NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

33
NHS East Midlands Carbon Reduction Project Energy in NHS Estates pilot. Nottingham Energy Partnership (NEP) established in 1997. 10 th Floor, Castle Heights Building, 72 Maid Marian Way, Nottingham NG1 6BJ Tel: 0115 9859057 Email: [email protected] Website: www.nottenergy.com Company number: 4257637 Charity number: 1091513 NHS East Midlands Carbon Reduction Project Phase II Report on the Renewable Energy Assessment (REA) element of the ‘Energy in NHS Estatespilot (1a) Findings and recommendations . Task Name Date Prepared by Laura Mayhew-Manchon, NEPes 28/03/2012 Checked by Jerome Baddley, NEPes 28/03/2012

Transcript of NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

Page 1: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

Nottingham Energy Partnership (NEP) established in 1997.

10th

Floor, Castle Heights Building, 72 Maid Marian Way, Nottingham NG1 6BJ Tel: 0115 9859057 Email: [email protected] Website: www.nottenergy.com

Company number: 4257637 Charity number: 1091513

NHS East Midlands

Carbon Reduction Project

Phase II

Report on the Renewable Energy Assessment (REA) element of the ‘Energy in NHS Estates’ pilot (1a)

– Findings and recommendations –.

Task Name Date

Prepared by Laura Mayhew-Manchon, NEPes 28/03/2012

Checked by Jerome Baddley, NEPes 28/03/2012

Page 2: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

2

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

NHS East Midlands

Carbon Reduction Project – Phase II

Report on the Renewable Energy Assessment element of the ‘Energy in NHS Estates’ pilot (1a) – Findings and recommendations –. Final version 28 March 2012 This report has been produced with the help of the following individuals: Laura Mayhew-Manchon, AIEMA BSc Hons, NEP Energy Services Ltd Jerome Baddley, AIEMA, PGCE, BSc Hons, NEP Energy Services Ltd Estelle Nma, AIEMA MSc, BEng Hons, NEP Energy Services Ltd Jennifer Strong, AIEMA BSc Hons, NEP Energy Services Ltd NEP Energy Services Ltd Part of the Nottingham Energy Partnership (NEP), established in 1997. Address: 10th Floor Castle Heights Building 72 Maid Marian Way Nottingham NG1 6BJ Telephone: 0115 985 9057 Email: [email protected] Website: www.nottenergy.com Company number: 4257637 Charity number: 1091513

Page 3: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

3

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

CONTENTS

ACKNOWLEDGEMENTS ............................................................................................................ 4

1. EXECUTIVE SUMMARY ...................................................................................................... 5

2. KEY OBJECTIVES .............................................................................................................. 13

3. METHODOLOGY .............................................................................................................. 15

4. RESULTS ......................................................................................................................... 17

5. VALUE ADDED OUTCOMES .............................................................................................. 20

6. CONCLUSIONS ................................................................................................................ 21

7. USEFUL LINKS AND FURTHER READING ........................................................................... 22

APPENDICES

Page 4: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

4

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

ACKNOWLEDGEMENTS Nottingham Energy Partnership (NEP) would like to thank: NHS Midlands and East, for providing the funding for the NHS East Midlands Carbon

Reduction Project via its Regional Innovation Fund. The DH East Midlands, for commissioning and facilitating this piece of work.

NHS Nottingham City, for administrating the funding.

The healthcare organisations that have participated in this pilot as partners, for

patiently sharing their experience, data, and time with NEPes.

The members of the EM NHS Carbon Reduction Project Steering Group, for their valuable input and feedback provided throughout Phase II of the Project.

The EM NHS Sustainable Development Network, for promoting the exchange and

dissemination of useful lessons, ideas and good practice amongst its members.

The other providers delivering Phase II pilots, for sharing inspiring and innovative examples of sustainability in practice across different areas of NHS operations.

Page 5: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

5

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

1. EXECUTIVE SUMMARY

1.1. Project overview In 2009/10, the East Midlands NHS Carbon Reduction Project (EM NHS CRP) was established. Funded by the NHS East Midlands Regional Innovation Fund, this Project consisted on two distinct phases: PHASE 1:

Phase 1 of the Project succeeded in establishing the carbon footprint of the NHS in the region, which was made available to the public in a published report1 launched at an EM NHS Sustainable Network event held in Nottingham in November 20102.

The regional NHS carbon footprint identified that 27% of all CO2e emissions attributable to the NHS in the East Midlands arise as a result of energy use in healthcare buildings, evidencing the significance of this aspect of carbon management and the need to take urgent action to minimise it wherever possible.

A series of strategic and practical recommendations stemmed from the Phase I report, to support improvements in natural resource efficiency and reduce the environmental impact of healthcare provision in the Region.

These recommendations concentrated on measures which could be seamlessly and easily integrated into the daily operations of NHS trusts and other healthcare organisations, ranged from the ‘trialled-and-tested’ to the cutting-edge of innovation, and covered potential savings across energy, cost and carbon emissions. Those specifically pertinent to renewable energy were:

As a result, six pilot projects were developed as a means of putting some of the Phase 1 key recommendations into practice, led by a range of specialist providers, working in partnership with healthcare organisations across the region.

1 NEP, 2010. “NHS East Midlands Carbon Reduction Project Phase I – Report on Footprinting, Analysis and

Recommendations”. Available at: www.emphasisnetwork.org.uk/networks/sd/documents/FinalEMCarbonReductionProjectPhaseIreportv23.pdf 2 ‘Fit for the Future? A Low Carbon Health Service Conference and Marketplace’. 18/11/10, Nottingham

Conference Centre. For more information please visit: http://www.emphasisnetwork.org.uk/networks/sd/event18nov10.htm

10.10. Energy- Recommendations for work in Phase II 4. “A Feed In Tariffs (FITs) assessment / renewable energy potential feasibility assessment for EM healthcare

4.1. owned, leased and potentially new sites,

4.2. a desktop feasibility assessment should be carried out for Wind and PV in NHS sites,

4.3. This should enable NHS organisations to decide if there are opportunities worth pursuing further or not.

Page 6: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

6

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

PHASE 2:

In March 2011, NEPes were commissioned by the East Midlands NHS Sustainable Development Network to deliver the ‘Energy in Estates’ Phase II pilot.

To date, this pilot has effectively supported a number of healthcare organisations with the assessment and integration of sustainable energy technologies across a range of buildings and different healthcare settings throughout the region.

The types of technology covered by the pilot, which have also determine its distinct delivery strands, have been:

a) Smart metering, b) Voltage optimisation, and c) Renewable energy assessment (REA), which is the focus of this report.

The key aim of the REA element of the pilot was to provide support to healthcare organisations across the region to ensure that they identified and wherever possible realised the full benefits derived from installing renewable energy solutions in their buildings.

This overall aim was designed to be met through two key objectives:

1. To conduct 16 site surveys across East Midlands healthcare organisations, to assess the feasibility of renewable energy solutions and to make site-specific recommendations which encourage the uptake of these technologies wherever feasible and relevant.

2. To produce technical reports covering structural, design, connection and planning considerations, highlighting the different stages involved in commissioning renewable energy solutions, and providing the outline costs and savings identified for each site.

In order to measure the pilot’s success in meeting the above objectives, six key performance indicators (KPIs) were agreed. These KPIs are featured in full in Table 1.

Despite the mostly quantitative nature of the pilot’s KPIS, both quantitative and qualitative data from primary and secondary sources have been collated, analysed and monitored throughout the pilot, to ensure that its recommendations are replicable, practical and understandable to those who may take them forward. See section 1.3. for a description of the datasets used and the assumptions made in analysing these.

Overall, the REA element of the pilot has succeeded in meeting –and in several cases, exceeding– the objectives set against its delivery. This is evidenced by the assessment of performance to date against the pilot’s KPIs, summarised in Table 1, and described in full under section 4.

Page 7: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997. 7

1.2. Summary of performance against KPIs

Table 1: Summary of performance against the EM CRP Phase II REA pilot Key Performance Indicators (KPIs) (Source: NEP, 2012).

KEY PERFORMANCE INDICATOR (KPI) PERFORMANCE TO DATE (21/02/12)

1. Number of sites (out of 16) identified as being suitable for renewable energy.

Total number of sites assessed as part of the REA element of the pilot: 31. Out of which:

16x sites were identified as suitable for renewable energy systems.

1x site was found to be not suitable for renewable energy systems.

14x sites were assessed which either already had or was in the process of having renewable energy systems installed before the 31/03/12. The renewable energy output and the potential carbon savings from these 14 sites have been excluded from the calculation of performance against KPIs 2 and 3, so as to avoid any double-counting, given that these systems were already installed or ‘in the pipeline’.

2. Capacity of renewable energy supported to progress to install.

Total net capacity of the renewable energy systems assessed: 469 kWp. Total annual output of the renewable energy systems assessed: 380,864 kWh p.a.

3. Total potential annual CO2 savings of capacity supported to progress (in kgCO2).

Total annual CO2 savings averaged over the next 25 years, calculated by applying a carbon factor of 0.2521

kgCO2e per kWh to the annual output of all the renewable energy systems assessed: 96,013 kgCO2e p.a. See 3.

Total mitigated social cost of carbon derived from the energy output of all RES assessed: £2,151.

4. Total potential financial revenue + savings from supported systems (annual and whole life cycle NPV cost/saving over 25 year FIT lifespan).

Total potential financial income (i.e. revenue and savings combined) from the output of the renewable

energy systems assessed ranges between £77,259 and £163,921 p.a., and depends on the Feed-in-Tariff scenario which applies at the time of the systems being commissioned. For a full analysis into each of these scenarios, together with the potential annual income estimated for each pilot partner, see Tables 6 and 7.

5. Payback period and IRR for investment in each case.

Payback periods for the renewable energy systems assessed start as little as 7.7 years. There is a wide range of payback periods between this figure and all the way to 24 years, as these depend on the Feed-in-Tariff scenario which applies at the time of the systems being commissioned. For a full analysis into each of these scenarios, together with the likely payback period for each pilot Partner’s systems, see Table 6.

6. Capacity of systems supported installed or likely to be installed within next 12 months.

The Government’s Comprehensive Review of the Feed-In-Tariff regime3 has fully coincided with the implementation of this pilot. The implications of this Review, including substantial cuts to the FITs income rates (with subsequent doubling of payback periods) together with changes to eligibility, have discouraged most of the partners from progressing to system installation stage. To date, this has had an important impact on the delivery of outcomes against this KPI, but that is not to say that the proposed installations will not occur in the future. Furthermore, the financial savings achieved (see section 5.) should be considered as a counterbalance to this.

3 Further information on FITs and the Review can be found at: http://www.decc.gov.uk/en/content/cms/meeting_energy/Renewable_ener/feedin_tariff/feedin_tariff.aspx

Page 8: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

8

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

1.3. Data, information sources and assumptions made An interpretation of data, information sources and factors used to arrive at the energy, carbon and financial figures summarised in Table 1, together with assumptions made when analysing these, can be found below. These are further described from a methodological point of view under section 3. ENERGY CALCULATIONS INCLUDING SAVINGS:

Once engaged in the pilot, each partner organisation was advised on how to best put forward a selection of their sites for renewable energy assessment. This support was carried out via telephone, email and in person communications by NEPes. The data provided by each partner organisation included site name and full address, if renewable energy systems were already installed on-site, and wherever possible, total annual site energy demand/use.

A desktop feasibility survey was then carried out for each site. This was conducted using PVSol Expert 5.04, a modeling and design software tool which identified the specific renewable energy potential for each particular location, using geographical, energy and financial variables, all of which could be manually altered to ensure that the assessment were fully bespoke to each site.

Although the Standard Assessment Procedure (SAP 2009) was used in several cases as a comparative tool, given that the latter is a generic assessment method and hence may not account for local, site-specific variables, the final results from all desktop assessments were based on PVSol modeling specific to each site.

The results from all desktop surveys were written into ‘Renewable Energy Opportunities’ (REO) desktop assessment reports, which included a number of proposed systems, including different outline system designs, potential installed capacities, and modelled system energy outputs and yields.

All REO desktop assessment reports included a cautionary recommendation that although their content was of sufficient detail to inform decision-making around investing in renewable energy systems, they should not be used as the sole basis for a full business case. For this reason, it was recommended that a site-specific, physical assessment was carried out prior to committing finance to the development of these technologies, as it is usually at this stage that particularly important issues arise, such as localised shading and structural integrity of the roof when considering solar PV systems, or in the case of wind turbines, proximity to nearby buildings.

The desktop assessment reports were disseminated to each of the partners in advance, so that they could maximise the learnings and consider the recommendations for installation early on.

Within the scope of the project, some capacity was identified to provide a selection of the sites with a further physical site survey to complement their desktop feasibility survey, as recommended above. The results of the latter surveys were written into an Energy Survey report, which were also distributed to each of the partners. These physical surveys have added significant value to the outcomes of the project, which is further described under section 5.

4 http://www.solardesign.co.uk/pvsol-expert.php

Page 9: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

9

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

CARBON CALCULATIONS INCLUDING SAVINGS:

All carbon emission savings were assumed to be a direct result of reducing site grid-electricity demand and substituting this by zero-carbon, on-site renewable electricity generation.

All carbon emission savings were calculated using national best practice carbon accounting methodologies based on the Greenhouse Gas Protocol, informed by the latest DEFRA guidance5.

Consideration of the total social cost of carbon, measured in £ per tCO2e, was also given in each assessment.

FINANCIAL CALCULATIONS INCLUDING SAVINGS:

Financial calculations on the potential annual income generation, estimated savings from utility bills and likely payback periods were modelled using PVSol and then complemented by further site-specific manual analysis and modelling.

The calculations undertaken with PVSol used a discount rate of 3% on capital.

Each site’s assessment also included a Net Present Value (NPV) calculation based on a 25 year lifespan of the proposed investment.

For each site assessment, a set of financial analyses were carried out based on the four different scenarios that the different Feed-In-Tariff (FITs) rates6 currently pose, with regards to calculating savings and paybacks derived from the income to be made from eligible renewable energy generation. These are:

(A) Financial analysis with a ‘Fast adoption’ FITs rates scenario: Uses the current generation

tariff rates, for which all systems fully commissioned, MCS-registered, and confirmed to have applied successfully for FITs income with a FITs Licensee body before the 3rd March 2012, are eligible7.

(B) Financial analysis with a ‘Second wave’ FITs rates scenario: Uses the new generation tariff rates, applicable to all systems with an eligibility date on or after 3rd March 2012, which will come into effect on 1st April 2012. These new rates have been recently published as part of the Government’s response to the consultation on the Comprehensive Review Phase I8.

(C) Financial analysis with a ‘Multi-installation’ FITs rates scenario: Uses the new multi-installation tariff rates, applicable to generators (i.e. organisations generating renewable energy on-site) with more than 25 solar PV installations9.

5 www.defra.gov.uk/environment/economy/business-efficiency/reporting/

6www.decc.gov.uk/en/content/cms/what_we_do/uk_supply/energy_mix/renewable/feedin_tariff/feedin_tariff.aspx

7 www.decc.gov.uk/assets/decc/Consultations/fits-review/4312-feed-in-tariff-review-phase-i-gov-response-.pdf

8 www.decc.gov.uk/en/content/cms/consultations/fits_comp_rev1/fits_comp_rev1.aspx

9 www.decc.gov.uk/en/content/cms/consultations/fits_comp_rev1/fits_comp_rev1.aspx

Page 10: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

10

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

(D) Financial analysis with an ‘EPC rating <D’ FITs rates scenario: Uses the new energy efficiency requirement, by which buildings in which a solar PV system is installed, and which fail to achieve an Energy Performance Certificate (EPC) rating of D or above within 12 months from the 1st April 2012, would qualify for a reduced FITs generation rate of 9ppkWh regardless of system size.

Table 2: Summary of Feed-In-Tariff rates used in each of the financial scenarios used (Source: NEP, 2012).

FEED-IN-TARIFF RATE SCENARIOS

Size and type of renewable energy

‘Fast adoption’ (ppkWh

generated)

‘Second wave’ (ppkWh

generated)

‘Multi-installation’

(ppkWh generated)

‘EPC rating <D’ (ppkWh

generated) Solar photovoltaic (PV)

<4kW (retrofit) 43.3 21 16.8 9

>4kW-10kW 37.8 16.8 13.4 9

>10-50kW 32.9 15.2 12.2 9

>50-100kW 19 12.9 10.3 9

>150-250kW 15 12.9 10.3 9

Export tariff 3.1

Wind All scenarios (ppkWh generated)

1.5kW to <15kW 28

In order to calculate the potential cost reduction from electricity bills as a result of renewable energy generation on-site, which are included in the potential annual income calculation, the following assumptions have been made:

Partner / site Supplied electricity price

(ppkWh)

All except (9) NUH 10*

(9) NUH 9**

*10ppkWh is a typical cost per unit of supplied electricity in the NHS. **9ppkWh was used in the calculation of the NUH site solar PV system feasibility assessment, as it was supplied by the Trust as their current average supplied electricity cost.

It should be noted that, as mentioned earlier, both generation and export FITs rates are RPI-linked, and therefore, all calculations on FITs revenue included in these assessments are likely to change post-April 2012 and annually thereafter, when the FITs are updated nationally to account for inflation.

Unless stated in the site-specific renewable energy opportunities assessment reports, the analyses have used a conservative estimate of energy price inflation of 2.55%. It is important to note that energy price inflation could be considerably higher than this in the future, which will affect both the payback, the Net Present Value (NPV) and the Internal Rate of Return (IRR) of the results we have calculated.

Page 11: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

11

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

“The end of learning is action, not knowledge”. Peter Honey 1.4. Action learning approach Action learning is a process which involves working on real challenges, using the knowledge and skills of a small group of people combined with skilled questioning, to re-interpret old and familiar concepts and produce fresh ideas10. As agreed at the start of Phase II of the EM NHS CRP, an action learning approach was employed throughout the delivery of this pilot, to ensure that its outcomes would be directly informed by real-life examples and lessons from the ground, making them truly pragmatic and replicable. This approach is evidenced as follows: Early discussions with the East Midlands NHS Sustainable Development Network11 informed the

project’s preliminary steps, in terms of confirming the direction, scope, and format of delivery.

An informative, 2-page project overview brochure (see Appendix 1) was produced and disseminated widely throughout the region, to promote the project’s key aims and to help engage relevant members of the local health community. This was accompanied by a brief form (see Appendix 2), to enable the collation of baseline data from each of the potential partners.

With the help of the Network’s publicity and the circulation of the two documents mentioned above, all pilot partners were identified early on so that support provision would be prioritised effectively and successfully.

All pilot partners were kept closely informed and engaged throughout the pilot’s duration, via email, telephone and in person communications.

The thoughts, feedback and personal experience of all participating organisations were pro-

actively sought throughout. In this way, partners often made valuable contributions which helped to tailor both the support provided throughout the pilot and the development of resources to be disseminated thereafter. Appendices 3, 4 and 5 are examples of the latter.

The desktop assessment reports produced as part of the pilot were disseminated to each of the

partners as soon as they were completed, to ensure that partners would learn from and consider bespoke recommendations for installation at their sites. This avoided the risk posed by waiting to the end of the project to disseminate all reports as a final, packaged product, which could have risked losing the momentum and interest gained by the partners early on.

The uncertainty generated by the continuous changes to the national FITs regime –which

peaked in the middle of the pilot’s delivery period, in the form of a Government national consultation proposing deep changes to the whole scheme–, coupled with the financial and strategic pressures faced by healthcare organisations, were the two main barriers affecting this pilot’s delivery. For this reason, all assessment reports took into account a range of financial scenarios with clearly defined variables, to enable partners to fully understand how the FITs changes could affect their potential investment, and hence, build more realistic business cases.

10 http://www.actionlearningassociates.co.uk/actionlearning.html 11

Such as those held during the EM NHS CRP Phase II Workshop, 15/06/11, Nottingham. Details available at: http://www.emphasisnetwork.org.uk/networks/sd/event15june2011.htm

Page 12: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

12

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

“Investing in the energy efficiency and resilience of the estate is particularly

important in view of the current supply climate, escalating fuel costs and the

potential impact of ‘peak oil’. Switching to low carbon forms of energy, such as renewables helps to guarantee supply and reduce the carbon footprint of the

estate”.

NHS Sustainable Development Unit.

“The NHS cannot address its impact on climate change alone. It needs to work with partners nationally, regionally and

especially locally in order to develop and promote renewable energy sources, sustainable transport for staff and

patients and the procurement of goods and services that are sustainable and low

carbon”.

NHS Sustainable Development Unit.

1.5. Health and wellbeing benefits Every 24 hours, 1.3 million NHS employees use thousands of buildings in hundreds of health centres, surgeries and hospitals nationwide to see and treat nearly 1 million patients12. By doing so, healthcare buildings in England consume over £410 million worth of energy annually. This use of energy constitutes an increasingly important area of spend for the NHS. It is also responsible for significantly contributing to climate change through the release of 3.8 million tonnes of carbon every year. The latter is of crucial importance as climate change has been identified as the biggest threat to global health13. Its effects on the health and wellbeing of the general population are already being experienced on a widespread scale, as a result of the increased occurrence of extreme weather events such as flooding and heat waves, and over the coming decades will put millions of lives at risk. The steep rise in market energy prices, coupled with the current economic recession, only add to the above threats by increasing the risk of people falling into fuel poverty, which is evidenced to have serious detrimental impacts on public and mental health. Installing renewable energy solutions at healthcare sites not only brings benefits to those who own, operate and use these sites. Healthcare organisations work at the very heart of the communities which they serve. As a result, they are uniquely placed to lead by example and inspire others to also act as good corporate citizens and use innovation to improve performance and service delivery. Renewable energy technologies can provide a physical representation of the commitment that healthcare organisations make to operate in more sustainable ways, sending a strong message to service users, patients, staff, visitors and other stakeholders, and providing a symbol for the local community. Furthermore, having a visual, working example of sustainability in the built environment can inspire other public sector organisations and partners to explore their own potential to install these types of systems, and to collaborate with others to do so. By identifying and helping to maximise the potential for healthcare sites to generate their own energy from renewable sources, this pilot has developed local examples of good practice, which when put into practice will minimise the regional healthcare’s contribution to climate change, help organisations to become more energy cost-resilient, and support the enhancement of the health and wellbeing of society in and beyond the East Midlands.

12

http://www.sdu.nhs.uk/documents/publications/1234888949_zfGK_energy_and_carbon_management.pdf 13

http://www.thelancet.com/climate-change

Page 13: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

13

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

2. KEY OBJECTIVES With an annual budget of over £100 billion, 1.4 million employees and the largest property portfolio in Europe, there is no doubt that the NHS is uniquely placed to make a big difference in the context of sustainability and carbon reduction, both at an organisational and at a national level. The vast NHS estate mentioned above occupies a total floor area of 25 million square meters14, 50% of which was built before 1985 and 35% pre-dating the 1970s energy crisis15. These buildings, by providing healthcare services, traditionally bring together a wide range of energy intensive activities and processes, and often have long hours of operation. All of these factors contribute towards the national NHS spending ~£500-600m on its annual energy bills, a cost which despite widespread investments in energy efficiency across NHS buildings is on the rise. The NHS is not alone in this, as energy is becoming an increasingly expensive commodity across the UK. The Government’s Office of Gas and Electricity Markets (ofgem) have generated several scenarios for energy price increases over the coming years, the worst of which points to a 60% rise by 201616, a situation potentially amplified by the coming impact of peak oil. To buckle the above trends, and to ensure the future delivery of quality healthcare services, there is an urgent need for all healthcare organisations to go beyond good energy management and look at innovation, which includes the potential to generate their own energy from cleaner and more resilient sources. Investing in renewable energy technologies will mean that, as the cost of energy rises in coming years, the total cost of providing essential energy services to healthcare premises such as lighting and powering equipment will not drain on the budgets set for delivering frontline services. In addition to the above financial and resource drivers, there is also a strong environmental case for investing in these technologies. A recent analysis carried out by the NHS Sustainable Development Unit (SDU) established the total annual carbon footprint of the NHS in England as 20 million tonnes (MtCO2e). It also found that 19%17 of these carbon emissions arise from energy use in healthcare buildings, as represented in figure 1.

Figure 1: Update to the NHS England overall carbon footprint (Source: NHS SDU Sustainability in the NHS: Health Check 2012).

14

Source: CRe Associates. 15

Source: ARUP. 16

http://www.ofgem.gov.uk/Markets/WhlMkts/Discovery/Documents1/Discovery_Scenarios_ConDoc_FINAL.pdf 17

NHS SDU (2012). ‘Sustainability in the NHS: Health Check 2012’. Available at: http://www.sdu.nhs.uk/documents/publications/Health_Check_Carbon_Footprint_2012.pdf

Page 14: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

14

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

“The size of the NHS (especially its collaborative buying power) means it

should be an active partner in stimulating this inevitable transition towards

renewables. At an organisational level, there should be

routine and regular reviews of the potential for increasing the use of

renewable energy. This should include the use of renewable energy generated onsite,

near onsite or offsite”.

NHS Sustainable Development Unit.

Being responsible for 25% of all public sector greenhouse gas emissions in England places a strong expectation on the NHS to take urgent action to minimise its carbon footprint, and in doing so, contribute towards meeting the national Climate Change Act targets, as illustrated in figure 2.

Figure 2: Breakdown of the NHS England carbon footprint 2010 (Source: NHS SDU Sustainability in the NHS: Health Check 2012).

The SDU analysis shows that healthcare buildings’ energy use emissions have started to decreased nationally, with the move from coal and oil to a greater reliance on gas, and that overall, the NHS England carbon footprint has stopped rising and is starting to level off. This is promising as it constitutes a step in the right direction, but as shown in figure 2, meeting the steep carbon reduction targets set for the coming decades will still prove a significant challenge to the NHS, and therefore, innovative means by which to meet future energy demands should be considered now. The NHS in the East Midlands reflects the national picture. Healthcare in the region is responsible for emitting ~1m tonnes of carbon each year, with energy use in buildings accounting for 27% of this footprint, or 289,000tCO2e. The regional NHS spends £53,132,159 each year on energy bills, and again, this figure is rising. This pilot has aimed to make a direct contribution towards meeting the above challenges, by delivering the key objectives described below. Table 3: Summary of objectives for the REA element of the EM NHS CRP Phase II ‘Energy in NHS Estates’ pilot (Source: NEP, 2012).

SUMMARY OF OBJECTIVES (Renewable Energy Assessment element of ‘Energy in NHS Estates’ Phase II pilot)

KEY OBJECTIVES

Conduct surveys of 16 sites across a number of EM NHS Trusts, making recommendations for feasibility of renewable energy solutions.

Production of survey reports addressing structural, design, electrical connection and planning issues, outline costs, and savings.

WIDER AIMS

Proportional representation from different healthcare delivery settings i.e. acute, mental health, primary care, general practice, community, etc.

Broad geographical sample of partners from across the region.

Assessment of a range of renewable energy solutions.

Page 15: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

15

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

3. METHODOLOGY

Table 4: Description of the methodology employed in the Renewable Energy Assessment element of the pilot (Source: NEP, 2012).

FACTOR / AREA DESCRIPTION REFERENCES Net Present Value (NPV)

(£)

o Net Present Value (NPV) refers to the total value of the investment over its lifetime (total potential income – total costs), in this case, discounted over 25 years.

o As a general rule of thumb, a higher the NPV indicates a more attractive investment; if the NPV is negative this indicates a net cost over time and therefore not a worthwhile investment.

o The total potential income has been calculated using the financial analysis with a ‘Second wave’ FITs rates scenario. See Table 2 for the FITs rates breakdown and Table 7 for the NPV values for each investment.

PVSol Expert 5.0. Available at: http://www.solardesign.co.uk/pvsol-expert.php

Likely payback period (years)

o The payback period refers to the amount of time taken for a proposed measure to break even, taking into account the initial and ongoing operational and maintenance expenditures.

o For all solar PV systems assessed, the payback period calculated is likely to be a conservative estimation as the annual income will increase over time due to the rising costs of supplied electricity which have been avoided by the system’s own electricity generation, as well as the increasing FITs rates which are RPI-linked.

o The likely payback period was calculated as: [ Total cost (1) / Total potential income (2) ]

(1) Total cost (£) = Estimated initial net capital investment / net outlay cost + Total lifetime operational costs (please note that for all solar PV systems assessed, a £250 annual maintenance cost was assumed).

(2) Total potential income (£) = Year 1 estimated annual bill reduction (based on 10ppkWh or 9 ppkWh, see 1.3.) + Year 1 modeled annual FITs revenue.

(3) Total potential income over 25 years = estimated annual bill reduction over 25 years + annual FITs income over 25 years (inflation rates have been applied to these income and savings over 25 years)

PVSol Expert 5.0. Available at: http://www.solardesign.co.uk/pvsol-expert.php DECC FITs portal: http://www.decc.gov.uk/en/content/cms/what_we_do/uk_supply/energy_mix/renewable/feedin_tariff/feedin_tariff.aspx

Potential annual income

(£)

Yield / Internal Rate of Return

(IRR) (%)

o In each of the analyses carried out as part of this pilot, the Internal Rate of Return (IRR) was calculated automatically by the PVSol modeling and design tool used for assessing site-specific renewable energy potential.

o Internal Rate of Return (IRR, also known as yield) is a method used in capital budgeting to measure and compare the profitability of investments.

o IRR is a discounting method used to evaluate the profitability and efficiency of an investment. It is equivalent to the interest rate received for an investment consisting of payments (negative values) and income (positive values) that occur at regular periods.

o This technique can be used to compare potential investment opportunities, as the higher the IRR the more attractive the investment. With the previous statement in mind, and with regards to the renewable energy solutions identified as suitable within the pilot, an IRR of 10.5% would be a more desirable investment than one of 3.5%.

PVSol Expert 5.0. Available at: http://www.solardesign.co.uk/pvsol-expert.php IRR as an investment appraisal technique: http://www.businesslink.gov.uk/bdotg/action/detail?itemId=1081822890&type=RESOURCES

Page 16: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

16

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

o This also applies to the equivalent returns which the costs of the capital investment would obtain if they were invested in a savings account, over the same period of time.

Discount rate (%)

o We applied a 2.55% discount rate to NPV analyses of the systems assessed. This is set to show how the investments perform vs inflation. We also used 2.55% for averaged inflation over 25 years. We decided not to assess returns available vs an alternative investment, or risk, though a higher discount rate could be applied to determine whether these systems outperform against alternative uses for capital.

PVSol Expert 5.0. Available at: http://www.solardesign.co.uk/pvsol-expert.php

System net capacity (kWp)

o Site-specific assessments for all sites were carried out using desktop feasibility surveys. o Total system net capacity and output was modelled using PVSol Expert 5.0. o Some sites also benefitted from a physical site survey to complement their desktop assessment. o All findings were written into reports and disseminated to partners so that they could make use of them early

PVSol Expert 5.0. Available at: http://www.solardesign.co.uk/pvsol-expert.php System annual

output (kWh)

Annual carbon savings (kgCO2e)

o In order to show a truly representative model of the lifetime carbon savings of the renewable energy potential assessed in this project, and taking into account the projected falls in grid carbon intensity over the systems’ lifetime, an average carbon emissions factor was employed.

o This factor, 0.2521 kgCO2e per kWh, was based on Government projections on the grid decarbonisation trajectory over the next 25 years, and consists on the average emissions factor for projected electricity carbon intensity between 2012 and 2036 i.e. 25 years, which is the minimum likely lifetime of the renewable energy systems identified in the project.

o The factor was employed at the end of the project to arrive at the total annual carbon savings averaged over 25 years (i.e. KPI 3), applied to the total renewable energy output of the systems.

See Table 1: Electricity emissions factors to 2100, kgCO2/kWh. DECC (2011). Toolkit for guidance on valuation of energy use. Available at: http://www.decc.gov.uk/en/content/cms/about/ec_social_res/iag_guidance/iag_guidance.aspx

Social Cost of Carbon

(£ per tCO2e)

o The social cost of carbon is an economic approach used to quantify the marginal cost of climate change impacts, i.e. what direct and indirect effects of an additional tonne of carbon will have on the climate and society over time and what the financial consequences of these will be.

o This typically includes impacts such as water availability, coastal protection and the effect on agriculture and energy requirements due to global temperature rises caused by greenhouse gases.

o There are different approaches and uses for monetising carbon, one of which is for policy purposes to help the government meet its national reduction targets. This is referred to as the shadow price of carbon. In the context of this pilot, however, the social cost of carbon method is adopted to quantify the damage caused to the environment and society and is used as an indication of the health and wellbeing impacts.

o There has been extensive research in this field resulting in different methodological approaches, however using the most sophisticated model the figure utilised within this analysis is £22.4 per tonnes CO2e.

o This figure enables the reader to quantify the negative externalities of greenhouse gases on society that are prevented through the potential installations of renewable technology discussed in this pilot.

o It is worth noting that this figure is consistent with the value of £22tCO2e for traded sectors such as electricity, provided in recent DECC guidance.

Eyre et al (1999), as cited in Clarkson & Deyes (2002). See:

http://www.hm-treasury.gov.uk/d/scc.pdf DECC (2011). A brief guide to the carbon valuation methodology for UK policy appraisal. Available at: http://www.decc.gov.uk/publications/basket.aspx?filetype=4&filepath=11%2fcutting-emissions%2fcarbon-valuation%2f3136-guide-carbon-valuation-methodology.pdf&minwidth=true#basket

Page 17: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

17

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

4. RESULTS The following tables summarise the full results stemming from the delivery of the pilot’s REA element, including all surveys and analyses’ outputs.

Table 5: Support provided to EM CRP Phase II REA pilot partners (Source: NEP, 2012).

Pilot partner

Type of healthcare

delivery setting

Type of renewable

energy assessed

Number of sites

assessed

Survey conducted

Report written up

Support provided

Installed / likely be installed in the

next 12 months?

1. NHS Nottinghamshire County Primary care Solar PV 6 6x systems installed (existing)

2. NHS Lincolnshire Solar PV 1 TBC

3. Lincolnshire Community NHS Health Services

Community provision

Solar PV 2 TBC

4. Lincolnshire Partnership NHS Foundation Trust

Mental health Solar PV 4 TBC

5. Leicestershire Partnership NHS Trust Solar PV 1 TBC

6. Derbyshire Healthcare NHS Foundation Trust

Air Source Heat Pump (ASHP)

1 1x unit installed (existing)

7. Nottinghamshire Healthcare NHS Trust (A)

Solar PV 7 8x systems installed (new)

8. Nottinghamshire Healthcare NHS Trust (B)

Wind 1 No

9. Nottingham University Hospitals NHS Trust

Acute Solar PV 1 No

10. Queenswood Care Home Care home Solar PV 1 TBC

11. Laura Chambers Lodge Care Home Solar PV 1 TBC

12. Wren Hall Nursing Home Solar PV 1 TBC

13. Cherry Trees Resource Centre Solar PV 1 TBC

14. Earls Barton Medical Centre GP Solar PV 1 TBC

15. King Edward Road Surgery Solar PV 1 TBC

16. Charnwood Surgery Solar PV 1 TBC

TOTALS 31 31 31 31 See Table 1.

Page 18: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

18

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

Table 6: Full energy, carbon and financial analysis of all site renewable energy assessments (Source: NEP, 2012). PILOT

PARTNER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 TOTALS

ENERGY ANALYSIS

System net capacity (kWp)

24.9 15.54 11.47 27 49.82 n/a 45 5 250 9.87 9.88 14.57 50 7.8 9.87

8.46

469

System annual output (kWh)

22,031 11,159 8,713 20,385 41,297 n/a 36,300 12,900 199,664 7,917 7,534

11,612 38,485 6,331 8,427

6,440

380,864

CARBON ANALYSIS

Annual carbon savings (kgCO2e)

5,554 2,813 2,196 5,139 10,411 n/a 9,151 3,252

50,335

1,996 1,899 2,927

9,702

1,596

2,124

1,623

96,013

Social cost of carbon (£ per tCO2e)

124.41

63 49.2 115.1 233.2

n/a 205 72.85

1,128

44.7

42.5

65.6

217.3

35.8

47.6

36.37

2,151

FINANCIAL ANALYSIS

(A)

Potential annual income (£)

7,972 5,339 4,171

9,725 17,578 n/a 27,208 4,998

47,919

3,932 3,750

4,974

16,468

3,003

3,806

3,078

£163,921

Likely payback period (years)

n/a 11.3 10.7 10.5 8.8 n/a 33 5 10

8.2

8.9 10.2

8.4

7.7

8.5

10.5

-

IRR (%) n/a 9.6 10.7 10.9 12.7 n/a 31 21.9 11.1 12.7 12.8 11

13.4 13.6 12.1 10.7 -

FINANCIAL ANALYSIS

(B)

Potential annual income (£)

n/a 3,368 2,630 6,127 10,282 n/a 15,844 n/a 43,726

2,274

2,169

2,922

9,666

1,684 2,042

1,726

£104,460

Likely payback period (years)

n/a 18.5

17.8 17.1 16 n/a 53 n/a 11

15.7

17.20

19.2 15.2

15.5

18

21.6

-

IRR (%) n/a 5 5.6 5.9 6.30 n/a 17 n/a 10.3

6.2

5.80

4.9

6.9

6.3

5

4

-

FINANCIAL ANALYSIS

(C)

Potential annual income (£)

n/a 3,033

2,369 5,517 9,047 n/a 14,638 n/a 38,535

2,006

1,913 2,574

8,513

1,470 1,756

1,507

£92,878

Likely payback period (years)

n/a 20.8 20 19.2 18.70 n/a 60 n/a 12

18.4 20.2

22.5

17.6

18.6

22

>24

-

IRR (%) n/a 4.1 4.6 5 5 n/a 14 n/a 9.3

4.9

4.5

3.6

5.6

4.9

3.6

0

-

FINANCIAL ANALYSIS

(D)

Potential annual income (£)

n/a 2,676 2,090 4,867 7,728

n/a 9,633 n/a 35,939

1,658 1,581

n/a 7,283

1,194

1,386

1,224

£77,259

Likely payback period (years)

n/a 23.9

23 21.9 22.6 n/a 69 n/a 13

23.6

>24 n/a 21.2

>24

>24

>24

-

IRR (%) n/a 3 3.5 3.8 3.6 n/a 10 n/a 8.84 3.10

0 n/a 4.1 0 0 0 -

Note: The financial analyses (A-D) have been calculated based on the four different scenarios that the different Feed-In-Tariff (FITs) rates currently pose with regards to calculating savings and paybacks derived from the income to be made from eligible renewable energy generation. Please refer to sections 1.3. and 3. for a full description of the different variables, factors and calculations employed to arrive at the above energy, carbon and financial figures.

Page 19: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

19

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

Table 7: Breakdown of calculated net outlay cost versus Net Present Value (NPV) over 25 year lifespan of renewable energy solutions (NEP, 2012).

*The aim of the support provided to this pilot partner was to assess the post-installation performance of 6x solar PV systems, as opposed to conducting a financial viability assessment. Therefore, the NPV was not calculated in this instance, as it was not relevant to the assessment carried out. ** The aim of the support provided to this pilot partner was to assess the efficiency of the Air Sourced Heat Pump (ASHP) system already operating at one of this partner’s sites. Therefore, the NPV was not calculated in this instance, as it was not relevant to the assessment carried out. *** The aim of the support provided to this pilot partner was to provide advice, guidance and support in order to maximise the Feed-In-Tariff (FITs) income to the partner resulting from the 8x solar PV systems in the process of being installed during the pilot’s duration. ****This particular assessment looked at the wind generation potential of a partner’s site. Since the original scope of this element of the pilot included financial, technical and environmental assessment of just solar PV systems, no tools were made available to enable us to calculate the NPV in this instance. *****In this case, the support provided to the partner consisted on adjusting the financial calculations carried out by another private consultancy, to include the new FITs and implications of SAP 2009. Hence, since the original financial calculations for this solar PV assessment were being produced by another organisation, the NPV was not calculated in this instance. ****** The total potential income (over 25 years) has been calculated using the financial analysis with a ‘Second wave’ FITs rates scenario. The total potential income over 25 years equals the estimated annual bill reduction over 25 years + annual FITs income over 25 years (please note that inflation rates have been applied to all of these income and savings calculations over 25 years).

Pilot partner

Total likely capital investment / net outlay cost (£)

Total likely income 25 years (£)******2.55%

disc. rate

Net Present Value (NPV) over 25 years(£)-2.55% disc. rate

1. NHS Nottinghamshire County* N/A N/A N/A

2. NHS Lincolnshire £58,541 £62,105 £3,564

3. Lincolnshire Community NHS Health Services £44,316 £52,898 £8,582

4. Lincolnshire Partnership NHS Foundation Trust £98,707 £107,698 £8,991

5. Leicestershire Partnership NHS Trust £143,849 £208,730 £64,881

6. Derbyshire Healthcare NHS Foundation Trust** N/A N/A N/A

7. Nottinghamshire Healthcare NHS Trust (A)*** N/A N/A N/A

8. Nottinghamshire Healthcare NHS Trust (B)**** N/A N/A N/A

9. Nottingham University Hospitals NHS Trust***** N/A N/A N/A

10. Queenswood Care Home £31,787 £41,251 £9,464

11. Laura Chambers Lodge Care Home £33,005 £40,962 £7,957

12. Wren Hall Nursing Home £48,043 £58,936 £10,893

13. Cherry Trees Resource Centre £129,133 £195,440 £66,307

14. Earls Barton Medical Centre £23,671 £32,965 £9,294

15. King Edward Road Surgery £31,767 £43,713 £11,946

16. Charnwood Surgery £31,425 £35,040 £3,615

Page 20: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

20

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

5. VALUE ADDED OUTCOMES Throughout the delivery of this pilot, NEP has strived to provide both the partners supported and the SHA with added value whenever and wherever possible. Some of the main examples of the pilot’s value-added outcomes are summarised below: Securing £235,875 of FITs income over 25 years: NEP helped to secure £105,000 of FITs

income for NHS Nottinghamshire County and £130,875 for Nottinghamshire Healthcare NHS Trust, which will be generated by each trust over the next 25 years. This financial benefit was enabled by advising, guiding and closely supporting these two partner trusts to complete and submit their applications for FITs income in advance of the 12th December 2011 and 3rd March 2012 cut-off deadlines. If this support had not been provided by NEP through this pilot, it is likely that this additional income would have been lost, since later applications would have been eligible for significantly reduced FITs rates.

Saving £1,200 on planning application fees: NEP helped Nottinghamshire Healthcare NHS Trust to save £1,200 by avoiding unnecessary planning application fees for 7 out of the 8 solar PV systems it was in the process of installing throughout the pilot’s delivery period. By liaising closely with the planning teams of local authorities on behalf of this partner trust, NEP clarified that only 1 site was required to submit an application for planning permission, and that 7 other sites did not so long as certain installation conditions were met, as the latter would be covered by Permitted Development Rights. If this support had not been provided by NEP through this pilot, it is likely that the Trust would have applied for planning permission for all of the proposed installations as a precautionary measure, which would have resulted in paying £1,200 of unnecessary fees, and using considerable NHS staff time and efforts in the process. This could have also delayed the process of installing before the FITs cut-off deadlines, and therefore, jeopardised securing the highest FITs rate possible.

Production of additional energy efficiency audits reports: Within the scope of this pilot, NEP

identified some capacity to provide a selection of the sites with a physical site survey in addition to their renewable energy assessment. The results of these additional surveys were written into energy efficiency audit reports, which provided site-specific recommendations on non-renewable energy measures such as insulation and glazing, together with the energy, cost and carbon savings they could result in. These additional surveys were distributed to each of the partners throughout the pilot to encourage early implementation of the measures recommended.

Linking to wider initiatives and crossover with other Phase II pilots: The Cherry Trees

Resource Centre and Queenswood Care Home were supported through the EM NHS CRP Phase II ‘Sustainable Care Homes’ (pilot 3). These two care homes were also partners in the Energy in NHS Estates ‘REA’ element (pilot 1a), and as such, were assessed for their renewable energy potential. Moreover, the solar PV system identified as a potential installation at Queenswood Care Home was put forward in the Greening Beeston project.

Replicability: NEP carefully documented the process of supporting this pilot’s partners. The

lessons and feedback gained have been used to produce bespoke, independent guidance and examples of good practice, and incorporated these into the pilot’s outcomes as appendices and annexes. This way, any healthcare organisation will be able to use these to carry out further renewable energy assessments, installations and/or FITs claims across their own sites.

Page 21: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

21

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

“All NHS organisations should create a strategic plan to develop resilient and more renewable energy sources to ensure a guaranteed energy supply, whilst managing their overall carbon

footprint”.

NHS Sustainable Development Unit, 2009.

6. CONCLUSIONS The recommendations of Phase I of the EM NHS Carbon Reduction Project highlighted a

huge opportunity for NHS organisations in the region to generate their own electricity from renewable sources, and in doing so, create an income stream from Feed-in-Tariff revenue18.

This pilot has effectively put this key recommendation into practice, by quantifying the

extent to which East Midlands healthcare organisations could benefit from installing renewable energy solutions across their buildings.

In doing so, this pilot has identified the significant financial and environmental savings that

installing these technologies could bring to East Midlands healthcare organisations and the wider community in which they operate, summarised below: A total annual carbon saving potential of 96,013 kgCO2e; A total annual energy saving potential of 380,864 kWh; A total annual financial saving potential of between £77,259 and £163,921.

The assessment of some renewable energy systems already operating across the region has demonstrated that, in many cases, these are outperforming energy generation predictions, which is an encouraging finding19. Furthermore, in the case of at least four Nottinghamshire health centres, ~10% of the site’s total electricity demand is now met by their on-site solar PV system, making them less dependent on grid-supplied electricity, and therefore, more resilient to electricity market price rises.

The uncertainty generated by the continuous changes to the national FITs regime, coupled

with the financial and strategic pressures that healthcare organisations are currently facing, have been the two main barriers preventing many of the pilot partners to progress through to the physical installation of the renewable energy systems identified.

Notwithstanding the above, the findings from the pilot’s assessments demonstrate that renewable energy solutions constitute a financially attractive and worthwhile investment for many healthcare organisations, which will enable them to generate a steady income stream, reduce their carbon footprint, and improve the energy cost resilience of their sites.

When the time is right for each partner to invest in renewable energy solutions, thanks to the support and resources provided under this pilot, they will be empowered to make the necessary purchasing and installation decisions with the necessary confidence, knowledge and evidence that this pilot has provided them with.

For this reason, it is expected that the outcomes of this pilot will encourage and support healthcare organisations to make further investments in renewable energy technology, across the East Midlands and beyond.

18

Page 44, NEP (2010). “NHS East Midlands Carbon Reduction Project Phase I – Report on Footprinting, Analysis and Recommendations”. Available at: www.emphasisnetwork.org.uk/networks/sd/documents/FinalEMCarbonReductionProjectPhaseIreportv23.pdf 19

See NEP (2012). NHS Notts County Desktop Assessment of solar energy installations 6 sites FINAL.

Page 22: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

22

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

7. USEFUL LINKS AND FURTHER READING Department of Energy and Climate Change (DECC) website on Feed-in-Tariffs (FITs):

http://www.decc.gov.uk/en/content/cms/meeting_energy/Renewable_ener/feedin_tariff/feedin_tariff.aspx

Department for Energy and Climate Change (DECC) (2011). The Inter-departmental Analysts’

Group (IAG) guidance. Valuation of energy use and greenhouse gas emissions for appraisal and evaluation. Toolkit for guidance on valuation of energy use. Available at: www.decc.gov.uk/en/content/cms/about/ec_social_res/iag_guidance/iag_guidance.aspx

Department for Environment, Food and Rural Affairs (Defra) and Department for Energy

and Climate Change (DECC) (2011). A brief guide to the carbon valuation methodology for UK policy appraisal. Available at: http://www.decc.gov.uk/publications/basket.aspx?filetype=4&filepath=11%2fcutting-emissions%2fcarbon-valuation%2f3136-guide-carbon-valuation-methodology.pdf&minwidth=true#basket

Department for Environment, Food and Rural Affairs (DEFRA) (2009). Guidance on how to

measure and report your greenhouse gas emissions. Available at: http://www.defra.gov.uk/publications/files/pb13309-ghg-guidance-0909011.pdf

Department of Health (DH (2009). Environment and Sustainability. Health Technical

Memorandum 07-07: Sustainable health and social care buildings. Planning, design, construction and refurbishment. Available at: www.communityhealthpartnerships.co.uk/?ob=3&id=723

Eyre, N. et al (1999). Global Warming Damages. Final Report of the Extreme Global

Warming Sub Task (Sep 98), DGX11, European Commission, Brussels. Cited in Clarkson, R. and Deyes, K. (2002). Estimating the Social Cost of Carbon Emissions, Government Economic Service Working Paper 140. Environment Projection Economics Division, DEFRA. Available at: www.hm-treasury.gov.uk/d/scc.pdf

NHS Midlands and East Sustainability Portal, including details of the EM NHS Sustainable

Development Network and the EM NHS Carbon Reduction Project: http://www.eastmidlands.nhs.uk/partners/sustainability/

NHS Sustainable Development Unit (SDU) (2009). Saving Carbon, Improving Health: An NHS

Carbon Reduction Strategy for England. Updated in 2010. Available at: www.sdu.nhs.uk/publications-resources/3/NHS-Carbon-Reduction-Strategy/

NHS SDU (2012). ‘Sustainability in the NHS: Health Check 2012’. Available at:

www.sdu.nhs.uk/documents/publications/Health_Check_Carbon_Footprint_2012.pdf

Nottingham Energy Partnership (NEP) (2011). Technical Guidance document: Community renewable energy projects. Available at: www.nottenergy.com/images/uploads/pdfs/Suggested_Guidelines_for_a_Renewable_Energy_project.pdf

NEP, 2010. NHS East Midlands Carbon Reduction Project Phase I – Report on Footprinting,

Analysis and Recommendations. Available at:

Page 23: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

23

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

www.emphasisnetwork.org.uk/networks/sd/documents/FinalEMCarbonReductionProjectPhaseIreportv23.pdf

Office for Gas and Electricity Markets (Ofgem) (2009). Project Discovery – Energy Market

Scenarios. Consultation paper No 122/09. Available at: http://www.ofgem.gov.uk/Markets/WhlMkts/Discovery/Documents1/Discovery_Scenarios_ConDoc_FINAL.pdf

Page 24: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

24

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

APPENDICES

Appendix 1: NEP (2011). Phase II ‘Energy in NHS Estates’ pilot – Project Overview. Appendix 2: NEP (2011). Phase II ‘Energy in NHS Estates’ pilot – REA Baseline data sheet. Appendix 3: NEP (2012). Workflow of all stages involved in commissioning solar PV systems. Appendix 4: NEP (2012). Checklist of generic documentation required to prepare a full FITs application. Appendix 5: NEP (2011). Explanatory poster for solar PV generation displays.

Page 25: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

25

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

Appendix 1: NEP (2011). Phase II ‘Energy in NHS Estates’ pilot – Project Overview. (2 pages).

Page 26: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

26

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

(Appendix 1, continued).

Page 27: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

27

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

Appendix 2: NEP (2011). Phase II ‘Energy in NHS Estates’ pilot – REA Baseline data sheet. (2 pages).

Page 28: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

28

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

(Appendix 2, continued).

Page 29: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

29

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

Appendix 3: NEP (2012). Workflow of all stages involved in commissioning solar PV systems (2 pages).

Phase I: Feasibility & potential generation assessment, financial analysis and site selection.

Page 30: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

30

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

(Appendix 3, continued).

Phase II: Planning, tendering, procurement, installation and handover.

*It is worth noting that not all solar PV system installations require full planning permission, as some installations may qualify as permitted development. ** FITs income resulting from on-site renewable energy generation is administered by licensed electricity suppliers called ‘FIT Licensees’, and not directly by the Government. It is worth noting that administering FITs income is a completely separate service to electricity supply, and as such, needs to be set up as an independent agreement with a FIT Licensee. Generator sites are not bound to use their current electricity supplier for this; as a separate service to supply, sites are free to register for FITs income with whichever FIT Licensee they wish. It is important to note that regardless of which FIT Licensee is chosen, the generator site will be signing into a 25-year contract for FITs income provision. See: http://www.ofgem.gov.uk/Sustainability/Environment/fits/Pages/fits.aspx

Page 31: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

31

2012, NEP Energy Services Ltd, part of the charity Nottingham Energy Partnership (NEP), established in 1997.

Appendix 4: NEP (2012). Checklist of generic documentation required to prepare a full FITs application. ITEM DESCRIPTION SUPPORTING NOTES

Generation meter reading

If the FIT application is submitted immediately after a new system is commissioned i.e. within the same day as the installer signing off the system, then generation meter reading on commissioning date could be used, which can be found on the MCS certificate. All other FIT applications i.e. those submitted some time after the system was commissioned and installed will require a recent meter reading to be taken from the generator system’s generation meter and submitted to the Licensee with the FIT application form.

Please note that this reading must be an accurate measurement of generation at the time of application, so it is recommended that the reading is taken on the same day as the FIT application form is submitted. If the information provided is incorrect, Ofgem may view this action as fraudulent, delaying the processing of signing up with a Licensee and potentially affecting FIT payments.

MCS certificate A Micro-generation Certification Scheme (MCS) installation certificate must be generated and registered on the national MCS database by the accredited installer, who must also provide a copy to the client upon completion and final payment for the installation works. Only installations with a valid MCS certificate will be eligible to claim FITs income. MCS certificates are usually 1 page long, on a light blue background, and feature the MCS logo at the top. They include the following key data, which will usually be required in the FIT application form:

Installer details – Company name, company number, installer name.

Product details – Product name, manufacturer, number, estimated annual generation (kWh) and declared net capacity (kW).

Installation address details – Site full address, supply MPAN, installation type, commissioning date.

Generation meter details – Meter serial number and initial meter reading.

If your installer has not provided you with an MCS certificate for any reason (e.g. they are no longer trading), you should be able to acquire a copy of the current MCS certificate for your generator by contacting MCS directly, as they should be able to provide you with a copy downloaded from the national MCS database for free. Furthermore, MCS can help make any amendments to your current certificate if this is not accurate or requires changes.

The Microgeneration Certification Scheme (MCS) Address: Gemserv Limited 10 Fenchurch Street, London, EC3M 3BE

Tel: +44 (0)20 7090 1041 Email: [email protected]

Web: www.gemserv.com / www.microgenerationcertification.org

Proof of ownership

The proof of ownership for eligible generators usually consists on an invoice or receipt with the balance of works paid in full, written in the installers’ letter-headed paper, clearly stating the generator site’s name, full address, and the organisation it belongs to.

It is worth noting that the balance must have been paid in full, in order to qualify as full proof of ownership i.e. a solar PV system, as an asset, only then becomes officially transferred from the installer to the organisation that purchased / commissioned it.

Electricity supply details

If the FIT Licensee is different to the generator’s electricity supplier, a copy of a recent electricity bill for the site is usually required to be submitted with the FITs application as proof of identification. If they are the same company, just the following 2x pieces of information, found on the electricity bill, are usually required by the application form:

Customer Account Number (sometimes referred to as ‘Supply Account Number’).

Meter Point Administration Number (MPAN) – Usually featured as boxed numbers beginning with ‘S’ (for supply), on the top right or bottom left of bill. See an example

Payment details

Confirmation of whom the FIT income payments are to be made to should be provided in the FIT application form, together with the preferred method of payment. Payment is usually made as either as a) a quarterly cheque from the FITs licensee to the applicant, posted to the contact details provided by the person who completed the FITs application form in the first place, or b) a quarterly payment directly into a nominated bank account.

Probably an item worth clarifying early on with Finance Team. Also an important consideration in terms of sites where ownership may be soon transferred i.e. the payments will automatically be made to the original applicant unless alternative arrangements or changes are agreed with the FIT Licensee thereafter.

Please note that all FIT Licensees are required by Ofgem to take generators (i.e. FITs applicants) through the registration process. Hence, any specific queries on filling in a specific FIT application form and/or completing a registration for FITs income would be best directed to the FIT Licensee directly. For a list of FIT Licensee contact details, see: http://www.ofgem.gov.uk/SUSTAINABILITY/ENVIRONMENT/FITS/RFITLS/Pages/rfitls.aspx

Page 32: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

32

Appendix 5: NEP (2011). Explanatory poster for solar PV generation displays.

Page 33: NEP_2012_EM_NHS_CRP_Phase_II_1a_REA_pilot_report170412

NHS East Midlands Carbon Reduction Project – Energy in NHS Estates pilot.

33

ANNEXES

PVSOL guidance (version 4.0. 23/02/12) on UK Feed in Tariff Economics for both

metered electricity and 50% deeming. For PVSOL Pro 4.5 and PVSol Expert 5.0.

15x Renewable Energy Opportunities Desktop Assessment Reports. 3x Energy Audit Reports.

Please note that all of the above are available as separate documents.