿ‘๐‘ฐ๐Ÿ’๐‘ฐ๐’Œ

Then,

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ‘

๐‘ฝ๐Ÿ’

๐ŸŽ

=

๐‘—0.4774 ๐‘—0.3706

๐‘—0.3706 ๐‘—0.4872

๐‘—0.4020 ๐‘—0.4142

๐‘—0.3922 ๐‘—4126๐‘—4020 ๐‘—0.3922

๐‘—0.4142 ๐‘—0.4126

๐‘—0.4558 ๐‘—0.4232

๐‘—0.4232 ๐‘—0.4733

๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ๐Ÿ’๐Ÿ

๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ๐Ÿ๐Ÿ”๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ๐Ÿ‘๐Ÿ

๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ•๐Ÿ‘๐Ÿ‘๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ๐Ÿ’๐Ÿ ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ๐Ÿ๐Ÿ” ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ๐Ÿ‘๐Ÿ ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ•๐Ÿ‘๐Ÿ‘ ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ•๐Ÿ‘๐Ÿ‘ + (โˆ’๐’‹๐Ÿ“)

๐‘ฐ๐Ÿ๐‘ฐ๐Ÿ๐‘ฐ๐Ÿ‘๐‘ฐ๐Ÿ’๐‘ฐ๐’Œ

Page 41: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

41

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

So;

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ‘

๐‘ฝ๐Ÿ’

๐ŸŽ

=

๐‘—0.4774 ๐‘—0.3706

๐‘—0.3706 ๐‘—0.4872

๐‘—0.4020 ๐‘—0.4142

๐‘—0.3922 ๐‘—0.4126๐‘—0.4020 ๐‘—0.3922

๐‘—0.4142 ๐‘—0.4126

๐‘—0.4558 ๐‘—0.4232

๐‘—0.4232 ๐‘—0.4733

๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ๐Ÿ’๐Ÿ

๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ๐Ÿ๐Ÿ”๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ๐Ÿ‘๐Ÿ

๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ•๐Ÿ‘๐Ÿ‘๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ๐Ÿ’๐Ÿ ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ๐Ÿ๐Ÿ” ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ๐Ÿ‘๐Ÿ ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ•๐Ÿ‘๐Ÿ‘ โˆ’๐’‹๐Ÿ’. ๐Ÿ“๐Ÿ๐Ÿ”๐Ÿ•

๐‘ฐ๐Ÿ๐‘ฐ๐Ÿ๐‘ฐ๐Ÿ‘๐‘ฐ๐Ÿ’๐‘ฐ๐’Œ

The terms in the fifth row and column were obtained by repeating the forh row and column of Zorig and noting that

๐’๐Ÿ“๐Ÿ“ = ๐’๐’‹๐’‹ + ๐’๐’ƒ = ๐’๐Ÿ’๐Ÿ’ + ๐’๐’ƒ = ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ•๐Ÿ‘๐Ÿ‘ + โˆ’๐’‹๐Ÿ“ = โˆ’๐’‹๐Ÿ’. ๐Ÿ“๐Ÿ๐Ÿ”๐Ÿ•

Then eliminating the fifth row and column, using the formula,

๐’๐’‰๐’Š (๐’๐’†๐’˜) = ๐’๐’‰๐’Š (๐’๐’“๐’Š๐’ˆ) โˆ’๐’๐’‰ (๐’+๐Ÿ)๐’(๐’+๐Ÿ)๐’Š

๐’๐’‹๐’‹ + ๐’๐’ƒ

we obtain for Zbus new,

๐’๐Ÿ๐Ÿ (๐’๐’†๐’˜) = ๐‘—0.4774 โˆ’๐‘—0.4142 ๐‘—0.4142

โˆ’๐‘—4.5267= ๐’‹๐ŸŽ. ๐Ÿ“๐Ÿ๐Ÿ“๐Ÿ‘

๐’๐Ÿ๐Ÿ (๐’๐’†๐’˜) = ๐‘—0.3706 โˆ’๐‘—0.4142 ๐‘—0.4126

โˆ’๐‘—4.5267= ๐’‹๐ŸŽ. ๐Ÿ’๐ŸŽ๐Ÿ–๐Ÿ’

๐’๐Ÿ๐Ÿ‘ (๐’๐’†๐’˜) = ๐‘—0.4020 โˆ’๐‘—0.4142 ๐‘—0.4232

โˆ’๐‘—4.5267= ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ’๐ŸŽ๐Ÿ•

๐’๐Ÿ๐Ÿ’ (๐’๐’†๐’˜) = ๐‘—0.4142 โˆ’๐‘—0.4142 ๐‘—0.4733

โˆ’๐‘—4.5267= ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ“๐Ÿ•๐Ÿ“

๐’๐Ÿ๐Ÿ (๐’๐’†๐’˜) = ๐‘—0.3706 โˆ’๐‘—0.4142 ๐‘—0.4142

โˆ’๐‘—4.5267= ๐’‹๐ŸŽ. ๐Ÿ“๐Ÿ๐Ÿ“๐Ÿ‘

๐’๐Ÿ๐Ÿ (๐’๐’†๐’˜) = ๐‘—0.4872 โˆ’๐‘—0.4142 ๐‘—0.4126

โˆ’๐‘—4.5267= ๐’‹๐ŸŽ. ๐Ÿ“๐Ÿ๐Ÿ’๐Ÿ–

๐’๐Ÿ๐Ÿ‘ (๐’๐’†๐’˜) = ๐‘—0.3922 โˆ’๐‘—0.4142 ๐‘—0.4232

โˆ’๐‘—4.5267= ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ‘๐ŸŽ๐Ÿ–

๐’๐Ÿ๐Ÿ’ (๐’๐’†๐’˜) = ๐‘—0.4126 โˆ’๐‘—0.4142 ๐‘—0.4733

โˆ’๐‘—4.5267= ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ“๐Ÿ“๐Ÿ•

๐’๐Ÿ‘๐Ÿ ๐’๐’†๐’˜ = ๐‘—0.4020 โˆ’๐‘—0.4142 ๐‘—0.4142

โˆ’๐‘—4.5267= ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ’๐ŸŽ๐Ÿ•

๐’๐Ÿ‘๐Ÿ (๐’๐’†๐’˜) = ๐‘—0.3922 โˆ’๐‘—0.4142 ๐‘—0.4126

โˆ’๐‘—4.5267= ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ‘๐ŸŽ๐Ÿ–

๐’๐Ÿ‘๐Ÿ‘ (๐’๐’†๐’˜) = ๐‘—0.4558 โˆ’๐‘—0.4142 ๐‘—0.4232

โˆ’๐‘—4.5267= ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ—๐Ÿ“๐Ÿ’

๐’๐Ÿ‘๐Ÿ’ (๐’๐’†๐’˜) = ๐‘—0.4232 โˆ’๐‘—0.4142 ๐‘—0.4733

โˆ’๐‘—4.5267= ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ”๐Ÿ•๐Ÿ’

๐’๐Ÿ’๐Ÿ ๐’๐’†๐’˜ = ๐‘—0.4142 โˆ’๐‘—0.4142 ๐‘—0.4142

โˆ’๐‘—4.5267= ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ“๐Ÿ•๐Ÿ“

๐’๐Ÿ’๐Ÿ (๐’๐’†๐’˜) = ๐‘—0.4126 โˆ’๐‘—0.4142 ๐‘—0.4126

โˆ’๐‘—4.5267= ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ“๐Ÿ“๐Ÿ•

๐’๐Ÿ’๐Ÿ‘ (๐’๐’†๐’˜) = ๐‘—0.4232 โˆ’๐‘—0.4142 ๐‘—0.4232

โˆ’๐‘—4.5267= ๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ”๐Ÿ•๐Ÿ’

๐’๐Ÿ’๐Ÿ’ (๐’๐’†๐’˜) = ๐‘—0.4733 โˆ’๐‘—0.4142 ๐‘—0.4733

โˆ’๐‘—4.5267= ๐’‹๐ŸŽ. ๐Ÿ“๐Ÿ๐Ÿ๐Ÿ–

Then weโ€™ll have,

๐’๐’ƒ๐’–๐’” ๐’๐’†๐’˜ =

๐’‹๐ŸŽ. ๐Ÿ“๐Ÿ๐Ÿ“๐Ÿ‘ ๐’‹๐ŸŽ.๐Ÿ’๐ŸŽ๐Ÿ–๐Ÿ’๐’‹๐ŸŽ. ๐Ÿ’๐ŸŽ๐Ÿ–๐Ÿ’ ๐’‹๐ŸŽ.๐Ÿ“๐Ÿ๐Ÿ’๐Ÿ–

๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ’๐ŸŽ๐Ÿ• ๐’‹๐ŸŽ.๐Ÿ’๐Ÿ“๐Ÿ•๐Ÿ“๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ‘๐ŸŽ๐Ÿ– ๐’‹๐ŸŽ.๐Ÿ’๐Ÿ“๐Ÿ“๐Ÿ•

๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ’๐ŸŽ๐Ÿ• ๐’‹๐ŸŽ.๐Ÿ’๐Ÿ‘๐ŸŽ๐Ÿ–๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ“๐Ÿ•๐Ÿ“ ๐’‹๐ŸŽ.๐Ÿ’๐Ÿ“๐Ÿ“๐Ÿ•

๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ—๐Ÿ“๐Ÿ’ ๐’‹๐ŸŽ.๐Ÿ’๐Ÿ”๐Ÿ•๐Ÿ’๐’‹๐ŸŽ. ๐Ÿ’๐Ÿ”๐Ÿ•๐Ÿ’ ๐’‹๐ŸŽ.๐Ÿ“๐Ÿ๐Ÿ๐Ÿ–

Page 42: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

42

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

The column matrix of currents by which the new Zbus is multiplied to obtain the new bus voltages is the same as that of the previous example. ๐‘ฝ ๐Ÿ’ (๐’๐’†๐’˜) = ๐‘41๐ผ1 + ๐‘42๐ผ2 + ๐‘43๐ผ3

= ๐‘—0.4575 โˆ’๐‘—1.2 + ๐‘—0.4575 0.72 โˆ’ ๐‘—0.96 + ๐‘—0.4674 โˆ’๐‘—1.2 Hence;

๐‘ฝ ๐Ÿ’ (๐’๐’†๐’˜) = ๐Ÿ. ๐Ÿ“๐Ÿ–๐Ÿโˆ  โˆ’ ๐Ÿ๐Ÿ. ๐Ÿ—๐Ÿ•๐’‘๐’–

DIRECT DETERMINATION OF A BUS IMPEDANCE MATRIX We have seen how to determine Zbus by first finding Ybus and inverting it. However, formulation of Zbus directly is straightforward process on the computer and simpler than inverting Ybus for a large network. To begin, we have a list of impedances showing the buses to which they are connected. We start by writing the equation for one bus connected through impedance Za to the reference bus as

๐‘ฝ ๐Ÿ = ๐’๐’‚๐‘ฐ ๐Ÿ And this can be considered as a matrix equation where each of the three matrices has one row and one column. Now, we might add new bus connected to the first bus or to the reference bus. For instance, if the second bus is connected to the reference but through Zb, we have the matrix equation

๐‘ฝ ๐Ÿ

๐‘ฝ ๐Ÿ =

๐’๐’‚ ๐ŸŽ๐ŸŽ ๐’๐’ƒ

๐‘ฐ ๐Ÿ

๐‘ฐ ๐Ÿ

And we proceed to modify our matrix by odding other buses following the procedures described. Usually, the buses of the network must be renumbered to agree with the order in which they are to be added to Zbus as it is build up.

Page 43: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

43

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

EXAMPLE: 1. Determine the Zbus for the network shown below where impedances are shown

in per unit. Preserve all three nodes.

32

j 0.3

j 1.5

j 0.15

1

j 1.2

0

j 0.2

Solโ€™n:

1. We start by establishing bus 1 with the impedance to the reference bus and write

๐‘ฝ ๐Ÿ = ๐’๐ŸŽ๐Ÿ๐‘ฐ ๐Ÿ = ๐’‹๐Ÿ. ๐Ÿ ๐‘ฐ ๐Ÿ

Then we have 1x1 bus impedance matrix,

๐’๐’ƒ๐’–๐’” = ๐’‹๐Ÿ. ๐Ÿ 2. To establish bus 2 with its impedance to bus 1, we follow

๐’๐’ƒ๐’–๐’” = ๐’›๐ŸŽ๐Ÿ ๐’›๐ŸŽ๐Ÿ

๐’›๐ŸŽ๐Ÿ ๐’›๐ŸŽ๐Ÿ + ๐’›๐Ÿ๐Ÿ =

๐’๐Ÿ๐Ÿ ๐’๐Ÿ๐Ÿ

๐’๐Ÿ๐Ÿ ๐’๐Ÿ๐Ÿ =

๐’‹๐Ÿ. ๐Ÿ ๐’‹๐Ÿ.๐Ÿ ๐’‹๐Ÿ. ๐Ÿ ๐’‹๐Ÿ. ๐Ÿ + ๐’‹๐ŸŽ. ๐Ÿ

๐’๐’ƒ๐’–๐’” = ๐’‹๐Ÿ.๐Ÿ ๐’‹๐Ÿ.๐Ÿ ๐’‹๐Ÿ.๐Ÿ ๐’‹๐Ÿ. ๐Ÿ’

Note: Elements Z01 in the new row and column is repitition of the elements of row 1 and column 1 being modified.

Page 44: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

44

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

3. To establish bus 3 with its impedance to bus 1, we follow

๐’๐’ƒ๐’–๐’” =

๐’›๐ŸŽ๐Ÿ ๐’›๐ŸŽ๐Ÿ ๐’›๐ŸŽ๐Ÿ

๐’›๐ŸŽ๐Ÿ ๐’›๐ŸŽ๐Ÿ + ๐’›๐Ÿ๐Ÿ ๐’›๐ŸŽ๐Ÿ

๐’›๐ŸŽ๐Ÿ ๐’›๐ŸŽ๐Ÿ ๐’›๐ŸŽ๐Ÿ + ๐’›๐Ÿ๐Ÿ‘

=

๐’๐Ÿ๐Ÿ ๐’๐Ÿ๐Ÿ ๐’๐Ÿ๐Ÿ‘

๐’๐Ÿ๐Ÿ ๐’๐Ÿ๐Ÿ ๐’๐Ÿ๐Ÿ‘

๐’๐Ÿ‘๐Ÿ ๐’๐Ÿ‘๐Ÿ ๐’๐Ÿ‘๐Ÿ‘

=

๐’‹๐Ÿ.๐Ÿ ๐’‹๐Ÿ. ๐Ÿ ๐’‹๐Ÿ. ๐Ÿ๐’‹๐Ÿ.๐Ÿ ๐’‹๐Ÿ. ๐Ÿ’ ๐’‹๐Ÿ. ๐Ÿ๐’‹๐Ÿ.๐Ÿ ๐’‹๐Ÿ. ๐Ÿ ๐’‹๐Ÿ. ๐Ÿ + ๐’‹๐ŸŽ.๐Ÿ‘

๐’๐’ƒ๐’–๐’” =

๐’‹๐Ÿ.๐Ÿ ๐’‹๐Ÿ.๐Ÿ ๐’‹๐Ÿ.๐Ÿ๐’‹๐Ÿ.๐Ÿ ๐’‹๐Ÿ.๐Ÿ’ ๐’‹๐Ÿ.๐Ÿ๐’‹๐Ÿ.๐Ÿ ๐’‹๐Ÿ.๐Ÿ ๐’‹๐Ÿ.๐Ÿ“

Note: The other elements in new row and column are repitition of the elements of row 1 and column 1 of the matrix being modified since the new node is being connected to bus 1.

4. If we now decide to add Z30 = Zb =j1.5 from node 3 to the reference bus, we

follow case2 to connect new bus 4 through Z30, thus

๐’๐’ƒ๐’–๐’” =

๐’›๐ŸŽ๐Ÿ ๐’›๐ŸŽ๐Ÿ ๐’›๐ŸŽ๐Ÿ

๐’›๐ŸŽ๐Ÿ ๐’›๐ŸŽ๐Ÿ + ๐’›๐Ÿ๐Ÿ ๐’›๐ŸŽ๐Ÿ

๐’›๐ŸŽ๐Ÿ ๐’›๐ŸŽ๐Ÿ ๐’›๐ŸŽ๐Ÿ + ๐’›๐Ÿ๐Ÿ‘

๐’›๐ŸŽ๐Ÿ

๐’›๐ŸŽ๐Ÿ

๐’›๐ŸŽ๐Ÿ + ๐’›๐Ÿ๐Ÿ‘

๐’›๐ŸŽ๐Ÿ ๐’›๐ŸŽ๐Ÿ ๐’›๐ŸŽ๐Ÿ + ๐’›๐Ÿ๐Ÿ‘ ๐’›๐ŸŽ๐Ÿ + ๐’›๐Ÿ๐Ÿ‘ + ๐’›๐Ÿ‘๐ŸŽ

=

๐’๐Ÿ๐Ÿ ๐’๐Ÿ๐Ÿ

๐’๐Ÿ๐Ÿ ๐’๐Ÿ๐Ÿ

๐’๐Ÿ๐Ÿ‘ ๐’๐Ÿ๐Ÿ’

๐’๐Ÿ๐Ÿ‘ ๐’๐Ÿ๐Ÿ’

๐’๐Ÿ‘๐Ÿ ๐’๐Ÿ‘๐Ÿ

๐’๐Ÿ’๐Ÿ ๐’๐Ÿ’๐Ÿ

๐’๐Ÿ‘๐Ÿ‘ ๐’๐Ÿ‘๐Ÿ’

๐’๐Ÿ’๐Ÿ‘ ๐’๐Ÿ‘๐Ÿ‘ + ๐’›๐Ÿ‘๐ŸŽ

=

๐’๐Ÿ๐Ÿ ๐’๐Ÿ๐Ÿ

๐’๐Ÿ๐Ÿ ๐’๐Ÿ๐Ÿ

๐’๐Ÿ๐Ÿ‘ ๐’๐Ÿ๐Ÿ’

๐’๐Ÿ๐Ÿ‘ ๐’๐Ÿ๐Ÿ’

๐’๐Ÿ‘๐Ÿ ๐’๐Ÿ‘๐Ÿ

๐’๐Ÿ’๐Ÿ ๐’๐Ÿ’๐Ÿ

๐’๐Ÿ‘๐Ÿ‘ ๐’๐Ÿ‘๐Ÿ’

๐’๐Ÿ’๐Ÿ‘ ๐’๐Ÿ’๐Ÿ’

=

๐’‹๐Ÿ.๐Ÿ ๐’‹๐Ÿ.๐Ÿ ๐’‹๐Ÿ.๐Ÿ๐’‹๐Ÿ.๐Ÿ ๐’‹๐Ÿ.๐Ÿ’ ๐’‹๐Ÿ.๐Ÿ๐’‹๐Ÿ.๐Ÿ ๐’‹๐Ÿ.๐Ÿ ๐’‹๐Ÿ.๐Ÿ“

๐’‹๐Ÿ. ๐Ÿ๐’‹๐Ÿ. ๐Ÿ๐’‹๐Ÿ. ๐Ÿ“

๐’‹๐Ÿ.๐Ÿ ๐’‹๐Ÿ.๐Ÿ ๐’‹๐Ÿ.๐Ÿ“ ๐’‹๐Ÿ. ๐Ÿ“ + ๐’‹๐Ÿ.๐Ÿ“

๐’๐’ƒ๐’–๐’” =

๐’‹๐Ÿ. ๐Ÿ ๐’‹๐Ÿ. ๐Ÿ ๐’‹๐Ÿ. ๐Ÿ๐’‹๐Ÿ. ๐Ÿ ๐’‹๐Ÿ. ๐Ÿ’ ๐’‹๐Ÿ. ๐Ÿ๐’‹๐Ÿ. ๐Ÿ ๐’‹๐Ÿ. ๐Ÿ ๐’‹๐Ÿ. ๐Ÿ“

๐’‹๐Ÿ.๐Ÿ๐’‹๐Ÿ.๐Ÿ๐’‹๐Ÿ.๐Ÿ“

๐’‹๐Ÿ. ๐Ÿ ๐’‹๐Ÿ. ๐Ÿ ๐’‹๐Ÿ. ๐Ÿ“ ๐’‹๐Ÿ‘

Page 45: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

45

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

Note: The other elements in new row and column are repitition of the elements of row 3 and column 3 of the matrix being modified since bus 3 is the one which is connecting tothe reference bus through Z30.

5. We now eliminate row 4 and column 4. Some of the elements of the new matrix

from equation

๐’๐’‰๐’Š (๐’๐’†๐’˜) = ๐’๐’‰๐’Š (๐’๐’“๐’Š๐’ˆ) โˆ’๐’๐’‰ (๐’+๐Ÿ)๐’(๐’+๐Ÿ)๐’Š

๐’๐’‹๐’‹ + ๐’๐’ƒ

are,

๐’๐Ÿ๐Ÿ (๐’๐’†๐’˜) = ๐‘—1.2 โˆ’๐‘—1.2 ๐‘—1.2

๐‘—3= ๐’‹๐ŸŽ. ๐Ÿ•๐Ÿ

๐’๐Ÿ๐Ÿ (๐’๐’†๐’˜) = ๐‘—1.2 โˆ’๐‘—1.2 ๐‘—1.2

๐‘—3= ๐’‹๐ŸŽ. ๐Ÿ•๐Ÿ

๐’๐Ÿ๐Ÿ‘ (๐’๐’†๐’˜) = ๐‘—1.2 โˆ’๐‘—1.2 ๐‘—1.5

๐‘—3= ๐’‹๐ŸŽ. ๐Ÿ”๐ŸŽ

๐’๐Ÿ๐Ÿ (๐’๐’†๐’˜) = ๐‘—1.2 โˆ’๐‘—1.2 ๐‘—1.2

๐‘—3= ๐’‹๐ŸŽ. ๐Ÿ•๐Ÿ

๐’๐Ÿ๐Ÿ (๐’๐’†๐’˜) = ๐‘—1.4 โˆ’๐‘—1.2 ๐‘—1.2

๐‘—3= ๐’‹๐ŸŽ. ๐Ÿ—๐Ÿ

๐’๐Ÿ๐Ÿ‘ (๐’๐’†๐’˜) = ๐‘—1.2 โˆ’๐‘—1.2 ๐‘—1.5

๐‘—3= ๐’‹๐ŸŽ. ๐Ÿ”๐ŸŽ

๐’๐Ÿ‘๐Ÿ ๐’๐’†๐’˜ = 1.2 โˆ’๐‘—1.2 ๐‘—1.5

๐‘—3= ๐’‹๐ŸŽ. ๐Ÿ”๐ŸŽ

๐’๐Ÿ‘๐Ÿ (๐’๐’†๐’˜) = 1.2 โˆ’๐‘—1.2 ๐‘—1.5

๐‘—3= ๐’‹๐ŸŽ. ๐Ÿ”๐ŸŽ

๐’๐Ÿ‘๐Ÿ‘ (๐’๐’†๐’˜) = 1.5 โˆ’๐‘—1.5 ๐‘—1.5

๐‘—3= ๐’‹๐ŸŽ. ๐Ÿ•๐Ÿ“

When all the elements are determined, we have

๐’๐’ƒ๐’–๐’” ๐’๐’†๐’˜ =

๐’‹๐ŸŽ. ๐Ÿ•๐Ÿ ๐’‹๐ŸŽ. ๐Ÿ•๐Ÿ ๐’‹๐ŸŽ.๐Ÿ”๐ŸŽ๐’‹๐ŸŽ. ๐Ÿ•๐Ÿ ๐’‹๐ŸŽ. ๐Ÿ—๐Ÿ ๐’‹๐ŸŽ.๐Ÿ”๐ŸŽ๐’‹๐ŸŽ. ๐Ÿ”๐ŸŽ ๐’‹๐ŸŽ. ๐Ÿ”๐ŸŽ ๐’‹๐ŸŽ.๐Ÿ•๐Ÿ“

6. Finally, we add impedance Z32 = Zb = j0.15 between buses 2 and 3. If we let i and j in case 4 equal to 2 and 3, respectively, we obtain the elements for row 4 and column 4.

๐‘ฝ๐Ÿ

๐‘ฝ๐Ÿ

โ‹ฎ๐‘ฝ๐’

๐ŸŽ

=

๐’๐’๐’“๐’Š๐’ˆ

๐’๐Ÿ๐’Š โˆ’ ๐’๐Ÿ๐’‹

๐’๐’Š๐’Š โˆ’ ๐’๐’Š๐’‹

โ‹ฎ๐’๐’๐’Š โˆ’ ๐’๐’๐’‹

๐’๐’Š๐Ÿ โˆ’ ๐’๐’‹๐Ÿ ๐’๐’Š๐’Š โˆ’ ๐’๐’‹๐’Š โ‹ฏ ๐’๐’Š๐’ โˆ’ ๐’๐’‹๐’ ๐’๐’ƒ๐’ƒ

๐‘ฐ๐Ÿ๐‘ฐ๐Ÿโ‹ฎ๐‘ฐ๐’๐‘ฐ๐’Œ

Page 46: Network Calculations

ADVANCED POWER SYSTEM

2-NETWORK CALCULATIONS

46

Prepared by: Joana Joy N. Abonalla and Pal Maleter Domingo

where:

๐’๐’ƒ๐’ƒ = ๐’๐’ƒ + ๐’๐’Š๐’Š + ๐’๐’‹๐’‹ โˆ’ ๐Ÿ๐’๐’Š๐’‹

which is ๐’๐Ÿ’๐Ÿ’ = ๐’›๐Ÿ๐Ÿ‘ + ๐’๐Ÿ๐Ÿ + ๐’๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐’๐Ÿ๐Ÿ‘

= ๐‘—0.15 + ๐‘—0.92 + ๐‘—0.75 โˆ’ 2 ๐‘—0.60

๐’๐Ÿ’๐Ÿ’ = ๐’‹ ๐ŸŽ. ๐Ÿ”๐Ÿ

And,

๐’๐Ÿ๐Ÿ’ = ๐’๐Ÿ๐Ÿ โˆ’ ๐’๐Ÿ๐Ÿ‘ = ๐’‹๐ŸŽ. ๐Ÿ•๐Ÿ โˆ’ ๐’‹๐ŸŽ. ๐Ÿ”๐ŸŽ = ๐’‹๐ŸŽ. ๐Ÿ๐Ÿ ๐’๐Ÿ๐Ÿ’ = ๐’๐Ÿ๐Ÿ โˆ’ ๐’๐Ÿ๐Ÿ‘ = ๐’‹๐ŸŽ. ๐Ÿ—๐Ÿ โˆ’ ๐’‹๐ŸŽ. ๐Ÿ”๐ŸŽ = ๐’‹๐ŸŽ. ๐Ÿ‘๐Ÿ

๐’๐Ÿ‘๐Ÿ’ = ๐’๐Ÿ‘๐Ÿ โˆ’ ๐’๐Ÿ‘๐Ÿ‘ = ๐’‹๐ŸŽ. ๐Ÿ”๐ŸŽ โˆ’ ๐’‹๐ŸŽ. ๐Ÿ•๐Ÿ“ = โˆ’๐’‹๐ŸŽ. ๐Ÿ๐Ÿ“ So we write,

๐’๐’ƒ๐’–๐’” =

๐’‹๐ŸŽ. ๐Ÿ•๐Ÿ ๐’‹๐ŸŽ. ๐Ÿ•๐Ÿ ๐’‹๐ŸŽ.๐Ÿ”๐ŸŽ๐’‹๐ŸŽ. ๐Ÿ•๐Ÿ ๐’‹๐ŸŽ. ๐Ÿ—๐Ÿ ๐’‹๐ŸŽ.๐Ÿ”๐ŸŽ๐’‹๐ŸŽ. ๐Ÿ”๐ŸŽ ๐’‹๐ŸŽ. ๐Ÿ”๐ŸŽ ๐’‹๐ŸŽ.๐Ÿ•๐Ÿ“

๐’‹๐Ÿ. ๐Ÿ๐’‹๐ŸŽ. ๐Ÿ‘๐Ÿโˆ’๐’‹๐ŸŽ.๐Ÿ๐Ÿ“

๐’‹๐Ÿ. ๐Ÿ ๐’‹๐ŸŽ. ๐Ÿ‘๐Ÿ โˆ’๐’‹๐ŸŽ.๐Ÿ๐Ÿ“ ๐’‹๐ŸŽ. ๐Ÿ”๐Ÿ

7. Repeating procedure 5. Eliminating row 4 and column 4 of 4x4 to get 3x3 matrix. We find,

๐’๐’ƒ๐’–๐’” ๐’๐’†๐’˜ =

๐’‹๐ŸŽ. ๐Ÿ”๐Ÿ—๐Ÿ”๐Ÿ– ๐’‹๐ŸŽ. ๐Ÿ”๐Ÿ“๐Ÿ–๐Ÿ ๐’‹๐ŸŽ. ๐Ÿ”๐Ÿ๐Ÿ—๐ŸŽ๐’‹๐ŸŽ. ๐Ÿ”๐Ÿ“๐Ÿ–๐Ÿ ๐’‹๐ŸŽ. ๐Ÿ•๐Ÿ“๐Ÿ’๐Ÿ– ๐’‹๐ŸŽ. ๐Ÿ”๐Ÿ•๐Ÿ•๐Ÿ’๐’‹๐ŸŽ. ๐Ÿ”๐Ÿ๐Ÿ—๐ŸŽ ๐’‹๐ŸŽ. ๐Ÿ”๐Ÿ•๐Ÿ•๐Ÿ’ ๐’‹๐ŸŽ. ๐Ÿ•๐Ÿ๐Ÿ‘๐Ÿ•

which is the bus impedance matrix to be determined.