NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking...

52
NetNumen U31 Introduction V12.11.20

Transcript of NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking...

Page 1: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

NetNumen U31 Introduction

V12.11.20

Page 2: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Contents

U31 System Overview U31 System Architecture Networking Modes

Page 3: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

U31 System Overview

U31 System Introduction U31 Position System Features U31 Managed NEs Interfaces Technical Specifications Compliant Standards

Page 4: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

U31 System Introduction NetNumen U31 is a subnetwork-layer network management system

based on a distributed, multi-process and modular design. U31 can uniformly manage the optical communication equipment of

ZXMP, ZXWM, ZXONE and ZXCTN series. U31 provides complete management functions, including:

configuration management alarm management performance management maintenance management end-to-end circuit management security management, system management report management

It can manage multiple service types.

Page 5: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

U31 System Overview

U31 System Introduction U31 Position System Features U31 Managed NEs Interfaces Technical Specifications Compliant Standards

Page 6: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

U31 Position U31 Position in the Transmission Network Management System

Page 7: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

U31 System Overview

U31 System Introduction U31 Position System Features U31 Managed NEs Interfaces Technical Specifications Compliant Standards

Page 8: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

System Features Standard Compliance

U31 follows the TMN and eTom models, and complies with TMN, 3GPP, SNMP, NGOSS and NGMN standards.

Modularized Design The U31 system can easily meet the requirements for managing new de

vices and services due to its modularized architecture. The system software consists of several modules, which can be distribut

ed on different computers. The distributed deployment of software modules provides the processing

capability of the system. System Openness

The U31 system adopts the following technologies to support its openness.

The use of CORBA and XML interfaces enables the system to share both data and services with other service systems.

The use of JAVA enables the system to run on the Windows, UNIX, or Linux operating system for managing networks of different scales.

The system provides various external interfaces.

Page 9: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

System Features System Reliability

The U31 system has a high reliability due to the following features: Outband and Inband Management Modes

In the case of outband management, network management data and service data is transferred over different channels. In addition, the outband management supports dual backup of the channels. You can choose the outband management mode if the actual environment requires a higher reliability.

In the case of inband management, network management data and service data is transferred over the same channel.

Perfect System Monitoring Capability By monitoring the running status of the system conveniently, you can troubleshoot pote

ntial problems of the system to ensure its reliability. Operation Security

The U31 system uses the access right control and log records to ensure the security of operations on it.

Access Right Control You can constrain the operation right of a user based on the view of a controlled networ

k, that is, the operations performed by the user are limited to certain network elements with a certain granularity.

Complete Log Records By observing the log records, you can find unauthorized operations in time to ensure th

e security of the system and the managed network.

Page 10: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

System Features

Ease of Use By using the topology navigation function on the U31 system, you can

perform network management operations easily in an intuitive way, for example, monitor the running status of the managed network on the topological graph of the network.

The topological graph has different levels, for example, global topology and local topology.

The alarm information in the whole network can be displayed on the topological graph or rack map in real time.

The system provides different audible and visual alarm indications according to the severity of alarms.

In addition, the system supports the centralized management of performance data in the whole network for convenient query, statistics, and report.

Page 11: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

System Features

Data Security The U31 system adopts database backup and disk

mirroring to ensure the security of data in the system.

Database Backup– The system provides diversified backup modes by supporting

the storage of data on another peripheral memory, such as disk, tape, compact disk, or database. You can restore the data backup on the peripheral memory to the system when necessary.

Disk Mirroring– When data mirroring is used, all data on the active disk is

replicated to the standby disk in real time for backup.

Page 12: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

U31 System Overview

U31 System Introduction U31 Position System Features U31 Managed NEs Interfaces Technical Specifications Compliant Standards

Page 13: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

U31 Managed NEs Short Description

The NEs that can be managed by U31 include the SDH NEs, WDM NEs, Packet Optical Transport Network (P-OTN) NEs and IP Telecommunication Network (IPTN) NEs.

SDH NEs The SDH NEs that can be managed by U31 include: ZXMP S100, ZXMP

S150, ZXMP S200, ZXMP S320, ZXMP S325, ZXMP S330, ZXMP S360, ZXMP S380, ZXMP S385, and ZXMP S390.

WDM NEs The WDM NEs that can be managed by U31 include: ZXWM-32, ZXMP

M600, ZXMP M800, ZXWM M900, ZXMP M720, ZXMP M721, ZXMP M820, ZXMP M920, ZXONE 8200, ZXONE 8300, and ZXONE 8500.

P-OTN NEs The P-OTN equipments that can be managed by U31 include: ZXONE 5

800. IPTN NEs

The IPTN equipments that can be managed by U31 include: ZXCTN 6100, ZXCTN 6200 and ZXCTN 6300, ZXCTN 9004 and ZXCTN 9008.

Page 14: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

U31 System Overview

U31 System Introduction U31 Position System Features U31 Managed NEs Interfaces Technical Specifications Compliant Standards

Page 15: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Interfaces

Logical Interfaces Internal Interfaces

The internal interfaces of the U31 system refers to the communication interfaces between the server and the client.

They adopt TCP/IP for communication. In the U31 system, the server and the client communicate with each other via

a Local Area Network (LAN) or a Wide Area Network (WAN). The communication bandwidth is equal to or greater than 2Mbps.

Southbound Interfaces Southbound interfaces refer to the communication interfaces between U31 a

nd the managed NEs. These interfaces adopts various communication protocols, including: TCP/IP,

FTP, CORBA, and SNMP. The southbound interfaces have the adaptation capability for the conversion

and transfer of data in different formats.

Page 16: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Interfaces

Logical Interfaces Northbound Interfaces

The interfaces between the U31 system and a Network Management System (NMS) are called northbound interfaces, which comply with special interface standards that specify the information model, technical modes and functions for the connection between Element Management System (EMS) and NMS. The use of northbound interfaces provides the base for centralized network management and maintenance required by operators.

U31 provides the following northbound interfaces based on different protocols and standards:

– CORBA Northbound Interfaces– Database Northbound Interfaces– SNMP Northbound Alarm Interface– File Northbound Interfaces

Page 17: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Interfaces

Logical Interfaces Northbound Interfaces

Page 18: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Interfaces

Physical Interfaces

Interface Type Description

10M/100M adaptive Ethernet interface Used to connect 10M/100M Ethernet

GE interface Used to connect a Gigabit Ethernet

X.25 interface Used to connect a packet switched network

Page 19: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

U31 System Overview

U31 System Introduction U31 Position System Features U31 Managed NEs Interfaces Technical Specifications Compliant Standards

Page 20: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Technical Specifications

Performance Specifications Performance Specifications List

Item SpecificationManagement

Capacity

Maximum number of NEs that can be

managed by a single server

10000

Maximum number of concurrent clients

that can be connected to a single

server

100

Maximum number of concurrent users

that log in to the same server

40

Processing

Capability

Alarm processing capability Average value: 100 alarms per second

Peak value: 500 alarms per second

Response time for alarm display ≤ 2 seconds (from the time when an alarm

is reported to the system to the time when t

his alarm is displayed on the U31 client)

Response time for performance

processing

About 10 seconds for storing 1000

performance records to the database

Page 21: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Technical Specifications

Interface Specifications U31 provides a diversity of interfaces, including:

Communication interfaces between the U31 system and managed NEs, adopting TCP/IP.

File transfer interfaces between the U31 system and managed NEs, adopting FTP.

Physical Interfaces:– 10M/100M adaptive Ethernet interfaces– GE interface for connecting to Gigabit Ethernet– X.25 interface for connecting to Packet Switched (PS) network

Page 22: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

U31 System Overview

U31 System Introduction U31 Position System Features U31 Managed NEs Interfaces Technical Specifications Compliant Standards

Page 23: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Compliant Standards U31 complies with the following recommendations and standards:

ITU-T Recommendations ITU-T M.3000, Overview of TMN recommendations ITU-T M.3010, Principles for a Telecommunications management network ITU-T M.3016, TMN security overview ITU-T M.3020, TMN Interface Specification Methodology ITU-T M.3100, Generic Network Information Model ITU-T M.3101, Managed Object Conformance Statements for the Generic

Network Information Model ITU-T M.3200, TMN management services and telecommunications

managed areas: overview ITU-T M.3300, TMN F interface requirements ITU-T M.3400, TMN Management Function ITU-T Temporary Document 69 (IP Experts): Revised draft document on IP

access network architecture ITU-T X.701-X.709, Systems Management framework and architecture ITU-T X.710-X.719, Management Communication Service and Protocol ITU-T X.720-X.729, Structure of Management Information ITU-T X.730-X.799, Management functions

Page 24: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Compliant Standards U31 complies with the following recommendations and standards:

RFC Standards RFC1157, Simple Network Management Protocol RFC1213, Management Information Base for Network Management of

TCP/IP based internets: MIB-II RFC1901, Introduction to Community-based SNMPv2 RFC1902, Structure of Management Information for Version 2 of the Simple

Network Management Protocol (SNMPv2) RFC1903, Textual Conventions for Version 2 of the Simple Network

Management Protocol (SNMPv2) RFC1905, Protocol Operations for Version 2 of the Simple Network

Management Protocol (SNMPv2) RFC2037, Entity MIB using SMIv2 RFC2233, The Interface Group MIB using SMIv2 RFC1558, A String Representation of LDAP Search Filters RFC1777, Lightweight Directory Access Protocol RFC1778, The String Representation of Standard Attribute Syntaxes RFC1959, An LDAP URL Format RFC2251, Lightweight Directory Access Protocol (v3)

Page 25: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Compliant Standards U31 complies with the following recommendations and

standards: TMF Standards

GB901, A Service management Business Process Model GB921, Enhanced Telecom Operations Map GB909, Generic Requirements for Telecommunications

Management Building Blocks GB908, Network Management Detailed Operations Map GB914, System Integration Map GB917, SLA Management Handbook V1.5 NMF038, Bandwidth Management Ensemble V1.0 TMF508, Connection and Service Management Information Model

Business Agreement TMF801, Plug and Play Service Fulfillment Phase 2 Validation

Specification V1.0 TMF605, Connection and Service Management Information Model NMF037, Sub-System Alarm Surveillance Ensemble V1.0

Page 26: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Compliant Standards U31 complies with the following recommendations and standards:

OMG Standards Interworking Between CORBA and TMN System Specification V1.0

Specifications by Ministry of Information Industry and China Telecom

YD/T 852-1996 General Principles for the Design of Telecommunications Management Network (TMN)

YD/T 871-1996 Generic Information Model of Telecommunications Management Network (TMN)

Page 27: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Contents

U31 System Overview U31 System Architecture Networking Modes

Page 28: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

System Architecture

Hardware Architecture Software Architecture

Page 29: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Hardware Architecture U31 system adopts a client/server architecture. The client in the

system communicates with the server via TCP/IP. In terms of logical structure, two types of devices are deployed at

the server: host and storage device Host is the physical foundation of the U31 system. It processes data in the

system. The system performance greatly depends on the processor speed of the host.

Storage devices are used to save the data in the system. For storing large amounts of important data in the system, external data storage devices with high capacity and reliability are required besides the built-in disks in the host.

In terms of function, a server cluster, including application server, database server, and File Transfer Protocol (FTP) server, can be deployed at the server. These servers can be configured together on the same host, or independently on different hosts.

Page 30: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Hardware Architecture To ensure high availability and security, dual servers can be used in

the U31 system:

Page 31: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Software Architecture

U31 software adopt Object-oriented technologies based on JAVA 2 platform Enterprise Edition (J2EE).

Software modules can be deployed in an integrated or distribute way to manage bearer network elements (NEs).

In addition, the U31 software provides CORBA, SNMP, DB and File interfaces for connecting the U31 system to a Network Management System (NMS) or Operation Support System (OSS).

Page 32: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Software Architecture U31 system provides two software: server software and client software

Server software Implementing several functions:

– Network management interface module– Topology management– Fault management module– Performance management module– Security management module– Configuration management– Software management– Log management– Report management– Database management– Inventory management– NE adaptation

Client Software Provides a graphic user interface (GUI). After connecting to the U31 server, the c

lient can display the results of management operations in the system. On the GUI, you can operate and maintain the NEs managed by the system.

Page 33: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Contents

U31 System Overview U31 System Architecture Networking Modes

Page 34: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Networking Modes

Non-Cascade Networking Modes Cascade Networking Modes Distributed System

Page 35: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Non-Cascade Networking Modes The U31 system generally adopts a non-cascade networking mode,

in which a single server is used to manage the whole network. The management capability of the system is measured based on this networking mode.

The following three non-cascade networking modes are available: Non-Cascade Local Networking Non-Cascade Remote Networking Non-Cascade Integrated Networking

Page 36: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Non-Cascade Local Networking Non-cascade local networking is the most common networking mod

e used by centralized network management systems. It is a simple networking mode, in which the server, clients and NEs

are all located in the same Local Area Network (LAN) and connected with each other via Ethernet.

In this networking mode, the server connects to the managed NEs via LAN.

Page 37: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Non-Cascade Local Networking

Topology The topology of the non-cascade local networking of the network

element management system shown below:

Page 38: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Non-Cascade Remote Networking The non-cascade remote networking supports these three types:

Digital Data Network (DDN) E1 line High-data-rate Digital Subscriber Line (HDSL).

Different remote networking modes have the same network topology and follow the same networking principle.

Specific transmission equipment is used to connect the system to a Wide Area Network (WAN).

The server and the client are located in different LANs with corresponding routers and HUBs.

Page 39: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Non-Cascade Remote Networking

Remote Networking Based on DDN Leased Line The stable and reliable DDN provides a high transmission rate fr

om 64kbps to 2Mbps. In this remote networking mode, routers and baseband MODEMs

are used. At the server, an HUB is connected to a router and the router is c

onnected to the leased line of the DDN via a baseband MODEM. The remote client is connected to the leased line in the same wa

y via its Ethernet interface.

DDNDDN

Page 40: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Non-Cascade Remote Networking

Remote networking of the U31 system based on DDN leased line

Page 41: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Non-Cascade Remote Networking

Remote Networking Based on E1 Transmission In the non–cascade remote networking over E1 transmission, E1

(2Mbit/s) lines are used to transmit IP packets. At both ends of an E1 line, timeslot extractors are needed.

The maximum transmission rate of each timeslot is 64kbps. By the channelization technology, N timeslots can be used together to get a rate of N×64kbps, which meets the requirements for different transmission rates. A router and a channelized E1 module can be used together as a stable and reliable timeslot extractor.

E1 Transmission Network

E1 Transmission Network

Page 42: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Non-Cascade Remote Networking

Remote networking of the U31 system based on E1 transmission

Page 43: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Non-Cascade Integrated Networking The integrated networking is a combination of local networking and r

emote networking. Local NEs/clients and remote NEs/clients coexist in this networking mode. Non-Cascade Integrated Networking over DDN

Page 44: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Networking Modes

Non-Cascade Networking Modes Cascade Networking Modes Distributed System

Page 45: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Cascade Networking Modes

The cascade networking can be classified into the following two types according to the physical relations between the upper-level server and lower-level servers: local cascade networking remote cascade networking

Page 46: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Cascade Networking Modes Local Cascade Networking

In the local cascade networking mode, the upper-level server and lower-level servers are located in the same LAN. Any of the non-cascade networking modes described earlier can be used for each server and the clients corresponding to it.

Note:

It’s the logical model,Physically, the management processes of the lower-level clients can be deployed on theupper-level client

Page 47: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Cascade Networking Modes

Remote Cascade Networking In the remote cascade networking mode, the upper-level server and the lower-

level servers are connected via DDN or E1 transmission network. All non-cascade networking modes described earlier can be used for each server and corresponding client.

Note:the upper-level server and lower-level servers are integrated viaE1 transmission network instead of a LAN

Page 48: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Networking Modes

Non-Cascade Networking Modes Cascade Networking Modes Distributed System

Page 49: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Distributed System

The distributed system is designed on the application layer, which follows the same basic principle as other application systems. There is no uniform requirement for the topology of the distributed system.

The distributed deployment not only improves the system stability, but also provides convenience for troubleshooting and module upgrade

Page 50: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Distributed System

Typical Distributed Deployment of the System

Page 51: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.

Distributed System

The following distributed deployment modes are available for a centralized network management system:

Distributed Deployment of Database In this mode, the database is independently deployed on a server.

Distributed Deployment of Access Servers The access services can be distributed on common servers to

reduce the cost. For example, three access servers can be arranged to access nine radio network subsystems to the centralized network management system. Each server supports the access of three radio network subsystems. The functions of an access server include transferring information between upper-level and lower-level interfaces, collecting the data and storing the data in the database.

Distributed Deployment of Application Servers In this mode, fault management server, performance management

server and other management servers are deployed independently according to the actual needs

Page 52: NetNumen U31 Introduction V12.11.20. Contents U31 System Overview U31 System Architecture Networking Modes.