NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS...

51
Editorial Weninger Introduction Weninger Yarmoukian Rubble Slides Rollefson Late Neolithic Rubble Layer in the Southern Levant Barzilai Natural or Anthropogenic Agents? Some Examples Kafafi, Lucke and Bäumler Change at the Neolithic Site of ‘Ain Ghazal Gebel Intricacy of Neolithic Rubble Layers Rollefson Commentary NEO-LITHICS 1/09 The Newsletter of Southwest Asian Neolithic Research Special Issue on Rubble Slides and Rapid Climate Change

Transcript of NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS...

Page 1: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Editorial

Weninger Introduction Weninger YarmoukianRubbleSlides Rollefson LateNeolithicRubbleLayerintheSouthernLevant Barzilai NaturalorAnthropogenicAgents?SomeExamples Kafafi, Lucke and Bäumler ChangeattheNeolithicSiteof‘AinGhazal Gebel IntricacyofNeolithicRubbleLayers Rollefson Commentary

NEO-LITHICS1/09The Newsletter ofSouthwest Asian Neolithic Research

Special Issue on Rubble Slides and Rapid Climate Change

Page 2: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

2Neo-Lithics1/09

Contents

Editorial

RubbleSlidesandRapidClimateChange

Editorial 2

Special Issue on Rubble Slides and Rapid Climate Change

Bernhard Weninger Introduction 3 Bernhard Weninger YarmoukianRubbleSlides.EvidenceforEarlyHoloceneRapidClimateChangein SouthernJordan 5 Gary O. Rollefson SlipperySlope:TheLateNeolithicRubbleLayerintheSouthernLevant 12 Omry Barzilai NaturalorAnthropogenicAgents?SomeExamplesfortheVarietyofStoneSurface

inLatePrehistoricSitesinCisjordan 19 Zeidan Kafafi, Bernhard Lucke and Rupert Bäumler EnvironmentandArchitecturalChangeattheNeolithicSiteof‘AinGhazal 24 Hans Georg K. Gebel TheIntricacyofNeolithicRubbleLayers.TheBa‘ja,Basta,and‘AinRahubEvidence 33 Gary O. Rollefson Commentary 49

Masthead 51

Rubblelayers,Yarmoukianlandslide,the8.2kacal.B.P.RCC–theseandothercatchwordshavebeenusedsince1984foranintriguingphenomenonknownfrommany7thmillenniumBCsitesintheLevantandTurkey:substantialaccumulationsofstonerubblethatcoversarchitecturalremainsandsometimesevensuggestthattheymightbethereasonfordesertingalocation.Discussedsincethemid-1980s,rubblelayersbecamethesubjectofvariousexplanations,includingtheunderstandingthataquaticslopeerosionmusthaveplayedanimportantroleintheirdeposition.Butithastakenuntilthemiddleofthecurrentdecadethatitbecameunderstoodthatrapidclimaticchangewasresponsibleforsuchrubbledeposits.Ittookanotherfiveyearstounderstandthattherubbleeventsmayhavequitepolygeneticandmulticausalorigins(albeitclimateandwaterstillappearstobeamajorfactoroftheirdeposition),andthatthereweremoresuchdepositionalperiodsthanhithertoanticipated.Likenooneelse,BernieWeningerhaspromotedthetopicoverthepastseveralyearswithregardtoradiocarbonchronologyandclimate,startingdiscussionswithoneofus(G.O.R.)for‘AinGhazal.Thuswearehappytohaveenlistedhishelpforthis(delayed)specialissueofNeo-Lithicsasguesteditor.ItaimstoexpandthedeeplyneededdiscussionofrubbledepositsrepresentingtestimoniesfordiscontinuitiesintheLevant’s7thmillenniumBCsettlementhistoryandsubsistencemodes.

Rubblelayerawarenessisrequiredinallrespects.

HansGeorgK.GebelandGaryO.Rollefson

Page 3: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

Introduction

3RubbleSlidesandRapidClimateChange

TheEasternMediterraneanhas longbeenone of theworld‘s major areas for archaeological research onearlysedentarysocieties.Due toexcitingnewresultsfrom palaeoclimatology (see below), we are nowexpectingthisregiontobecomeakeysceneforsomeunusuallycloseandintensiveinterdisciplinaryresearchbetweenprehistoriansandpalaeoclimatologists,aswellasinvolvingscientistsfromtheneighbouringfieldsofgeomorphology, geoarchaeology, archaeoseismologyandbioarchaeology.Bethisasitmay,thepurposeofthisspecialissueofNeo-Lithicsistofurtherencourageall such interdisciplinary research. The particulartopic, towhich the following issue ofNeo-Lithics isdedicated,hasbeennamed:RubbleSlidesandRapidClimateChange.

What are Rubble Slides? Field Observations

In Jordan, as well as in other regions in the easternMediterranean,alargenumberofarchaeologicalsitesare covered to some extreme depth (often severalmetres) by massive rubble and gravel slides. TheJordanian list of Neolithic sites with rubble slidesincludes:‘AinGhazal,AbuSuwwan,es-Sifiya,Ba‘ja,Basta,WadiShu‘eiband‘AinJammam.FromTurkeywealsoknowofpebbleslidesandsoilflows(KuruçayHöyük,Burdurprovince),aswellasriverinefloodingofarchaeologicalsites(e.g.Çayönü).Themajorityoftheseslidesappeartohavehadnaturalcauses,suchashighenergyflashfloodsorearthquakes.

Whereas in some cases preliminary observationsindicate that the slides are associatedwith collapsedand abandoned Neolithic buildings, in others therubble flows appear stratified and probably representindependent events distinguishable on the basis ofvariations in stone size and orientation. Further,while secondary levelling of room fill, sometimeswithhumanoranimalburials, isalsoobserved,otherrubbledepositsmightrepresentintentionalbackfilling,aimed at garbage management or resulting fromstone-robbing.Moreover,thereexistsomesensationalcasesofmaterialmovementsonNeolithicsiteswhererecent research has identified the deliberate burial ofentire buildings, presumably marking the end of anarchitectural or socio-religious life-cycle. Finally, inaddition to these intra-site observations, where theunderlying causes can be studied by archaeologicalmeans,weobservemajordebris and soilmovementsin thewider landscape linked to suchevents as riverflooding,slopeslides,orheavyrainfalls.

All in all, there is an impressive spectrum of

environmental, climatic, and cultural conditionsleadingtorubbleslides,asobservedonalargenumberofarchaeologicalsitesinJordan.

Rubble Slides: Environmental and Climatic Background

Quite remarkably– and the following statements arealreadypart of our call for independent confirmation– it appears that a highly significant number of theNeolithicrubbleslides(atleastthosepresentlyknownfrom Jordan) occurred during the time interval 8.6-8.0 ka calBP (6.6-6.0 ka calBC). In archaeologicalterms, these Jordanian rubble slides are dated to theYarmoukian period, or, expressed more generally,to the transition from to the earlyPN.Accepting forthemoment that at least some of these rubble slidesoccurredsimultaneously,theymayevenhaveidenticalcauses,suchasonelargeearthquake.Ontheotherhand,thereareplausiblealternativeexplanations, includingwidespread environmental degradation due to over-grazingbylargeherdsofgoats/sheep,anddeforestationdue to such factors as housing requirements, fuelconsumption for domestic purposes, aswell as lime-plasterproduction.

However,perhaps themost remarkablepossibilityis that there might exist a direct causal connectionbetween at least some of the rubble slides andwhatwesimplifyincallingRapidClimateChange(RCC).In brief, the time-interval at stake for the end of thePPNB/Cisentirelysimultaneouswithoneofthefourmajorperiods[(i)10.2-10.0ka,(ii)8.6-8.0ka,(iii)6.2-6.0 ka and (iv) 4.3-4.0 ka calBP] that were recentlyidentifiedbyamajorworkinggroup(16internationalauthors) asoneof the fourkeyglobal time-windowsforRapidClimateChange(RCC)duringtheHolocene(Mayewskietal.2004).

In short, during each of these four time-windowsforRCC(andinthisrespectquitesimilartothemorerecent“LittleIceAge”)thereappearstohavebeenananomalouslystronginflowofintensivelycoldpolarandcontinentalairmasses into theeasternMediterraneanbasin, ultimately deriving from the coldest air masstobefoundanywhereontheglobe, i.e.,fromSiberia(Meeker andMayewski, 2002). Since the underlyingatmosphericpatternsareinferredfromGreenlandice-core records (particularlyGISP2K+- andNa+-ions),theHoloceneRCCeventsequencesareestablishedwithhighestpossible(quasi-annual)temporalprecision.

However,atthepresentstate-of-researchitisequallypossible that the observed rubble slideswere caused

Introduction

Bernhard Weninger UniversityofCologne,InstituteofPrehistoricArchaeology [email protected]

Page 4: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Introduction

Neo-Lithics1/094

RubbleSlidesandRapidClimateChange

byother agentse.g. human impact on the landscape,earthquakes,orflashfloods,oracombinationof suchagents.Tobegin,inthisNeo-Lithicsissuewedescribeanddiscusssomeofthemanyofthesiteswithrubblelayers. In perspective,we now have hope thatmanymore sites with rubble layers may be recorded, inmaybeevennewregions.

This Special Issue of Neo-Lithics 1/09

ThepresentspecialissueofNeo-Lithics1/09,clearly,cannot provide a complete description, let alone anyuniversal (or monocausal) explanation for the largenumberofobserved“rubbleslides“.Whatwecandoistoprovideageneralreviewoftheclimatologicalissuesat stake, alongwith somepapers that focus on someof the (surelymulticausal) associated archaeological,geomorphological and environmental issues. Themain corpus of the newsletter covers on a site-by-site basis someof the presently known rubble layersin the southernLevant.As such,however, the readershould remain aware of the fact that other regionsremain largely unexplored:weknownext to nothingabout thepotentialoccurrenceof suchphenomena inthe wider eastern Mediterranean. Notwithstandingsuch prevailing limitations in available data, for thiswider perspective the interested readermay considerthe recentlypublishedstudybyWeningeretal.2009ontheeffectsofRapidClimateChangeintheeasternMediterranean (sensuMayewski et al. 2004) to be ausefulstartingpointforfurtherresearch.

Altogether,under“RubbleSlides”wesubsumedthefollowingarchaeologicalandgeomorphologicaltopics:

Sites with Natural Rubble/ Soil Movements●Sitesburiedpartially,orentirely,bylargeorsmall

rubble/gravel/pebbleslides●Sitescoveredpartially,orentirely,byflood

sedimentsfromrivers

Sites with Human-Induced Rubble/ Soil Movements●Individualrooms(orentirebuildings)with

intentionalrubbleorsoilbackfilling●In-filledrooms(orentirebuildings)with

intentionalburial.

Sites with Rubble/ Soil Movements but Unclear Agents●Anykindofon-sitestoneorsoilcoverage,

clearlycatastrophic,butunclearagents

Acknowledgements:IwouldliketothankGaryO.Rollefsonforalongcooperationinrubbleslidere-search,andforhelpingtopreparethisspecialissueofNeo-Lithics.IthankHansGeorgK.GebelandGaryRollefsonforinvitingmeasNeo-Lithicsguesteditoronthistopic.

References

Mayewski P.A., Rohling E.E., Stager J.C., KarlenW.,MaaschaK.A., Meeker L.D., Meyerson E.A., Gasse F., van Kreveld S.,HolmgrendK.,Lee-ThorphJ.,RosqvistG.,RackiF.,StaubwasserM.,SchneiderR.R.,andSteigE.J.2004 HoloceneClimateVariability.QuaternaryResearch 62:243-255.

MeekerL.D.andMayewskiP.A.2002 A1400YearLongRecordofAtmosphericCirculation OvertheNorthAtlanticandAsia.TheHolocene 12(3):257-266.

WeningerB.,Alram-SternE.,BauerE.,ClareL.,DanzeglockeU.,JörisO.,KubatzkiC.,RollefsonG.,TodorovaH.2005 NeolithisierungvonSüdosteuropaalsFolgedes abruptenKlimawandelsum8200calBP.In D.Gronenborn(ed.),Klimaveränderungund KulturwandelinneolithischenGesellschaften Mitteleuropas,6700-22200v.Chr.RGZMTagungen 1:75-117.

Weninger B.,Alram-Stern E., Bauer E., Clare L., DanzeglockeU.,JörisO.,KubatzkiC.,RollefsonG.,TodorovaH.,vanAndelT.2007 AbruptClimateForcingObservedatEarlyNeolithic sitesinSouth-EastEuropeandtheNearEast.In H.Todorova,M.Stefanovich,G.Ivaniv(eds.),Inthe StepsofJamesHarveyGaul,2.TheStruma/Strymon RiverValleyinPrehistory.Proceedingsofthe InternationalSymposium‚StrymonPraehistoricus‘, Kjustendil-Blagoevgrad(Bulgaria)andSeres- Amphipolis(Greece),27.09-01.10.2004,Sofia:7-28.

Weninger B., Clare L., Rohling E.J., Bar-Yosef O., Böhner U.,Budjar M., Bundschuh M., Feurdean A., Gebel H.G.K., JörisO.,Linstädter J.,MayewskiP.,MühlenbruchT.,ReingruberA.,RollefsonG.,SchyleD.,ThissenL.,TodorovaH.,andZielhoferC.2009 TheImpactofRapidClimateChangeonPrehistoric SocietiesDuringtheHoloceneintheEastern Mediterranean.DocumentaPraehistorica26:1-53.

Page 5: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

YarmoukianRubbleSlides

5RubbleSlidesandRapidClimateChange

Introduction

In Jordan, a largenumber of archaeological sites arecovered by massive rubble slides and gravel flows,oftentosomeextremedepth(severalmetres).ThankstotherecentreviewbyRollefson,whichiscirculatedheretogetherwiththepresentpaperasacontributionto the‘RubbleSlide’ issue(2009)ofNeo-Lithics,wenow have a first description of the Jordanian rubbleslides.ThelistofNeolithicsitesthatareknowntohaverubble slides is indeed impressive, and includes (inalphabeticalorder):‘AinGhazal,‘AinJammam,‘AinRahub,AbuSuwwan,Ba‘ja,Basta,es-Sifiya,JebelAbuThawwab,UmmMeshratIandII,andWadiShu‘eib.

ThemajorityoftheseslidesaredatedbyincorporatedpotterytotheYarmoukianperiodor,expressedinmoregeneralterms,theslidesaredatedtothetransitionfromlate-PPNB/C to earlyPN.Accepting for themomentthat many of these slides occurred ‘simultaneously’,in principle they could all have been caused by onelarge earthquake.This is not even unlikely, since alllisted sites are situated in close vicinity (e.g. ‘AinGhazal: 40 km) to the activeDeadSea Fault,whichis the seismic boundary between the African andArabianplates.GeologicalobservationsshowslipratesbetweentheseplatesintheJordanValleyintherangeof1to20mmperyear(Klingeretal.2000).Moderninstrumental observations supply mean recurrenceintervals for major destructive earthquakes in thisregion between 400 years (Richter Scale MagnitudeMR>6)and3,000years(MR>7)(Begin2005).Suchearthquake magnitudes and recurrence rates appearquite sufficient to trigger theobserved slope failures,perhapsnoteverywhere,butsurelyon thosesites forwhich Rollefson (this issue) has documented slopedeclinationsbeyond12°.

However, beyond earthquakes, there exist otherplausible explanations for the rubble slides, none ofwhichwewould like toexcludeapriori.Acceptableexplanations (and combinations of such) includeregionalenvironmentaldegradationduetoover-grazingbylargeherdsofgoats/sheep,anddeforestationduetoNeolithichousingrequirements,fuelconsumptionfordomestic purposes, and less importantly, lime-plastermanufacture.Finally,wemakenosecretofourpresentfavouriteexplanation,evenifproofforthisisyetlacking,thatthemajorityofslideswerecausedbyslopefailureduetotorrentialrainfallandcorrespondinglarge-scalewater-liftingoftheslopematerial.AsRollefson(2009) putsit,inthiscasethecauseoftherubbleslideswouldbe“slipperyslopes.”Whetherthisproposaliscorrect

ornotremainstobeestablished.However,whatmakesthis specific hypothesis (we think) more interestingthanmanyothersisthepossibilitythattheYarmoukianrubble slides represent the local manifestation of abroaderclimatesignal.Ultimately, itmaybedifficulttodifferentiatebetweenthesealternativeexplanations(climate or earthquake), as will be argued below.However,wefocusontheclimaticexplanation,first.

Table 1 shows all available 14C-ages for theYarmoukian period (Böhner and Schyle 2009).Excepting a few outliers (AA- 25424, AA-5204;GrN-15192), the remaining samples supply us witha small but consistent set of tree ring calibrated14Cagesfor theYarmoukianperiod,andbyinferenceforthe Yarmoukian Rubble Slides. Surely, not all siteswithYarmoukian settlementhave a rubble slide (e.g.Sha‘arHagolan).Nevertheless,theotherwayaround,it isencouragingtoobservethatallYarmoukiansiteshave14Creadingswithinthesametimeinterval6300-5900 cal. B.C. (8300-7800 cal. B.P). To facilitatecomparisonwithclimaterecords, in thefollowingallcalibrated14Cagesaregivenonbothtimescales(cal.B.C.,cal.B.P.).

Toachieveadeeperunderstandingofthisdating,inthefollowingweaddstepbystepaseriesofclimaterecords.These records lead us first to theDeadSea,wherewegaininsightonrainfallhistoryduringtheEarlyHoloceneintheJordanValley.WethenhopovertotheAegean,tolookataninterestingmarinerecordcalledLC21,withinformationpertainingtocontemporaneoussurfacewater temperatures.AtLC21we learnof the

Yarmoukian Rubble Slides. Evidence for Early Holocene Rapid Climate Change in Southern Jordan

Bernhard Weninger UniversityofCologne,InstituteofPrehistoricArchaeology [email protected]

Lab code 14C Age BP Material Site cal. B.C. cal. B.P.

Ly-4927 7330 ± 70 charcoal Munhata 6200 ± 100 8150 ± 100

M-1792 7370 ± 400 charcoal Munhata 6310 ± 420 8260 ± 420

RT-1544 7050 ± 78 charcoal Qanah 5920 ± 80 7870 ± 80

RT-861D 6980 ± 180 charcoal Qanah 5870 ± 160 7820 ± 160

OxA-7884 6980 ± 100 charcoal Sha‘ar Hagolan 5870 ± 100 7820 ± 100

OxA-7885 7270 ± 80 charcoal Sha‘ar Hagolan 6140 ± 80 8090 ± 80

OxA-7917 7410 ± 50 charcoal Sha‘ar Hagolan 6300 ± 60 8250 ± 60

OxA-7918 7465 ± 50 charcoal Sha‘ar Hagolan 6340 ± 60 8290 ± 60

OxA-7919 7495 ± 50 charcoal Sha‘ar Hagolan 6350 ± 70 8300 ± 70

OxA-7920 7245 ± 50 charcoal Sha‘ar Hagolan 6130 ± 70 8080 ± 70

OxA-9417 7285 ± 45 seed Sha‘ar Hagolan 6150 ± 53 8100 ± 53

AA-25424 8030 ± 65 charcoal ‘Ain Ghazal 6940 ± 110 8890 ± 110

AA-5204 2880 ± 95 charcoal ‘Ain Ghazal 1090 ± 130 3040 ± 130

GrN-14539 7480 ± 90 charcoal ‘Ain Rahub 6340 ± 80 8290 ± 80

GrN-15192 5540 ± 110 charcoal Abu Thawwab 4390 ± 110 6340 ± 110

Table 1 RadiocarbonAgesfortheYarmoukianPeriod. Tree-RingCalibrated14CAges[cal.B.C.] [cal.B.P.,0=AD1950]

Page 6: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

YarmoukianRubbleSlides

Neo-Lithics1/096

RubbleSlidesandRapidClimateChange

existence of some strong coolingwinds that blow infromSiberia,notallthetime,butsignificantlyduringspecialperiodsthatclimatescientistscall‚RCCevents‘(Rapid Climate Change events). We will not arguewith anybody about the difference between eventsandperiods.Interdisciplinarydiscussionsaredifficultenough, on other scales. Each of these RCC events/periodsisassociatedwithclimaticconditionssimilartorecent‘LittleIceAge’.Welearnthis,inthenextstep,by turning toGreenlandicecoresfromSiberia.Eachofthesestationssuppliesinformationthataddstoourunderstanding,hopefully,oftheunderlyingpenultimate‘global’ causes for the observed Yarmoukian rubbleslides.

Dead Sea Lake Levels

The Holocene Dead Sea lake level record (Fig.1)recentlypublishedbyMigowskietal.(2006)providesa rain gauge (Enzel et al. 2003) with tremendousforecastingcapabilitiesforNearEasternarchaeology,and especially for the Jordan Valley with its richcultural heritage. In combination with other lowerlatitude climate proxies, the Dead Sea record takeson a central position in the present studies. Prior tousingthisrecordfor‘rubbleslideresearch’,thereareseveral aspects to acknowledge. First, the Dead Sealevel responds primarily to precipitation changes inthenorthernJordanValley,whicharechanneleddownthe valley from the Lake Kinneret basin. Due to itshighsalinity,theDeadSeaitselfdoesnotprovidethefreshwaternecessarytosupportfarmingcommunities.But the level ofwater in theDeadSea does provideasensitivesupra-regional recordofpastprecipitationchangesinthisregion.Thisisduetoitslocationataterminal position in an extended basin (GlacialLakeLisan),with its large, closed drainage area (Enzel etal.2003).

Secondly, it is important to acknowledge theexistence of a major non-linearity in the relationbetween (hypothetical) Levantine precipitation and(measured)DeadSealakelevel.Thisnon-linearity isbecausetheDeadSeaconsistsoftwocloselyconnectedsub-basins thatareseparatedbyasillat~402-403mmbsl[metersbelowsealevel](Migowskietal.2006:

422). The deep northern basin is fed mainly by theJordanRiverandtosomeextentbylocalrunoff(Enzelet al. 2003).When the northern basinwaters rise tolevelsabovethesill,theoverflowingwatersfloodtheshallowersouthernbasin.Inthiscasethecombinedlakeareaissignificantlyenlarged,andthetotalevaporationthenalsorisessignificantly.Veryhighprecipitationisnecessarytosimultaneouslyraisethewaterlevelofthenorthernbasinabovethesillandtomaintainthishighlevelagainsttheenhancedevaporation.

Conversely, when the northern basin dropssignificantlybelowthesillduringextremearidperiods,saltisdepositedinthecentreofthelake.Thisprocessis not evident in the level graph (Fig.1). To supportinterpretationoftheDeadSearecordvis-à-visthisnon-linearity, we have drawn a dashed horizontal line inFig.1 atthesillheightof~402.5m.Allowingforsuchscalingcomplicationsduetotheexistenceofthesillat~402.5mbsl,theDeadSealevelrepresentsawonderfuldocument for all climate-related archaeologicalresearchintheLevant.ItremainstobementionedthattheDeadSearecordisderivedfrommultiplecoresandissupportedbyalargesetofhighlypreciseofAMS14CdatesbytheKiellaboratory(Migowskietal.2006).

Marine Core LC21 (35.66°N, 26.48°W, -1522 m water depth)

Of further interest to our studies, due to its centralpositionintheSoutheastAegeanSeaandsituationtothe east of Crete, is core LC21 (35.66°N, 26.48°W,-1522mwaterdepth).At this location,with selectedmarine fauna used as sea-surface temperature (SST)proxies, it ispossibletoobservesensitiveexpansionsand contractions of the cooler Aegean waters inrelation to the warmer Levantine waters (Rohling etal. 2002).Inparticular,ithasbeenestablishedthattheratioofwarm/coldsurface-livingforaminiferacanbeusedtodescribeaseriesofrapidSSTvariationsduringthe Holocene. The LC21 record reveals a patternof (presently) three major temperature drops in thesoutheastern Aegean, dating to 8.6-8.0 ka cal. B.P.,6.5-5.8kacal.B.P. and3.5-2.8kacal.B.P. (Rohlingetal.2002).Moderncalibrationoffauna-derivedSSTvariations shows that these temperature drops occur,withastrongseasonalcomponent,inwinterandearlyspring(Rohlingetal.2002).

Greenland Ice-Core GISP2 (72.6°N, 38.4°W, +3200 m height)

One of the most remarkable results of LC21 corestudies was the demonstration that these rapid SSTvariations are caused by extremely cold air masses,moving rapidly over theAegean ocean surface withcorrespondingenergytransferviaevaporationfromthewarmer ocean surface to the coldermoving air.Thisoceancoolingmechanismwasidentifiedinanunusually

Fig. 1 HoloceneDeadSeaLakeLevels(here:schematic), accordingtoMigowskietal.(2006)

11 10 9 8 7 6 5 4 3 2 1 0[ka calBP]

-390

-400

-410

-420

-430

-440

-380

sill at 402.5 m

[mbsl]

50 m

Levantine Moist Period

Page 7: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

YarmoukianRubbleSlides

7RubbleSlidesandRapidClimateChange

highcorrelationbetweenLC21SSTvariationsandnon-sea-salt(nss)[K+]andsea-salt-derived[Na+]chemicalionconcentrationsmeasured in theGreenlandGISP2ice-core(72.6°N,38.4°W,+3200mheight).Highnss[K+]iscoincidentwithanintensificationofthesemi-permanentSiberianhighpressurezone,whereashigh[Na+] values coincide with an intensification of thehighly dynamic North Atlantic low pressure zones(Mayewskietal.1997).

Correlation of Aegean Sea Surface Temperature and Siberian High Pressure

The correlation between the Aegean SST and theGreenland GISP2 nss [K+] is of major importancefor our understanding of the Holocene RCCs. Asmentionedabove,coreLC21islocatedclosetoCreteinapositionreactivetoexpansionsandcontractionsofthecoolerAegeanwaters.TheLC21positionishighlysensitive towards suchwind-induced SST variations,and especially towards the cooling effects of windssweeping down from the Balkans. Before reachingtheLC21core location, thenortheasterlywindsmusthavetraversedtheopenoceansurfaceoveradistanceofsome700km.Sincethesewindsarepredominantlywinter/early spring phenomena, and typically onlyoccur fora fewdaysatone time, theenergy transferbetween surface water and windmust proceed quiterapidly.WhenreachingthelocationofcoreLC21,thefactthatsuchrapidSSTvariationsareobservedforsuchalargewatercolumn(~300meterdepth)–thehabitatofthefaunalspeciesunderstudy–meansthatduringRCCtimesahugeamountofcoldairmustdissipateitsenergyintothewatercolumninaveryshorttime.

Comparison of Climate Records

Let us now take a closer look at all these records incombination (Fig.2). Of principal interest for ourstudies– since this record is closest to the Jordanianrubbleslides–istheDeadSearecord.AscanbeseeninFig.2,therewasanabruptriseinDeadSealakelevelaround 10.1 ka cal. B.P. from below ~ 430 mbsl toheights~380mbslinessentiallyonlyonebigstep.Thehighstandat~380mbslismaintainedforca.500yrs,beforeitdropsbyca.10mtoasecondhighstandat~370mbslaroundca.9.5kacal.B.P.AlthoughMigowskietal.(2006) attachanumberofquestionmarkstomanyoftheheightmeasurements(forsimplicitywehavelefttheseoutofFig.2),eventhequestionablelevelsareallhigherthanthesill.Then,aroundca.8.6kacal.B.P.,thelakeleveldropssignificantlyforthefirsttimesome10mbelow the sill. In a second step, around8.1kacal.B.P.,thelevelplungesanother15mtovalues~428mbsl,thelowestleveltohavebeenreachedatanytimeintheHolocene.Afterrisingagainaround7.5kacal.B.P.to~405mbsl, therelativelylowlevelconditionscontinue until 5.6 ka cal.B.P. From then on, several

risesanddropsareobserveduntilasecondconspicuousmaximum at 370mbsl is reached.Thismaximum ismaintainedforperhaps300yrsbetween4.0kaand3.6kacal.B.P..Then,onceagain,asignificantdropby60misobserved,downtoalakelevelwellbelowthesill,at around3.2ka cal.B.P. (Fig.2;cf.Migowskiet al.2006).

Comparisonswithotherclimaterecords,alsoshowninFig.2, indicatethattheabruptriseinDeadSealevelat10.2kacal.B.P.correspondswell(withinerrorlimitsof ± 100 yrs)with the onset of Sapropel S1.This isitselfofmajorinteresttoarchaeologicalresearchintheLevant,sincetheformationofsapropelsintheEasternMediterraneanduringtheEarlyHoloceneisrelatedtoastrong increase insummerrainfall (e.g.,DeRijketal.1999;Arizteguietal.2000).Sinceanychangefromdrytohumidconditionscanbeexpectedtohavestronginfluenceonthedevelopmentofvegetation,andtherebyimpactpracticallyallkindsofhumanfoodresources,inarchaeologicalstudieswemayuse(marine)sapropelsasimportantgeneralindicatorsfor(terrestrial)rainfallvariations. As such, we now have independent andconsistentevidencefromtwodifferentsources(Dead

13 12 11 10 9 8 7 6 5 4 3 2 1 0[ka calBP]

13 12 11 10 9 8 7 6 5 4 3 2 1 0 [ka calBP]

-40

-42

-41

-39

-38

-37

-36

-390

-400

-410

-420

[mb

sl]

Dead Sea Level

Soreq Cave-10

-8

-6

-4

-12

GRI

P δ

O

(‰

, VSM

OW

)

ice

18

δ C

‰ (P

DB

)

[GIC

C05

)

-430

-440D

ead

Sea

Lak

e Le

vel

GIS

P2 n

ss [K

] (

pp

b)

+

Gau

ssia

n S

mo

oth

ed (2

00 y

r)

1.0

2.0

1.5

0.5

0.0

-380

13

sill at 402.5 m

‘Ain Ghazal

N=67 P

[rel]

Little Ice Age3.0 ka RCC

Levantine Moist Period

8.6-8.0 ka RCC 6.0-5.2 ka RCC

Flashflo

ods

Yarmoukian

Rubble Slides (

?)

Fig. 2 Top:14Csequencefrom‘AinGhazal(MPPNB-LPPNB/C: youngest14CageisYarmoukian). Bottom:DeadSea(Jordan)LakeLevelsasproxyforHolocene precipitationinthesouthernLevant(Migowskietal.2006), incomparisontoGreenlandGISP2ice-corestableoxygen isotopesδ18O(Grootesetal.1993),GreenlandGISP2 ice-corenonsea-salt[K+]chemicalionsasproxyforRapid ClimateChange(Mayewskietal.,1997;2004),andSoreq Cave(Israel)δ13Crecord(Bar-Matthewsetal.2003)asproxy forsouthernLevantineHoloceneprecipitationlevelsand flashfloodintensity.Alsoshown(shadedintervals)isthe extentofSapropelS1(9.8-6.8kacal.B.P.;dates:cf. Casfordetal.2007)withestimatedinterruptionS1ab (8.6-8.0kacal.B.P.)duringthecorrespondingRCCmajor globalcoldinterval. Note:IntheLevant,simultaneously,extremedrought(cold- RCC)andflashfloodscanbeexpectedduringaretime-interval 8.6-8.0kacal.B.P.(seetext).

Page 8: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

YarmoukianRubbleSlides

Neo-Lithics1/098

RubbleSlidesandRapidClimateChange

SealakelevelsandSapropelformation)fortheonsetataround10kacal.B.P.ofamajorandextendedperiodwithenhancedrainfallintheLevant.

Perhaps not directly expected, but surely in goodagreement with general biological expectations,the beginning of this moist period shows hightemporal correlation to the very first use of selecteddomesticated cereals, essentially simultaneously (seebelow)everywhere(seebelow)intheNearEast.Thisis demonstrated in Fig. 3,wherewe show calibrated14CdatesforthetableinwhichNesbitt (2002:Tab.1) differentiates between archaeological sites witharchaeobotanicalevidence for theearliest appearanceof domesticated (genetically changed) cereals incomparisontowildcereals(butwhichremaininuseforalongtime).InourunchangedadoptionofNesbitt’sdata(Fig.3)thesesitesareshownhereincontextwiththe

Dead-SealakelevelrecordofMigowskietal. (2006). Withindatingerrors,theonsetofgeneticallychangedcereals coincides everywhere in the Near East (i.e.,southeasternAnatolia,northernSyria,Jordan)exactly(withinca.±100yrs,68%)with theabrupt increaseinprecipitation,asdocumentedintheDeadSea.Othercorrelationsfollow,suchasthesimultaneousonsetoflargevillagesthatmarkthebeginningoftheMPPNB,asshowninFig.3.

Let us now turn from the highest to the lowestwater level that is registered in theDeadSea record.This low level (at~428mbsl) isfirst reachedat8.6kacal.B.P.,andisclearlysynchronouswiththewellknowninterruptionintheSapropelS1formationthatisindicativeoflowrainfallintheeasternMediterranean,simultaneouslywithlowlevelsofNilewaters(e.g.,DeRijketal.1999;Arizteguietal.2002),aswellas tothe dry spell known from theSoreqCave stalagmite(further indicative for extended flash floods; cf. Bar-Matthews et al., 2003). Together these records givestrongsupportfortheexistenceofamajoraridperiodin the JordanValley, which is synchronous with the8.2 ka cal. B.P. RCC period (Mayewski et al. 1997;Rohlingetal.2002).

In combination, these records provide tantalizingevidenceforanextendedperiod(10.1-8.6kacal.B.P.)with enhanced rainfall in southern Jordan and, byinference, in theentireLevant.Thiswetperiodstartsabruptly, shortly following the 10.2 ka cal.B.P. coldevent,andfinishesabruptly,withtheonsetofthenextcoldRCCat8.6kacal.B.P..

Discussion

Let us recapitulate our present understanding of theclimate system in theNearEast and theAegean.BycomparativestudyofclimaterecordsfromtheJordanValley (Dead Sea Lake Levels), the Aegean ocean(marinecoreLC21),theRedSea(coreGeoB5844-2),andGreenlandGISP2ice-corenss[K+]records(Fig.2),wehavelearntthat:

The JordanValley was very moist from ca. 10.0- 8.6 ka cal.B.P..We use the term ‘LevantineMoistPeriod’ (LMP) to characterize the high levels ofprecipitationinthistime-interval.TheLMPispresentlybest-documented by local records in high Dead Sealevels(Migowskietal.2006)andlowRedSeasalinity(Arzetal.2003).IntheDeadSearecord,theLMPisrecognisable as a ca. 1400 yr long periodwith highlake levels that remain, continuously, above the sillbetween the northern and southern basin.During theLMP,itappears,bothbasinswerefilled.

TheLMPstartsabruptly,immediatelyfollowingashort(maximum~200yr)butextremelycoldanddryperiod(10.2-10.0kacal.B.P.)ofRapidClimateChange(RCC).

The LMP ends abruptly, immediately before theonset of the nextRCC (8.6-8.0 ka cal.B.P.).DuringbothRCCperiods (whichwe abbreviate as “10.2 kaGISP2 RCC” and “8.2 ka GISP2 RCC’) the eastern

Fig. 3 Archaeobotanicalrecordsforcereals(cropstatus:wild, domesticated,orunclear),arrangedaccordingtositeageand culturalperiodsaccordingtoNesbitt(2002)incomparisonto GreenlandGRIPstableoxygenisotopes(Grootesetal.1997), GreenlandGISP2nss[K+]values(Mayewskietal.,1997, 2004)andDeadSeaLakeLevels(Migowskietal.,2006). Note:Thearchaeobotanicaldatashownherearetaken unchangedfromNesbitt(2002:Tab.1),butwithreplacementof conventional14Cagevaluesbytree-ringcalibrated14Cdates.

13 12 11

13 12 11

10

10

9

9

8

8

7 6 5

7 6 5

14 12 11 10 9 8 7 6 5

13 12 11 10 9 8 7 6 5[ka calBP]

[ka calBP]

Iraq ed-DubbHayonim CaveAbu HureyraMureybit (I-III)Qermez DereNetiv HagdudM‘lefaatIraq ed-DubbJerf al AhmarTell AswadJericho (VIIA-X)Dja’de

Nevali CoriWadi el-Jilat 7

Cayönü (grill-cobble)Nahal Hemar (3-4)Cafer Höyük (XIII-IX)‘Ain GhazalBeidhaGanj DarehAbdul HoseinAbu Hureyra (2A)Cafer Höyük (III-IV)Tell Aswad (II)Asikli HöyükJericho (Tr.I:XII-XXIII)Wadi el-Jilat 7GhoraifeJarmoAli Kosh (BM)HalulaSabi Abyad IIWadi Fidan ARas Shamra (Vc)GritilleCan Hasan IIIAzraq 31Dhuweila (I)Tell BouqrasTell Ramad (I)Abu Hureyra (2B)Wadi Fidan CEl Kowm II-CaracolAtlit-Yam

Epipal./Natufian

PPNA

Early PPNB

Middle PPNB

Late/Final PPNB

Crop Status: Domesticated According to Nesbitt (2002) Wild Unclear

-380

-390

-400

-410

-420

-430

-440

-380

-390

-400

-410

-420

-430

-440

[mbsl]

1310.2 ka

RCC8.6-8.0 ka

RCC

G

ISP2

nss

[K

] (p

pb

)

+

Gau

ssia

n S

mo

oth

ed (2

00 y

r)

1.0

1.5

0.5

0.0

-34

-36

-38

-40

-42GRI

P δ

O

(‰

, VSM

OW

)

[G

ICC

05]

ice

18

Dea

d S

ea L

ake

Leve

l [m

bsl

]

Page 9: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

YarmoukianRubbleSlides

9RubbleSlidesandRapidClimateChange

Mediterranean was regularly punctuated by winter/spring outbreaks of extremely cold polar airmasses.DuringtheseRCCperiods,fordaysonendandmaybeeven weeks in winter and early spring, the easternMediterranean would have been regularly ‘bathed’withairmassescomingdirectlyfromSiberia.

Quite consistent with this modelling expectation,and independently confirmed by the major dropobserved inDead Sea LakeLevels (Migowski et al.2006), during the entire 8.2 ka GISP2 RCC event(8.6-8.0kacal.B.P.)theJordanValleyexperiencedanextendeddrought.

Not unexpectedly, therefore, and independentlyconfirmedby the absenceof archaeological 14Cdata,it appears that immediately with the onset of the8.6-8.0 ka cal.B.P.RCC themajority of sites in thesouthernJordanValleywereabandoned.Animportant

exceptionisthelargesettlementatSha‘arHagolan,inthenorthernJordanValley,whichwasfoundedatthistime.Interestingly,Sha‘arHagolanwasequippedwithawell(Garfinkeletal.2006).AlthoughSha‘arHagolanisalargesettlementwithwell-constructedhousesandamajorcommunalbuilding(GarfinkelandMiller2001),thesiteactuallydoesnotshowmuchrebuilding.Pointingin the samedirection, thequite thin stratigraphyalsoshowslittleevidenceforanextendedoccupation,nordotheavailableradiocarbondates(Table1)supportalongtimespan(althoughthesederivemainlyfromthewell).To conclude, the settlement at Sha‘arHagolanwasitselfsoonabandoned.Apparently,inthelongrun,thedroughtbecametoosevereforhumanoccupation,eveninthenorthernJordanValley.

14000 13000 12000 11000 10000 9000 8000 7000 6000

14000 13000 12000 11000 10000 9000 8000 7000 6000

14000 13000 12000 11000 10000 9000 8000 7000 6000

14000 13000 12000 11000 10000 9000 8000 7000 6000

14000 13000 12000 11000 10000 9000 8000 7000 6000

14000 13000 12000 11000 10000 9000 8000 7000 6000

[ cal B P ] [ cal B P ] [ cal B P ] [ cal B P ] cal B P ca P

Yarmukian

LPPNB

MPPNB

EPPNB

PPNA

NATUFIAN

N=14

N=67

N=64

N=56

N=123

N=106

-380

-400

-420

-440

[m b

msl

]

Lake Level

High Dead Sea Level

SAPROPEL S1a

GISP2 nss [K ] smoothed

2

1

0

15000 14000 13000 12000 11000 10000 9000 8000 7000 6000 5000 15000 14000 13000 12000 11000 10000 9000 8000 7000 6000 5000

15000 14000 13000 12000 11000 9000 8000 7000 6000 5000

15000 14000 13000 12000 11000 9000 8000 7000 6000 5000

[calBP]

10000 [calBP]

+

P

GIS

P2 n

ss [K

] (

pp

b)

+

Gau

ssia

n S

mo

oth

ed (2

00 y

r)

G

RIP

δ

O

(‰, V

SMO

W)

ice

18 [G

ICC

05)

10.2 ka RCC 8.6-8.0 ka RCC

YarmoukianRubble Slides (?)

Fig. 4 EarlyHoloceneCulturalChronologyintheLevant,basedonasubstantialarchaeological14Cdatabaseandculturaldesignationof14Cdates suppliedbyBöhnerandSchyle(2009)incomparisontoprecipitationproxiesinthesouthernLevant(DeadSeaLakeLevels:Migowskietal., 2006).GreybandsindicateperiodsofRapidClimateChange(RCC)asdefinedbyMayewskietal.,2004,withbestmeteorologicalanalogyin therecentLittleIceAges(Rohlingetal.2002).TheGreenlandicecorestableoxygenδ18Orecord(Grootesetal.1997;withGICC05agemodel: Andersonetal.2005)isonlyshownforpurposesofchronologicalorientation.Note:(i)theonsetoftheMPPNB(ca.10kacal.B.P.)is synchronouswithanabruptmajor(50m)riseinDeadSeaLakeLevels,(ii)theendoftheLPPNB/C(ca.8.6kacal.B.P.)issynchronouswithan abruptdropinDeadSeaLevels,and(iii)theYarmoukianRubbleSlides(8.6-8.0kacal.B.P.)occurduringtheequivalent(8.6-8.0kacal.B.P.) RCCglobalcoldperiod,duringwhichextremedroughtisregisteredinthesouthernLevant,asindicatedbyDeadSealevellowstands(seetext).

Page 10: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

YarmoukianRubbleSlides

Neo-Lithics1/0910

RubbleSlidesandRapidClimateChange

Conclusions

Asaresultofthesestudies,thefollowingscenarioforJordanian Rubble Slides is proposed. During RCCtimes, and especially for times dwith exceptionallyhighGISP2 nss [K+] values,we expect circum-polarair pressure anomalies similar to the Little IceAge.Theseatmosphericpressureanomalies(record:GISP2nss [K+]) rapidly transmit large amounts of cold anddryairfromAsiaintotheBalkansandadjacentregionson the northern edge of the Aegean, from wherethey are channelled southwards across the Aegeanocean.Thecoldairmassesareregisteredasrapidseasurfacetemperature(SST)variationsinamarinecoreto the east of Crete (record: LC21). Consequently,during this RCC interval (8.6-8.0 ka cal. B.P.), wemayexpectextremelycoldandaridconditionsintheeasternMediterranean,alongwithstrongwindsintheAegean. This is confirmed by the extreme droughtfor thisperiod,asdocumented in theDeadSeaLakeLevel record.However, due to the still relatively farnorth position of the moisture-bringing IntertropicalConvergenceZone,atleastatstochasticintervals,thecoldSiberianwindswillhaveinteractedstronglywiththemoistMediterranean airmasses to produce someextremelyflashyandintensiveprecipitation.

Thiscanberecognised,perhapsmostclearly,fromwhatwecall theflashflood record, that is theSoreqcavestalagmiteδ13Crecord (Fig.2).Since thecorrectinterpretation of isotopic stalagmite data is no easymatter,itisperhapsbest,inthiscase,tocitetheauthorsdirectly(Bar-Matthewsetal.2003):’...analternativeexplanation for the extremely high δ13C values,consistentwiththeinterpretationofenhancedrainfallduring sapropel intervals, is that the strippingof thesoilcoverwascausedbydelugeevents,whichresultedinwaterreachingthecaveafterlittleinteractionwithsoilCO2’(Bar-Matthewsetal.2003:3193).

Thankstothehighlyprecise(U/Th)datingfortheSoreqδ13Crecord,incomparisonwiththearchaeologicalobservations(Rollefson2009)andfinallyalsothe14Cdata for the Yarmoukian period (Table 1), such anintriguing‘deluge’explanationwouldreadilysupportour hypothesis that the Yarmoukian rubble slideswerecausedby torrentialepisodic rainfallduring theotherwise arid 8.6-8.0 ka cal. B.P. RCC period.Wetherefore confidently conclude that the Yarmoukianrubble slides in the southern Jordan valley, althoughmaybeincombinationwithwidespreadhuman-inducedenvironmental degradation, had essentially naturalcauses.

Acknowledgements:Ithankfullyacknowledgesupportfrommanyfriendsandcollegues,aboveallLeeClare(Köln), Hans Georg Gebel (Berlin), Jörg Linstädter(Köln), Paul Mayewski (Maine), Eelco Rohling(Southampton), Gary Rollefson (Walla Walla), andDanielSchyle(Köln).

References

Andersen K.K., Svensson A., Johnsen S.J., Rasmussen S.O.,BiglerM.,RöthlisbergerR.,RuthU.,Siggaard-AndersenM.-L.,SteffensenJ.P.,Dahl-JensenD.,VintherB.M.,andClausenH.B.2006 TheGreenlandIceCoreChronology2005,15-42ka. Part1:Constructingthetimescale,Quaternary ScienceReviews25.(ShackletonSpecialIssue24,2006)

Ariztegui D., Asioli A., Lowe J.J., Trincardi F., Vigliotti L.,TamburiniF.,ChondrogianniC.,AccorsiC.A.,BandiniMazzantiM.,MercuriA.M.,VanderKaarsS.,McKenzieJ.A.,andOldfieldF.2000 PalaeoclimateandtheformationofSapropel S1:inferencesfromLateQuaternarylacustrineand marinesequencesinthecentralMediterraneanregion. Palaeogeography,Palaeoclimatology,Palaeoecoogy 158:215-240.

ArzH.W.,LamyF.,PätzoldJ.,MüllerP.J.,andPrinsM.2003 MediterraneanMoistureSourceforanEarly-Holocene HumidPeriodintheNorthernRedSea. Science300:118-121.

Bar-MatthewsM.,AyalonA.,KaufmanA.,andWasserburgG.J.1999 TheEasternMediterraneanpaleoclimateasareflection ofregionalevents:SoreqCave,Israel.Earthand PlanetaryScienceLetters166:85-95.

Bar-Matthews M., Ayalon A., Gilmour M., Matthews A., andHawkesworthC.J.2003 Sea-landoxygenisotopicrelationshipsfrom planktonicforaminiferaandspeleothemsinthe EasternMediterraneanregionandtheirimplication forpaleorainfallduringinterglacialintervals. GeochimicaetCosmochimicaActa67(17):3181-3199.

Bar-YosefO.1989 ThePPNAintheLevant-AnOverview.Paléorient 15/1:57-63.

BeginZ.B.2005 DestructiveEarthquakesintheJordanValleyandthe DeadSea-theirRecurrenceIntervalsand theProbabilityoftheirOccurrence.GeologicalSurvey ofIsrael,ReportGSI/12/05,JerusalemJune2005.

BöhnerU.andSchyleD.2009 OnlineRadiocarbonDatabase(http://context-database. uni-koeln.de),registeredasdoi:10.1594/GFZ. CONTEXT.Ed)

CasfordJ.S.L.,Abu-ZiedR.,RohlingE.J.,CookeS.,FontanierC.,LengM.,MillardA.,andThomsonJ.2007 Astratigraphicallycontrolledmultiproxy chronostratigraphyfortheeastern Mediterranean.Paleoceanography22,PA4215, doi:10.1029/2007PA001422,2007.

DeRijkS.,HayesA.,andRohlingE.J.1999 EasternMediterraneansapropelS1interruption:an expressionoftheonsetofclimaticdeterioratiotn aroundkaBP.MarineGeology153:337-343.

Page 11: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

YarmoukianRubbleSlides

11RubbleSlidesandRapidClimateChange

EnzelY.,Bookman(KenTor)R.,SharonD.,GvirtzmanH.,DayanU.,ZivB.,andSteinM.2003 LateHoloceneclimatesoftheNearEastdeducedfrom DeadSealevelvariationsandmodernregionalwinter rainfall.QuaternaryResearch60:263-273.

GarfinkelY.andMillerM.2001 Sha‘arHagolanI:NeolithicArtinContext.Oxbow Books,London:272.

GarfinkelY.2004 TheGoddessofSha‘arHagolan.Excavationsata NeolithicSiteinIsrael.Jerusalem,IsraelExploration Society.

GarfinkelY.,VeredA.,andBar-YosefO.2006 TheDomesticationofWater:TheNeolithicWellof Sha‘arHagolan,JordanValley,Israel. Antiquity80:686–696.

GrootesP.M.,StuiverM.,WhiteJ.W.C.,JohnsenS.,andJouzelJ.1993 ComparisonofOxygenIsotopeRecordsfromthe GISP2andGRIPGreenlandIceCore. Nature366:552-554.

KenyonK.M.andHollandT.A.(eds.)1981 ExcavationsatJericho.Vol.III.London,TheBritish SchoolofArchaeologyinJerusalem.

KlingerY.,AvouacJ.P.,AbouKarakiN.,DorbathL.,BourlesD.,andReyssJ.L.2000 SliprateontheDeadSeatransformfaultin northernArabavalley(Jordan).GeophysicalJournal International:755-768.

MayewskiP.,MeekerL.D.,TwicklerM.S.,WhitlowS.,YangQ.andPrenticeM.1997 Majorfeaturesandforcingofhighlatitudenorthern hemispherecirculationusinga110000-year-long glaciochemicalseries.JournalofGeophysicsResearch 102:26345-26366.

Mayewski P.A., Rohling E.E., Stager J.C., KarlenW.,MaaschaK.A., Meeker L.D., Meyerson E.A., Gasse F., van Kreveld S.,HolmgrendK.,Lee-ThorphJ.,RosqvistG.,RackiF.,StaubwasserM.,SchneiderR.R.,andSteigE.J.2004 Holoceneclimatevariability.QuaternaryResearch62: 243-255.MeekerL.D.andMayewskiP.A.2002 A1400yearlongrecordofatmosphericcirculation overtheNorthAtlanticandAsia.TheHolocene12(3): 257-266.

MigowskiC.,SteinM.,PrasadS.,NegendankJ.F.W.,and AgnonA.2006 Holoceneclimatevariabilityandculturalevolutionin theNearEastfromtheDeadSeasedimentaryrecord. QuaternaryResearch66:421-431.

NesbittM.2002 Whenandwherediddomesticatedcerealsfirstoccur insouthwestAsia?InR.T.J.CappersandS.Bottema (eds.).TheDawnofFarmingintheNearEast.Studies inEarlyNearEasternProduction,Subsistence,and Environment6:113-132Berlin,exoriente.

RohlingE.andPälikeH.2005 Centennial-scaleclimatecoolingwithasuddencold eventaround8,200yearsago.Nature434:975-979.

RohlingE.J.,MayewskiP.A.,Abu-ZiedR.H.,CasfordJ.S.L.,andHayesA.2002 Holoceneatmosphere-oceaninteractions:recordsfrom GreenlandandtheAegeanSea.ClimateDynamics18: 587-593.

RollefsonG.O.2009 SlipperySlope:TheLateNeolithicRubbleLayerinthe SouthernLevant.Neo-Lithics1/09(thisvolume).

Page 12: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

LateNeolithicRubbleLayerintheSouthernLevant

12RubbleSlidesandRapidClimateChange

Introduction

Inthefirsttwoseasonsofexcavationat‘AinGhazal,oureffortsfocusedprincipallyonarescuearchaeologyapproachtorecoverburialsandarchitecturalinformationexposed on a bulldozer terrace associated with theconstructionofamajorhighway thatcut through thelowerslopeofthesite.Whentheemergencynatureofthefieldwork subsided,wewere able to expandourgoals to sample other areas of the immense expanseof ‘Ain Ghazal, which involved placing excavationtrenchesinotherareasofthesettlement,andcontrarytowhat surface artifacts indicated,we encountered asubstantiallayerofinsituoccupationalmaterialfromthe Yarmoukian Pottery Neolithic. One element inthese ceramic Neolithic layers was the presence ofverydenseconcentrationsofangularlimestonerubblemixedinwithmostoftheYarmoukiansediments.Thequantityofrubblewasstunninglydenseandabundant,andsinceitwasclearlycharacteristicoftheYarmoukianperiod,wenamed it “theYarmoukianRubbleLayer”(RollefsonandKafafi1994:11).

What follows is a sample of Late Neolithicsettlements that manifest the rubble layer as well asothercontemporaneoussiteswheretherubblelayerisnotpresent.SincethedebrisflowhasbeenrecognizedatapparentlycontemporaneoussiteswithJerichoIXorother PN culturalmaterial,wewill hereafter refer tothephenomenonasthe“LateNeolithicRubbleLayer.”

The Late Neolithic Rubble Layer at ‘Ain Ghazal

Our first encounter with the Late Neolithic RubbleLayerwasintheSouthFieldinthe1984season(Fig.1),where the thicknessof thedepositwasmore thanameter inmany places, reachingmore than ameterandahalfinsomegullies.Anexampleofthegeneralsequence of events is provided in Fig. 2, a sectiondrawing(southbalk)oftheexcavationinSquare4655intheSouthField.Allofthestratabelowloci000-002areYarmoukianuntil,intheleftside,PPNClayerswerereachedatLoci041and045.Thewallintheleftcenterofthesection(Locus019)wasaYarmoukiandomesticdwelling that became abandoned, and subsequentlyfilledtomuchofitsheightwith“normal”slopewash(Locus042).Sometimelater,ahugepitwasexcavatedby the Yarmoukian residents, which later becameinundated with debris (Locus 011) characterized byangular limestone rubble of extraordinary density.A later rubble slide is representedbyLocus010 (therubbleofwhichwaslargerinsizethaninLocus011).ThephysicalcharacteroftherubbleeventsisshowninFigs.3-4.

A “platform” or wall foundation, Yarmoukian inage, is represented by Locus 006 and Floor 029, ayoungerstructurebuiltatopthesecondrubbledeposit.Locus009,justtotheleftofWall019,iswallfallandmight be associated with the eventual abandonmentof the structure represented by Loci 006 and Floor029,andLocus009ispossiblycontemporaneouswithLocus005,awallcollapsefromtheyoungerbuilding.Locus003isprincipallyan“insitu”slopewashwithabundantangulardebris,althoughtheupper10cmalsocontains post-Neolithic pottery. Locus 002 is a post-abandonment mix ofYarmoukian materials but withrelativelycommonByzantinesherdsaswell,probablyreworked sediments from higher up the slope near aByzantinestructure.

Asour excavationsgrew inarea, the same rubblelayer phenomenon was noted in the Central Field,where Yarmoukian architecture was usually filledwith angular debris washed from above. Near theundefined boundary between the Central and NorthFields,Yarmoukianpotterydisappeared,probablyasaconsequence of 20th century agricultural disturbanceoftheupperlayersofsoil,andnoceramicswerefoundintheNorthFieldeither,possiblyforthesamereason.The rubble nature of theYarmoukian deposits in thewesternCentralFieldwasnotnotedintheeasternpartof the Central Field; There was substantial angulardebrisintheupperreachesofthestratigraphicsequencein the North Field, but this appears to be related toanthropogenic causes associated with industrial uses

Slippery Slope: The Late Neolithic Rubble Layer in the Southern Levant

Gary O. Rollefson WhitmanCollege,WallaWalla [email protected]

Fig. 1 Topographicmapof‘AinGhazal,showingthelocationofthe severalfieldsofexcavation(Drawing:AliOmariandG. Rollefson)

Page 13: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

LateNeolithicRubbleLayerintheSouthernLevant

Neo-Lithics1/0913

RubbleSlidesandRapidClimateChange

ofchalkandsoftlimestoneinthearea(cf.KafafiandRollefson1995:20-21).

The Late Neolithic Rubble Layer was a curiousfeatureof theYarmoukian layersat ‘AinGhazal,butthe presence of such angular debris was not novelat the site. In the MPPNB layers, especially, therewere widespread dense deposits of sharply fracturedstones,almostallofthempoorqualityflint.Theywereassociatedwithfire,andthesefire-crackedrockswereprobably associatedwithoutdoorprocessingof plantor animal resources and not related to any particularclimaticevents.ThisMPPNBrockydebriscontrastedsharplywith theYarmoukianRubble, since the latterwas principally limestone fragments that seemed tohave eroded downslope from exposures of bedrockhigheruphill.

AcrosstheWadiZarqa,whichwasapermanentriverduringtheearlyNeolithic,therearenoindicationsofanyYarmoukiandwellings.Infact,theonlyindicationoftheuseoftheeasternsideoftheWadiZarqaduringthePNisapotteryproductionareahighontheeasternescarpment, just above the higher LPPNB large cultbuilding (cf. Rollefson 1998; Rollefson and Kafafi1997: 36). The East Field is much steeper than theareatothewestoftheWadiZarqa:agreaterthan30%slopeisthecurrentdeclination,andthemodernslopeis probably not much different than in the Neolithicperiod.Becauseofthissteepness,thereislittletocatchdownslope erosion before sloughing into the WadiZarqaitself,soitisnotsurprising,perhaps,thataLateNeolithicRubbleLayerhasnotbeenpreserved.

OneaspectoftheYarmoukianlayersat‘AinGhazalthatmightbe correlatedwith theprocess responsiblefor theRubbleLayer is thecoatingofartifacts (flint,pottery,andbone)withathickandresistantcalcareouscoating; only treatmentwith hydrochloric acidmadeitpossible todetermine the statusof tool/debitageor

ceramictypeoranimalspecies.OnesuspectsthattheconcretionisrelatedtofreechemicalradicalsinthesoilthatwerenotpresentduringtheMPPNB,LPPNB,andPPNCsoilregimes.

The Late Neolithic Rubble Layer Elsewhere in the Southern Levant

Wadi Shu‘eibFor some time, we were not aware that the LateNeolithicRubbleLayerwasafeaturethatoccurredinothersites,anditwasnotuntilwebeganworkingatoursistersiteatWadiShu‘eibthatitbecameclearthattheRubbleLayerwasamorewidespreadevent,occurringatanotherYarmoukiansitesome25kmtothewestof‘AinGhazal.AtWadiShu‘eib,allalong the roadcutofahighwaylinkingal-SaltwiththeJordanValleyatSouth Shuna, “a massive sorted layer of cobbles…thatroughlyseparatesportionsofthePre-PotteryandPotteryNeolithiclayers”wasobservable(Simmonsetal.2001:7).ThephotographinFig.5showstwoclearrubbleevents.

Jebel Abu ThawwabNotfarfrombothWadiShu‘eiband‘AinGhazal,thesiteatJebelAbuThawwabalsoproducedasubstantialLateNeolithicRubbleLayer.KafafinotedthattheEarlyBronze andYarmoukian layers “were separated by afill containing large quantities of small stone debris”(Kafafi1988:453;cf.Kafafi200117,32andPlate8B).

‘Ain RahubEastofIrbidat‘AinRahub,athick(1.0-1.5m)layeroflimestonerubblecontainedYarmoukianpottery,anditispossible that theYarmoukianoccupationcontinuedbelowtherubblelayer(Muheisenetal.1988:493).

Fig. 2 DrawingoftheSouthBalkofSquare4655intheSouthField.Loci010and011arerubblelayersassociatedwiththe 8.2k.y.a.event.(Drawing:G.Rollefson).

Page 14: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

LateNeolithicRubbleLayerintheSouthernLevant

14RubbleSlidesandRapidClimateChange

al-ShalafThe preliminary report on excavations at al-Shalaf,near‘AinRahub,didnotprovidedetailsofthenatureofthestrataatthesite,butitwasnotedthatalloftheYarmoukianpotterysherdswere“coveredbyalayerofsinter thatwasinsomecases thick”andwhichcouldonly be studied once that layer was removed usinghydrochloricacid(BienertandVieweger1999:57),anobservation that echoed the situation at ‘AinGhazalandWadiShu‘eib.

Tell Abu SuwwanExcavations at Tell Abu Suwwan, on the southernoutskirts of Jerash, have recently revealed amassivelayer of rubble, approaching a meter in thickness,containing Yarmoukian pottery (an-Nahar, pers.comm.,2007)overlyingextensivePPNarchitecture.

Umm Meshrat I & IIFarther south, the survey connected with the Wadial-ThamadprojectsouthofMadaba locatedanbroaddistribution ofYarmoukian pottery and typical stonetools; twoconcentrationswerenamedUmmMeshratI and II, and test excavationswere carriedout at thebeginning of the current millennium. The terrace onwhich the sites were situated includes deposits of“fieldstones and grayish sediment, suggestive of theYarmoukian‘debrisfields’thatmaybeassociatedwiththe 8thmillenniumBP climate shift… identified byRossignol-Strick”(Cropperetal.2001:18).

WHS 524In the surveys conducted by MacDonald in the late1970s and early 1980s (cf. MacDonald 1988), oneNeolithicsite(WHS524)ascribabletothePNA/JerichoIX cultural tradition was identified. A later intensiveexamination of the site’s surface and of the bulldozercutalongthehighwayrevealedthat“thearchaeologicallayeristhick…andatitstop[thereis]morethanameterofcoarsecolluvium”(Bossutetal.1988:131).

BastaAtBasta,asedimentunitup to2mthick inplaces iscomprised of “tremendous amounts of detritus andmudflows”that“passedthroughandabovetheLPPNBlayers”(Gebel2004:100;cf.Table1andPlates2Band2C),datedto theearlyormiddle7thmillenniumcal.B.C. Ironically, it was the sudden transport thatwasresponsiblefortheexcellentarchitecturalpreservationat the site, at least in someareas (Gebel 2004: 104).Thepotteryassociatedwith this rubbleeventhasnotbeenascribed toeither theYarmoukianorJerichoIXculturalspheres.

Ba‘jaThe situationatBa‘japresentsdifferent facetsof therubble slide phenomenon. Wall stone rubble layersat the site probably represent earthquake-causeddebris,possiblytwiceneartheendoftheoccupation.Later, the site experienced a thick flow (asmuch as

1.5m in thickness) of coarse rubble andgravelwithinterdigitated fine gravels, all transported by water.However, the water-borne sediments came not fromslopecollapsebutfromflashfloodingdownthenarrowgorge whose floor was much higher than at present(Gebel and Kinzel 2007: 32). There is evidently nomaterialincludedinthefinegravelsthatissuitablefordatingtheevents.

Abu GoshThe settlement at Abu Gosh, at the northwesternedge of Jerusalem, produced evidence for both Pre-Pottery and Pottery Neolithic occupations. ThreedecadesagoRonensuggestedthatthepost-PPN“stonylayer” indicated increased precipitation during the(uncalibrated)6-4thmillennia(Ronen1971).Farrand,who was the geologist working with Lechevallier,disagreed, claiming that the climate was insteaddrier during these times.More recent analysis of thegeomorphological situation suggests that the stonylayerisconfinedtothehabitationareaitselfandisnotpresentinthenearbyareas,suggestingananthropogenicoriginforthematerial(Barzilay2003:7).

Topography and the Rubble Slide Event(s)

ThesheermassofstoneintheLateNeolithicRubbleLayer at ‘Ain Ghazal and Wadi Shu‘eib impressedusgreatlyduringourexcavations there.But thehighenergy necessary to move such enormous quantitiesof rubble was understandable in view of the slopesdownwhichtherubblewasmovedbywater.At‘AinGhazaltheaverageslopeintheSouthField(wheretherubblewasmostclearlyvisible)wasbetween25-26°,measured from the top of the hill to the edge of theWadi al-Zarqa.The conditions atWadiShu‘eibwerenotassteep,withtheslopeangleaveragingabout12-14°on theuphill sideof sampledAreas I, II, and III(Simmonsetal.2001:Fig.2).

AinJammamhasamarkedlysteepslope,not lessthan20°(cf.Gebel2008:Fig.3).Thereisadecidedlystrong Pottery Neolithic occupation here (cf. Fino

Fig. 3 PhotoofabulldozersectionintheSouthFieldca. 50msouthofFig.2.(PhotobyCurtBlair).

Page 15: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

LateNeolithicRubbleLayerintheSouthernLevant

Neo-Lithics1/0915

RubbleSlidesandRapidClimateChange

1996;Gebel2008:21).FinonotedthreePNoccupationlayers (Occupations Five, Six and Seven), the lasttwo of which, according to Kafafi, are Late PotteryNeolithic,similartoJerichoPNBforOccupation6andWadiRabahandQatifianforOccupationSeven(Fino1996).TheolderOccupationFive,ontheotherhand,contains dark brown friable potsherdswith sand andstrawtemper,asortnotnotedatotherarchaeologysites(Fino1996).

Unfortunately, there is no published informationconcerningthepossiblepresenceofarubbleslidehereby any of the people associatedwith research at thesite for anyof the strata (e.g.Waheeb1996;WaheebandFino1997;Gebeln.d.;2008).Itmightbepossiblethat debris layers of the nature of theLateNeolithicevidenceat‘AinGhazal,WadiShu‘eib,andBastadidnot form at ‘Ain Jammam because of the sandstonebedrockinthisareaasopposedtolimestone.

The slope angles at Basta were much shallower,averagingabout7-8°(Kamp2004:Fig.14),so“mostofthedrainagesappeartoorestrictedfortheamountoftransportedflow”(Gebel2006:20).Withdebrislayers

asthickastheywereatBasta,theenergytotransporttherubbledownsuchshallowslopesmusthavebeentremendous and indicates that rainfall occasionallyamounted to very strong cloudbursts and consequentflashflooding, as also appears to have been the caseat Ba‘ja. Though there is no available publishedinformation,theslopesatUmmMeshratI&IIareasshallowasatBasta,possiblyevenshallower(personalobservation).

Clearlytheterraincontributedtotheferocityoftheslopewash,andintheabsenceofsteepgradientsitisnot surprising that prehistorians have not mentionedthepresenceoftherubblelayerintheearliestpartofthePotteryNeolithic.AtMunhata,forexample,Layer3isregardedasaperiodofabandonmentofunknownduration(Garfinkel1992:16;Perrot1964:345).SincetherewasnodiscussionofthenatureofthesedimentsinLayer3andYarmoukianLayer2(cf.Perrot1966),presumably there was nothing remarkable about thepresence of any appreciable amount of rubble. Thesame topographic situation seems to pertain at siteswith early PN layers, such asTellTeo (Eisenberg etal.2001)intheHulaValley,atYiftahelintheLowerGalilee(Braun1997),andSha’arHagolanintheJordanValley(e.g.GarfinkelandMiller2002).

Anthropogenic Contributions to the Late Neolithic Rubble Layer

It can’t be determined on the basis of the presentevidenceifclimatechangealonecouldhaveproducedthe devastating avalanches of rubble around LateNeolithic settlements in the hilly countryside. Noris it yet clear if therewasonlyone suchevent, or ifthere were two and perhaps even more; Fig. 5, forexample,indicatestherewereatleasttwoandperhapsthree episodes atWadi Shu‘eib. There are, however,good grounds to assert that some and perhaps evenmuch of the rubble slide damagewas due to humanoverexploitation of the vicinities immediate aroundsettlementssuchas‘AinGhazalandWadiShu‘eib.

Years ago I promoted an argument for severeenvironmental degradation around villages duringthe LPPNB that may have caused the tumultuouspopulation decrease in Jordan (and by extension, forMPPNBsettlementsintheJordanValleyandPalestine)at around8,900 cal.B.C.This argument centeredoncalculationsoftheamountoflimeplasterthatexistedinthefloorsofdomesticbuildingsthroughoutthesouthernLevant, citing data from earlier published accounts(e.g., Kingery et al. 1988). Since then, independentassaysofplastersamplesfrom‘AinGhazalhousefloorshaveshownthattheoriginalestimatesoftheamountoflimeusedinthefloorswashighlyinflated,andthattheamountoflimenecessaryforthefloorswasnegligible(Affonso 1997; Telfah and Kafafi 2003). This, inturn, threw considerable doubt on the deforestationclaimsthatweremadefortheproductionoflimeandthe effects this deforestation had on environmental

Fig. 4 PhotooftherubblelayerinSquare4452,15msouthofFig.2. (PhotobyCurtBlair).

Fig. 5 ThebulldozersectionassociatedwithroadconstructionatWadi Shu‘eib.Onecanseeatleasttwoandperhapsthreerubble layersbeginningjustabovetheheadofDeborahOlszewski. (Photo:AlanSimmons).

Page 16: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

LateNeolithicRubbleLayerintheSouthernLevant

16RubbleSlidesandRapidClimateChange

degradation and settlement instability (e.g. RollefsonandKöhler-Rollefson1989).

Butwhile the effects on forest resources for limeproduction was insignificant, a new considerationof human impacts on stands of brush and trees hasdemonstrated that simple daily needs for domesticfuel (cooking, foodprocessing, potteryproduction inthe PN, etc.) had a much more devastating demandonforeststhanhadbeenassumed(RollefsonandPinen.d.).Clearanceoftreesandbrushforfueldenudedthehillsides, and the intensive browsing by goats in thesame areas prevented regrowth to protect the fragilesedimentarystructuresaroundthesettlements(Köhler-RollefsonandRollefson1990).

When the 8.2 k.y.a. event occurred, evidentlysometimeafterthebeginningofthePNperiodinthesouthernLevant,thehillyareasinhighlandJordanwerevulnerabletocataclysmicdebrisflowsafterararebutdestructivedownpour,moving soils and rockydebrisdownhill with enough force to destroy buildings insomecases.Thisappearstobethecaseat‘AinGhazal,although here theYarmoukian residents rebuilt theirhousesandmaintainedtheirpresenceatthevillageforaconsiderableamountoftime.

There are other examples of the potentially

destructivepowerofheavyrainsfallingonadenudedlandscapethatincludesappreciableslopes.Inthehillsof theKufrinja region of northwestern Jordan, todaythere are high natural terraces of angular limestonerubblewithvery little soil or vegetation cover (Figs.6-7).Theterracesareinclinedverylittle,notexceeding5-6°, but this appears to have been sufficient not tomovetherubble,buttoremovethesoilcoveroverit.Throughout highland Jordan, devegetation by goats(andsheep,butlessaffectingwoodybrushandtrees)has been underway since the PPN period, and thiscouldexplain thepresenceofsuchrubblefieldsaftertheoccasionaldownpour(s)duringthe8.2k.y.a.event.

Concluding Remarks

The widespread and apparently contemporaneousoccurrence of rubble layers atmost known early PNsettlements in the hilly areas of the southern Levantargueforcefullyforapowerfulphenomenonthatwasrelatedtoaregionalagentactingonfragilelandscapes.Themostlikelyagentisthesuddenandsevereclimaticdeteriorationinthelasthalfofthe9thmillenniumcal.B.P.

Whiletheremaybeaconsensusonthisaspectoftheissue,muchmoreremainstobedetermined.Therubbleslides likelywerenotabsolutelysimultaneous, in thesensethatlocalvagariesofweatherpatternsmayhavetriggered the avalanches at different times, perhapsmanyyearsapartinvarioussectorsoftheregion.Itisalso not clear if therewas only a single rubble slideevent at the sites thatwere affected,nor is there anyreasontoassumethatitwasaone-timeaffair.Instead,itisprobablethatdenudedslopessufferedfromheavyrainfallanynumberoftimes,againperhapsyearsapart.Thereisalsothequestionofhowdamagingtherubbleslideswereindisparatelocalities:clearly‘AinGhazalrecoveredfromthecatastrophethatassailedit,butthiscan’t be said with confidence about the situation atWadiShu‘eib,forexample.

The destruction of highland settlements andfarmlandsimmediatelyaroundthemmayhaveusheredinanothermassivepopulationrelocation,echoingthepost-LatePPNBturbulenceof thesouthernLevantatthebeginningofthe9thmillenniumcal.B.P.Althoughtherewereprobablyseveraldeleteriouseffectsof the8.2k.y.a.event throughout theLevant,settlements inlow-lyingareasevidentlydidnothavetocopewiththecolossaltransportofrubblethataffectedthehousesandfields of the highland populations. Is it possible, forexample,thatoneofthereasonsfortheimmensesizeof theSha’arHagolansettlementcouldbedue to themigration of residents from someof theYarmoukianfarming villages in northern and central highlandJordan?

There are several vital areas that demand moreintensive investigation in the effects of the 8.2 k.a.event, andwe hope to begin a two-season project at‘AinGhazaltoconductmicrostratigraphicanalysisof

Fig. 6 ArubbleterracenearthetopofahillinthevicinityofMughara Wishad,notfarfromKufrinja,northwesternJordan (Photo:G.Rollefson).

Fig. 7 Arubbleterraceinthesameareanearasuddenly steeperdrop-off(Photo:G.Rollefson).

Page 17: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

LateNeolithicRubbleLayerintheSouthernLevant

Neo-Lithics1/0917

RubbleSlidesandRapidClimateChange

theYarmoukianlayers,lookingforproxyevidencethatwillprovidethemeansofestimatingthepoweroftheclimatic-induced consequences, as well as a detailedabsolute chronologyof the rubble layer phenomenonatthesite.

References

AffonsoM.T.1997 MineralogischeundgeochemischeUntersuchungen vonKleinplastikundBaumaterialienausdem akeramischenNeolithikumdesNahenOstens. Doctoraldissertation,Naturwissenschaften- MathematischenGesamtfakultät,Ruprecht-Karls- Universität,Heidelberg.

BarzilayE.2003 TheGeologicalSetting.InH.KhalailyandO.Marder, TheNeolithicSiteofAbuGhosh.The1995 Excavations:3-11.IsraelAntiquitiesAuthorityReports, No.19.Jerusalem,IsraelAntiquitiesAuthority.

BienertH-D.andViewegerD.1999 ArchaeologicalExcavationsattheLateNeolithicSiteof Ash-Shalaf:APreliminaryReportonthe1998Season. AnnualoftheDepartmentofAntiquitiesofJordan 43:49-67.

BossutP.,KafafiZ.,andDollfusG.1988 Khirbeted-Darieh(SurveySite49/WHS524),un NouveauGisementNéolithiqueavecCéramicduSud- Jordanie.Paléorient14/1:127-131.

BraunE.1997 Yiftah’el.SalvageandRescueExcavationsata PrehistoricVillageinLowerGalilee,Israel. IsraelAntiquitiesAuthorityNo.2.Jerusalem,Israel AntiquitiesAuthority.

CropperD.,FoleyC.M.andRollefsonG.O.2003 UmmMeshratIandII:TwoLateNeolithicSites alongtheWadiath-Thamad,Jordan.In F.Ninow(ed.),WortundStein.StudienzurTheologie undArchäologie.FestschriftfürUdoWorschech: 15-32.FrankfurtamMain,PeterLang.

DavisJ.,SimmonsA.,MandelR.,RollefsonG.O.,andKafafiZ.n.d. APostulatedEarlyHoloceneSummerPrecipitation EpisodeintheLevant:EffectsonNeolithicAdaptations. Paperpresentedatthe55thannualmeetingofthe SocietyforAmericanArchaeology,LasVegas,1990.

EisenbergE.,GopherA.,andGreenbergR.2001 TelTe’o.ANeolithic,ChalcolithicandEarlyBronze AgeSiteintheHulaValley.IsraelAntiquitiesAuthority Reports13.Jerusalem,IsraelAntiquitiesAuthority.

FarrandW.1978 SedimentalogicalObservationsatAbouGosh.In M.Lechevallier,AbouGoshetBeisamoun.Deux GisementsduVIIeMillénaireavantl’ÈreChrétienne enIsrael:91-94.Paris,AssociationPaléorient.

FinoN.1996 ‘AinJammam.AnArchaeologicalStudy.Unpublished M.A.thesis,UniversityofJordan,Amman.(InArabic)

GarfinkelY.1992 ThePotteryAssemblagesoftheSha’arGolanand RabahStagesofMunhata(Israel).LesCahiersdu CentredeRechercheFrançaisdeJérusalem6.Paris, AssociationPaléorient.

GarfinkelY.andMillerM.2002 Sha’arHagolan1.NeolithicArtinContext.Oxford, OxbowBooks.

GebelH.G.K.2003 SitePreservationandSiteFormationProcesses.In H.J.Nissen,M.Muheisen,andH.G.K.Gebel(eds.), BastaI.TheHumanEcology:95-116.Berlin,exoriente.2006 TheStratigraphyandLocusData.InH.G.K.Gebel, H.J.Nissen,andZ.Zaid(eds.),BastaII.The ArchitectureandStratigraphy:11-131.Berlin, exoriente.2008 Neolithic‘AinJamamnearRasan-Naqb:ThePre-1993 FieldResearchHistory.Neo-Lithics1/08:16-25.n.d. Neolithic‘AinJamamnearRasan-Naqb.Observations onSitePreservationsince1986andfieldoperation inSeptember1992.Unpublishedreporttothe DepartmentofAntiquitiesofJordan.

GebelK.G.K.andKinzelM.2007 Ba‘ja2007:CrawlSpaces,RichRoomDumps,and HighEnergyEvents.Resultsofthe7thSeasonof Excavations.Neo-Lithics1/07:24-33.

KafafiZ.1988 JebelAbuThawwab:APotteryNeolithicVillagein NorthJordan.InA.GarrardandH.G.Gebel(eds.),The PrehistoryofJordan.TheStateofResearchin1986: 451-471.BARInternationalSeries396.Oxford:B.A.R.2001 JebelAbuThawwab(Er-Rumman),CentralJordan.The LateNeolithicandEarlyBronzeAgeIOccupations. Berlin,exoriente.

KafafiZ.andRollefsonG.1995 The1994Excavationsat‘AynGhazal:Preliminary Report.AnnualoftheDepartmentofAntiquitiesof Jordan39:13-29.

KampU.2004 GeomorphologicalSiteSettingandGeochemical Results.InH.Nissen,M.MuheisenandH.G.K.Gebel (eds.),BastaI.TheHumanEcology:53-94.Berlin, exoriente.

KingeryW.,VandiverP.,andPrickettM.1988 TheBeginningsofPyrotechnology,PartII:Production andUseofLimePlasterinthePre-PotteryNeolithicof theNearEast.JournalofFieldArchaeology 15:219-244.

Köhler-RollefsonI.andRollefsonG.1990 TheImpactofNeolithicSubsistenceStrategiesonthe Environment:TheCaseof‘AinGhazal,Jordan.InS. Bottemaetal.(eds.),Man’sRoleintheShapingofthe EasternMediterraneanLandscape:3-14. Rotterdam:A.Balkema.

Page 18: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

LateNeolithicRubbleLayerintheSouthernLevant

18RubbleSlidesandRapidClimateChange

MacDonaldB.1988 TheWadielHasaArchaeologicalSurvey1979-1983, West-CentralJordan.Waterloo(Ontario,Canada): WilfredLaurierUniversityPress.

MuheisenM.,GebelH.G.,HannssC.,andNeefR.1988 Excavationsat‚AinRahub,aFinalNatufianand YarmoukianSitenearIrbid(1985).InA.N.Garrard andH.G.Gebel(eds.),ThePrehistoryofJordan. TheStateofResearchin1986:473-502. BARInternationalSeries396.Oxford:B.A.R.

PerrotJ.1964 LesdeuxpremièrescampagnesdefouillesàMunhatta (1962-1963).Premièresrésultats.Syria41:323-345.1966 LatroisièmecampagnedefouillesàMunhatta(1964). Syria43:49-63.

RollefsonG.1997 ChangesinArchitectureandSocialOrganization at‘AinGhazal.InH.G.K.Gebel,Z.Kafafiand G.O.Rollefson(eds.),PrehistoryofJordanII. Perspectivesfrom1997:287-318.Berlin,exoriente.1998 ‘AinGhazal(Jordan):RitualandCeremonyIII. Paléorient24/1:43-58.

RollefsonG.andKafafiZ.1994 The1993Seasonat‘AinGhazal:PreliminaryReport. AnnualoftheDepartmentofAntiquitiesofJordan 38:11-32.1997 The1996Seasonat‘AynGhazal:PreliminaryReport. AnnualoftheDepartmentofAntiquitiesofJordan40: 27-48.

RollefsonG.andKöhler-RollefsonI.1989 TheCollapseofEarlyNeolithicSettlementsinthe SouthernLevant.InI.Hershkovitz(ed.),Peopleand CultureinChange:73-90.BritishArchaeological Reports-InternationalSeries508.Oxford:B.A.R.

RollefsonG.andPineK.n.d. AhlanwaSahlan:MeasuringtheImpactofLPPNB ImmigrationintoHighlandJordan.Studiesinthe HistoryandArchaeologyofJordan10(inpress).

RonenA.1971 Post-PleistoceneStonyLayersinEastMediterranean Sites.Quartär22:73-93.

SimmonsA.H.,RollefsonG.O.,KafafiZ.,MandelR.D.,an-NaharM.,CooperJ.,Köhler-RollefsonI.,andRolerDurandK.2001 WadiShu‘eib,aLargeNeolithicCommunityinCentral Jordan:FinalReportofTestExcavations.Bulletinof theAmericanSchoolsofOrientalResearch321:1-39.

TelfahJ.A.andKafafiZ.2003 PlasterFloorProductionattheNeolithicSiteofAin Ghazal,Jordan.MediterraneanArchaeologyand Archaeometry3(2):53-63.

WaheebM.1996 ArchaeologicalExcavationsatRasan-Naqb-‘Aqaba RoadAlignment:PreliminaryReport.Annualofthe DepartmentofAntiquities40:339-348.

WaheebM.andFinoN.1997 ‘Aynel-Jammam:ANeolithicSitenearRasen-Naqb, SouthernJordan.InH.G.K.Gebel,Z.Kafafiand G.O.Rollefson(eds.),ThePrehistoryofJordanII. Perspectivesfrom1997:215-219.Berlin,exoriente.

Page 19: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

NaturalorAnthropogenicAgents?SomeExamples

Neo-Lithics1/0919

RubbleSlidesandRapidClimateChange

Agglomerationsofangularstones/cobblesmixedwitharchaeological finds are encountered in many lateprehistoric sites within the Mediterranean woodlandarea in the southern Levant. In many cases theseoccurrences form stratigraphicallydefined layers thatmay look the same but apparently were formed bydifferentagents(naturalorhuman)forvariousreasons.In this short notewewill present some examples ofsuch occurrences from Cisjordan with respect tochronology,formationprocessesandfunctions.

Terminology

Several terms are employed in the literature fordescribingoccurrencesofstoneconcentrationsinlateprehistoric sites (e.g. Ronen 1971; Barzilay 2003;Goring-Morris and Horwitz 2007; Rollefson, thisvolume).All embrace interpretive implications sincethey are used for describing a specific phenomenon/activity.

Forexampletheterm“stonylayers”wascoinedtodescribepost-Pleistocenerockfalllayersincavesitesin the Eastern Mediterranean region (Ronen 1971).Anotherterm,“midden”,isemployedfordescribingalayerthatwasformedduetorepetitivewastedisposalsatPPNBKfarHaHoresh(Goring-Morrisetal.1998:3;Goring-Morris and Horowitz 2007). “Gravel layers”is used for stone layers representing constructionactivities at PPNB Abu Gosh (Barzilay 2003:10).Finally,themostrecentterm,“rubblelayers”,isusedfor describing layers formed by natural agents notedatYarmukiansitesintheTransjordan(Rollefson,thisvolume).

In order to avoid confusion or any associatedconnotations we will employ in the paper the term‘stonesurface’inaneutralsensewhenreferringtothisgeneralphenomenon.

Chronology

Chronologicallyspeaking,stonesurfacesinCisjordanare known from as early as the Late Epipalaeolithic(Natufian)untiltheendoftheChalcolithic(Ghassulian)period.

During theNatufianandPPNAstone surfacesarelesscommonandappearonlyinveryfewsites.NatufianEynan is one example where stone surfaces weredocumentedthroughoutthesite(Vallaetal.2001:Figs.

1-3).ThestonesurfacesatEynanweredividedintotwotypes;openareasurfacesrepresentingaccumulationsofcookingdebrisandotherpyrotechnologicalactivities,andindoorsurfacesthatfunctionedasfloors(Samuelianetal.2006).PPNAstonesurfaces(pebblepavementsandfills)werereportedtodominatetheKhiamianlayerat Hatoula (Winter and Ronen 1994:13-15). Thesesurfaceswerecomposedofbrokencobblesdisplaying‘jig-saw’breakagepattern(ibid.Fig.6).Althoughthebreakagepatternof these stones suggests theyderivefrom landslides in the vicinity of the Hatoula, theirpresenceat thesitewasexplainedasmanuports.Themajor argument for this explanationwas the absenceofsuchacomponentwithin theNatufian layerat thesite(ibid).

StonesurfacesbecomeawideknownphenomenonduringthePPNBandPNperiods,asdiscussedinthisvolume. Such were reported for many sites locatedin the Mediterranean woodland zone in Cisjordan(e.g.RosenbergandGetzov2006:Figs.2-3;Barzilay2003;Birkenfeld2008;Getzov2008;Barzilaietal.,inpress).Severalinterpretationswereproposedforthesesurfaces(seebelow)whereastheirformationprocessescouldbeattributed toeithernaturaloranthropogenicagents.

Although less reported, stone surfaces are alsocharacteristic of the Late Pottery Neolithic (WadiRabah)andChalcolithicperiodsinCisjordan.ExamplesaretheWadiRabah(strataVI)andmiddleChalcolithic(stratumVB-C)stonesurfacesatEinAsawirandlateChalcolithicPeqi’in(Getzov2007:Fig.2;Yanai2006:Figs.2.2;2.5;2.6).

Formation processes and possible functions of stone surfaces

Aspreviouslymentioned there are twomajor causesfor the formation of stone surfaces; natural andanthropogenicagents.Thesecouldbe furtherdividedinto sub-types representing possible cause (naturalagent)orpossiblefunctions(anthropogenicagent).

Natural Agents

Formations of stone surfaces due to natural agentsinclude at least three types triggered by differentprocesses.Thefirstaresurfaceswhichwereformedasaresultof“caverockfalls”(Ronen1971:89).

Natural or Anthropogenic Agents? Some Examples For the Variety of Stone Surfaces in Late Prehistoric

Sites in Cisjordan

Omry Barzilai IsraelAntiquitiesAuthority,Jerusalem [email protected]

Page 20: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

NaturalorAnthropogenicAgents?SomeExamples

20RubbleSlidesandRapidClimateChange

AccordingtoRonentheirformationwasacceleratedintheearlyHoloceneduetohumidconditionswhichin turn disintegrated angular stones from cavewalls,thus forming stony layers. Such stone surfaces areindeedevidentatmanycavesitesintheMediterraneanwoodland zone, but do not necessarily correspondwithpost-Pleistoceneoccupations.Forexample,earlyEpipalaeolithic occupations atMegedRockshelter inthe Upper Galilee were embedded within cave rockfalls consequently forming a ca. 0.75-1.00 m thicklayer(Kuhnetal.2004:6-8).

Anothertypeofnaturalagentisflashfloodsforminggeomorphologic ‘high level gravels’ (Poona 1971).AnexampleforsuchanaccumulationcanbeobservedwhereabackhoetrenchdugeastoftheJericho–BetSheanroadexposedathickstonylayercomprisedofseveralhorizons(Fig.1).Thisdiffers from thecave rock falls since it iscomprised of rounded cobbles and pebbles rather thanangularstones.Itshouldbenotedthatsuchnaturalstonesurfacescouldbeeasilyconfusedwithintentionallypavedsurfaces,inparticularatsiteslocatedinafluvialsetting.Forexample,PPNAGilgalIlocatedinasettingofhighlevelgravels(aboveWadiSaalbiya).Still,itisquiteclearthat the base of the floor of house II is anthropogenicdespitebeingmadeoflocallyavailablegravelandpebbles(Noy1989:13).

The third typeofnaturalaccumulation is the‘rubbleslide’ which was proposed to reflect land slides inYarmukiansiteswithinclinedtopographyinTransjordan(Rollefson,thisvolume).Theselandslideswereconsideredto be associated with rapid climatic change at 8.2 ka(Weninger,thisvolume).Inseveralcaseswhennostonesurfaceswerenoted (e.g. ShaarHagolan), their absencewasexplainedbythelocationofthesiteinanareawithaflattopography(theCentralJordanValley).Still,iftheYarmukian stone surfaces were indeed the outcome ofland slides we should expect no surfaces at other sites

locatedinaflattopography.However,thisisnotthecaseatYarmukianArdelSamraintheAkkoPlain(Barzilaietal.inpress;Getzovetal.inpress)whereanextremelythickstonesurfaceswererecorded(Fig.2).

Anthropogenic agents

At least four classes of anthropogenic agents couldhaveformedtheNeolithicstonesurfaces:construction,wastedisposals,cookingandintentionalcovering.

Construction activities including ground levelingand floor making were proposed to form the stonesurfacesatPPNBAbuGosh(Barzilay2003:10).Thesesurfaceswerefound toberestricted to thesettlementwhilenonewereevidentinotherareasaroundthesite,thus verifying that these were indeed anthropogenic(ibid).A similar explanation was also suggested forthePPNCstonesurfacesatHagoshrimVIintheHulaBasin(Getzov2008).

Another type of anthropogenic behavior that is

Fig. 1 NaturalaccumulationofstonesintheJordanvalley

Fig. 2 YarmukianstonesurfaceatArdelSamra

Page 21: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

NaturalorAnthropogenicAgents?SomeExamples

Neo-Lithics1/0921

RubbleSlidesandRapidClimateChange

responsible for formation of stony surfaces is wastedisposal.SuchwasnotedatPPNBKfarHahoreshwhereathicklayeratthesouthernandwesternpartsofthesitewas recorded (Goring-Morris and Horwitz 2007: Fig.2).Thisdumplayerconsistedofaccumulationsofburntstones,flintartifactsandanimalbonesthatwereproposedtorepresentwastedisposalsoffeastingactivitiesatthesite(ibid.,Fig.5).

Thethirdtypeofstonesurfacesmadebyhumanagentsiscookinginstallationsthatmakeuseofhotrocks(Thoms2009). The archaeological remains of such techniqueusuallycompriseapitfilledwithstones(ibid.,Fig.5).Apossible example for such an installation was recordedrecentlyattheYarmukianoccupationatMishmarHaemeq(Barzilai andGetzov2008).Here a pitwas hewed intothevolcanicrockwasfilledwithangularstones(Fig.3).Althoughthisfeaturedoesnotexactlyfitthedefinitionofastonesurface,weshouldbeawarethatsuchpitinstallationscouldbethesourcesofdumplayers.

Anothercookingfacilityistheopenovenhearthsthatresult inmanyfire-crackedstones (Thoms2008). It isnoted thatarepetitiveuseofsuchhearths in thesamelocationcouldresultinanaccumulationofstoneswhichconsequentlycreatessuchastonesurface(Fig.4).

The last proposed type is intentional coverage

of architecture, in particular unique Neolithicstructures which were reported to have beenintentionally buried (Verhoeven 2002). Oneexampleisthe„Schlangenpfeilergebäude“structurefromGöbekliTepe, dated to theEPPNB (Schmidt2000:4).Fromaerialphotographsonecanrecognizea fillofangularstones thatcouldfit thedefinitionof stony layer in the bottom right corner of thesquare(ibid.,Fig.2).InthesouthernLevant,suchaphenomenonwasobservedintheflagstonestructureat Mishmar Haemeq (Barzilai and Getzov 2008).Thisstructurewascoveredbya thin layer,ca.20-40cmthick,characterizedbyangularstonesmixedwith flint items, bones andother fragmented finds(Fig.5).Notablythestonesurfacewassetdirectlyonthestructurewhiletheperimetersofthebuildingwerenotcoveredatall.

Concluding remarks

The examples presented above show a wide varietyof stone surfaces that could result from natural orhumanagentscausedbyvariousfactorsorintendedfor

Fig. 3 CookingpitfilledwithstonesatYarmukianMishmarHa‘emeq

Fig. 4 Remainsofahearthwithfirecrackedstonesatchalcolithic NahalSecherXXIVintheNegev

Fig. 5 ThePPNBflagstonestructureatMishmarHaemeq,aviewto south-west.1:earlystageinexposingthestructure.Noteastone surfacecoveringthenorthernandeasternpartsofthestructure. 2:alaterstageintheexcavation.Notethatthesediments beyondthewesternandsouthernperimetersarefreeofangular stones

Page 22: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

NaturalorAnthropogenicAgents?SomeExamples

22RubbleSlidesandRapidClimateChange

differentfunctions.Asforus,thearchaeologistsinthefield,weareexpectedtorecordsuchoccurrencesandattempttoseektheoriginsofthesestones.

Inordertoidentifysurfacescausedbynaturalagentswe need to observe the surroundings of the site andconductageomorphologystudy.AspreviouslynotedweshouldexpecttofindsuchsurfacesassociatedwithclimaticeventsasproposedbyBernard(thisvolume)andRonen(1971).Howeverweshouldbearinmindthatnotallrockfall layers in caves were formed before the Holocene(e.g.Kuhnetal.2004)orthatsomestonesurfacesattheYarmukiansites(e.g.ArdelSamra)couldnotbearesultofrubbleslidessincetheyarelocatedonanalluvialplain.

The anthropogenic agents are diversified and mayresult from construction, waste disposal, cooking andintentional covering activities.Within the anthropogenicsurfacesweshouldlookfordirectevidence.Forexample,accumulationofcookingstonesshouldbearburningsignssuchasfirecracks,orarchitecturalelementsshouldshowcleardelimitationssuchaswallsorplasterremains.WhatisstrikingisthatitappearsthatanthropogenicsurfacesaremuchmorecommoninthePPNBandearlyPNperiods.To my mind they are associated with early sedentism,and it shouldbe regardedasoneof theparameters thatweshouldconsiderinordertocomprehendthedurationof occupations in archaeological sites. Still one mustexplainwhy these surfaces are not as common in laterurbansettlements.Itispossiblethattheyreflectchangesincookingtechnologies,construction,andritualbelievesbutsuchissuesstillawaitfurtherinvestigation.

Acknowledgements: Thanks toAriel Malinski BullerandSamuelWolfffortheireditorialcomments.

References

BarzilaiO.,LeDosseurG.,Eirikh-RoseA.,KatlavI.,MaromN.andMilevskiI.inpress Ain‘Hamifratz(ArdelSamra):ANeolithic-Chalcolithic SiteComplexintheAcrePlain,Israel.Hadashot Arkeologiot122.

BarzilaiO.andGetzovN.2008 MishmarHa‘emeq:ANeolithicSiteintheJezreel Valley.Neo-Lithics2/08:12-17.

BarzilayE.2003 TheGeologicalSetting.InH.KhalailyandO.Marder (eds.)TheNeolithicSiteofAbuGhosh:The1995 Excavations.IAAReports19:3-11.Jerusalem:Israel AntiquitiesAuthority.

BirkenfeldM.2008 AspectsofTimeandSpaceattheEarlyNeolithicSite ofKfarHaHoresh-AGISbasedStratigraphicaland SpatialAnalysis,M.A.thesis,TheHebrewUniversity. Jerusalem.

GetzovN.2007 ALateChalcolithicandEarlyBronzeAgeSettlementat

Peqi’in,inUpperGalilee.‘Atiqot56:1-12.(inHebrew).2008 Ha-Goshrim.InE.Stern(ed.)TheNewEncyclopediaof ArchaeologicalExcavationsintheHolyLand5: 1759-1761.JerusalemandWashington,D.C.:Israel ExplorationSocietyandBiblicalArchaeologySociety.

GetzovN.,BarzilaiO.,LeDosseurG.,Eirikh-RoseA.,KatlavI.,MarderO.,MaromN.andMilevskiI.inpress NahalBezetIIandArdelSamra:TwoLatePrehistoric SitesandSettlementPatternsintheAkkoPlain. MitekufatHaeven39.

Goring-MorrisA.N.,BurnsR.,DavidzonA.,EshedV.,GorenY.,HershkovitzI.,KangasS.andKelecevicJ.1998 The1997SeasonofExcavationsattheMortuarySite ofKfarHaHoresh,Galilee,Israel. Neo-Lithics1998/3:1-4.

Goring-MorrisA.N.andHorwitzL.K.2007 FuneralsandFeastsduringthePre-PotteryNeolithicB oftheNearEast.Antiquity81:1-17.

KuhnS.L.,Belfer-CohenA.,BarzilaiO.,StinerM.C.,KerryK.,MunroN.andMayerBar-YosefD.2004 TheLastGlacialMaximumatMegedRockshelter, UpperGalilee,Israel.JournaloftheIsraelPrehistory Society34:5-47.

NoyT.1989 GilgalI:APre-PotteryNeolithicSite,Israel. The1985-1987seasons.Paléorient15/1:11-18.

PoonaK.P.1971 HighLevelGravelsandRelatedPalaeolithicSitesof ShorapurDoab,PeninsulaIndia.Quartär22:95-110.

RonenA.1971 Post-PleistoceneStonyLayersinEastMediterranean Sites.Quartär22:73-93.

RosenbergD.andGetzovN.2006 ABasaltChippingFloorfromLevelVI(PPNC)at Hagoshrim.MitekufatHaeven.JournalofTheIsrael PrehistoricSociety36:117-128.

SamuelianN.,KhalailyH.andVallaF.2006 FinalNatufianarchitectureat’Eynan(’AinMallaha). Approachingthediversitybehindtheuniformity.In E.B.BanningandM.Chazan(eds.),Domesticating Space.Construction,Community,andCosmologyin theLatePrehistoricNearEast:35-42, Berlin:exoriente.

SchmidtK.2000 GöbekliTepe,SoutheasternTurkey.Apreliminary reportonthe1995–1999excavations.Paléorient26/1: 45-54.ThomsA.V.2008 Thefirestonescarry:ethnographicrecordsand archaeologicalexpectationsforhot-rockcookeryin westernNorthAmerica.JournalofAnthropological Archaeology27:443-460.

2009 Rocksofages:propagationofhot-rockcookeryin westernNorthAmerica.JournalofArchaeological Science36:573-591.

Page 23: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

NaturalorAnthropogenicAgents?SomeExamples

Neo-Lithics1/0923

RubbleSlidesandRapidClimateChange

VallaF.R.,KhalailyH.,SamuelianN.,MarchR.,BocquentinF.,ValentinB.,MarderO.,RabinovichR.,LeDosseurG.,DubreuilL.andBelfer-CohenA.2001 LeNatoufienfinaldeMallaha(Eynan),deuxième rapportpréliminaire:lesfouillesde1998et1999. MitekufatHaeven31:43-184.

WinterY.E.andRonenA.1994 TheGeomorphologicalandGeologicalSetting. InM.LechevallierandA.Ronen(eds.)Legisementde HatoulaenJudéeOccidentale,Israël:5-16. MémoiresetTravauxduCentredeRechercheFrançais deJerusalem8.Paris:AssociationPaléorient.

VerhoevenM.2002 RitualandIdeologyinthePre-PotteryNeolithicB oftheLevantandsoutheastAnatolia.Cambridge ArchaeologicalJournal12/2:233-258.

YannaiE.2006 ‘EnEsur(‘EinAsawir)IExcavationsataProtohistoric SiteintheCoastalPlainofIsrael.IAAReports31. Jerusalem:IsraelAntiquitiesAuthority.

Page 24: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

ChangeattheNeolithicSiteof‘AinGhazal

Neo-Lithics1/0924

RubbleSlidesandRapidClimateChange

Introduction

‘Ain Ghazal is a large permanent farming Neolithicsettlement on the main highway leading from thecapitalAmmantothecityofal-Zarqatotheeast.ThematerialcultureuncoveredatthesitegreatlyincreasedourunderstandingofhowhumansocietyaffectedandinteractedwiththeenvironmentinthesouthernLevant(RollefsonandKafafi2007).

The site canbe singledoutof theotherNeolithicsettlements in the area because it was continuouslyoccupied for over 2,500 years (from ca. 9,250-6,500uncal. B.P.). This provides the first opportunity toexamine a permanent farming settlement during thisperiodoftime.Also,thesiteyieldedoneoftherichestarraysofNeolithicdata-particularlythehumanstatueand bust collections and different types of domesticand ritual buildings. This includesmaterial from thetransitionfromthePre-PotteryNeolithicBtothePre-PotteryNeolithicCandanotherinsitutransitionfromtheaceramictotheearlyPotteryNeolithic.Lastbutnotleast, the site occupied a very large area (ca. 14 ha)when it reached its climaxby theendof the seventhand the beginning of the sixthmillennia uncal. B.C.(Rollefsonetal.1992).

The site of ‘Ain Ghazal was initially discoveredduringbulldozingoperationsofopeningtheAmman-Zarqa highway in 1974. Unfortunately, systematicarchaeological investigations started only eight yearsafter the discovery. The project started as a rescueexcavation in 1982, and the team headed by GaryRollefsonandfundedbytheDepartmentofAntiquitiesof Jordan gave priority towards rescuing the mostendangered areas located just directly to thewest ofthehighway.

The archaeological excavations conducted in theseasonsof 1992-1998 concentratedonother areas of‘Ain Ghazal, including its fringes (Rollefson et al.1990;RollefsonandKafafi1993;KafafiandRollefson1995). Test probes at the edges of ‘Ain Ghazaldemonstrateditsenormoussize,butmoreimportantly,wealsolearnedmuchmoreofits“dual”nature.TracesofNeolithicoccupationwereexcavatedattheeasternpartof thesite,which includedstonealignments thatsuggestedverylongwallsthathadnotbeenseeninthemainsite to thewest.Theexcavatorsannounced thatthematerialfromtheearliestoccupationofthisEasternField (ca. 9,500 years ago) does not provide much

informationofdaily life.9,300yearsago thispartof‘Ain Ghazal appears to have been a sector that wasinvolved in communal ritual observances (RollefsonandKafafi2007).

Stratigraphy and Chronology

Archaeologists researching archaeological sitesfollowtwoways inunderstanding thestratigraphyofthe archaeological sites. The first one is the verticalstratigraphy, which is represented by the successiveaccumulation of deposits over earlier strata. Andsecond,thehorizontalstratigraphythatshowstherealexpansion of deposits through time. The backboneof this study is interpreting and understanding thedistributionof thearchitectural remains through timeandtheeffectofenvironmentalchangeasreflectedbytheappearanceofagravellylayerwhichspreadalloverthesite.

It is important to mention that the horizontalstratigraphy of ‘Ain Ghazal is strongly affected bypost-depositional disturbances, ancient and modern(agriculturalploughingandterracing,railway,sewagestation, thehighway,bulldozingaparkarea for cars,andthemodernbuildings).DespitethelargebulldozedportionsofmostofthenorthernareaofthesiteandpartsofthestreambanksoftheZarqaRiver,theexcavatedarchaeological remains and the radiometric dataindicatethatthesitestartedasasmallvillageca.10,250yearsago.Itreachedasizeof4-5hectaresbyabout9,500 cal. B.P..The latter datemarks the emergenceoftheLatePre-PotteryNeolithicB(LPPNB)culturalphase,butalsowitharemarkableandevidentlysuddenexpansionof the site,whichnearlydoubledwithin acenturyor two, including the foundingof theeasternenclaveacrosstheZarqaRiver(Rollefsonetal.1992).

Thesitecontinued togrowduring theLatePPNBphase,reachingperhaps10hectaresbytheendofthe8thmillennium uncal. B.C. However, the archaeologicalexcavations conducted at the site during the 90tiesprovedthattheEastFieldwasnotoccupiedduringthePre-PotteryNeolithicC.Thisclaimmayindicatethatthesizeofthesitecollapsedgreatlyduringthisperiod.Thusitmustbementionedthatthisinterpretationmaycontradictwhatwaspublishedearlier(Rollefsonetal.1992:446).Butthespacesbetweenhousesalsoappeartohaveincreased,suggestingthatapopulationplateau

Environment and Architectural Changeat the Neolithic Site of ‘Ain Ghazal

Zeidan Kafafi YarmoukUniversity,Irbid [email protected] Lucke BrandenburgUniversityofTechnology,Cottbus [email protected] Bäumler Friedrich-AlexanderUniversity,Erlangen-Nürnberg [email protected]

Page 25: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

ChangeattheNeolithicSiteof‘AinGhazal

25RubbleSlidesandRapidClimateChange

was reached, and perhaps not exceeding the LPPNBmaximumofabout2,500inhabitants.

Archaeological remains belonging to the PotteryNeolithicwere excavated at several parts of the site,particularly the Central Field and the South Field.Architectural remains belonging to this culture werebuiltdirectlyoverthePPNConesorevenreusedthosefrom earlier periods. No structures or pottery sherdswereencounteredatboththeNorthandtheEastFields,butinasoundingtrenchexcavatedin1988/1989atthewesternmost limits of the settlement (Square 7876)Yarmoukianpotterysherdswereexcavated.

ItisclearthattheMPPNBdepositsatthesitespannedadepthtoca.3minsomepartsofthesettlement.ThesituationoftheLPPNBwasclarifiedbytheexcavationsin theNorthern and Eastern Fields of the site. Theyweremostlybuilteitheroverthebedrock(thecaseoftheEastField)oroverlieaterrarossa(virgin-soil)(intheNorthField).However, it appearsat someplacesthatthereare2mofdepositsofthisperiod.

In the process of building structures duringthe PPNC, at least some excavation activities intounderlying LPPNB or even MPPNB deposits tookplace(particularlyintheSouthField).Furthermore,itappearsthatthePPNCinhabitantsatleastoccasionallyincorporatedstill standingearlier structures into theirownhousingdesigns.ThePPNCdepositsaccumulateatsomeplacestoover1.5m.

The inhabitants of the following period, theYarmoukians (Pottery Neolithic), built houses withcourtyardsincludingallfacilitiesneededfordailylifeas documented in theCentral Field and South Field.They partially constructed new houses and partiallyreused the PPNC and even the PPNB structures. Inaverage,theYarmoukiandepositsexceed1.5mintheSouthField.

Afterthesitehadbeenabandonedaround5,500cal.B.C.,peoplereturnedduringtheEarlyBronzeAgeItothemostsouthernedgeoftheregionofthesite(Petocz1987).Theinspectionsofthecaveslocatedonthemosthigherpartof theEastFieldproducedarchaeologicalremainsdatedtotheEarlyBronzeAgeIV(Rollefsonand Kafafi 2000). Moreover, Byzantine and Islamicpotterysherdswerecollectedfromthetopandhigherpartofthewesternsideofthesite(SimmonsandKafafi1988).

Withregardtotheabsolutechronology,anumberofradiocarbondateswereobtainedfromthePre-PotteryNeolithiclevels.Butunfortunatelynonewascollectedfrom the Pottery due to a lack of samples sufficientfornormalassaying.ArejectedoneobtainedfromtheSouthField,Square4655Locus015rangedfrom930±95uncal.B.C.“uncalibrated”(Rollefsonetal.1992).

Environment and Architecture at ‘Ain Ghazal

Middle PPNB Structures (ca. 8,250 – 7,500 cal. B.C.)Theearliesthousesexcavatedatthesiteof‘AinGhazalare dated to theMiddle Pre-PotteryNeolithic B and

were excavated in theCentral Field and South Field(latertobere-usedduringthePPNCperiod)inanarealocatedclosetotherunningwateroftheWadial-Zarqa.The houses were individual rectangular structurescoveringareasof40 -50m2,constructeddirectlyontopofavirginterrarossa.

Theyhavemostlyredpaintedplasteredfloorsandvery large centralpost-holes (ca. 60 cm indiameter)dug into the floors, so it seems that the roofs weresupportedbyhugeposts.ThistypeofhouseisattributedtothebeginningoftheMPPNBperiod.Throughtime,thesingle-roomtypewasreplacedwith two to three-roomedhousesandthewoodenpostswereincreasinglyreplacedbystonepillarsor“piers”.

By the end of the MPPNB at ‘Ain Ghazal, thediameteroftheexposedpost-holesrarelyexceeded15cm,andtheyweredugorarrangedalongthewalllines.Insomecasestherewerepost-holesoflessthan10cmdiameters at the cornersof themulti-roomedhouses.Theselocationsmayhaveservedasloomareasorforstoragefacilities.Thewallswereconstructedofstoneboulders. Their plastered floors were decorated withthe application of pigment, some had finger-painteddesigns.Thepresenceofacircularhearthinthecentreofthehousewasevident.

Late PPNB Structures (ca. 7,500-7,000 cal. B.C.)TheLatePPNBisknownasthemega-sitephenomenon,anerainwhichseverallargesiteswithcomplexsocialformsarose.Mostofallexcavatedsitesbelonging tothisphasecoveratleast10hectaresandarefoundincentral and south Jordan. Late Pre-Pottery NeolithicB architecture represents the cellular type knownfrommanysitesinJordan(ca.7,500-7,000cal.B.C.).Typicalistheuseofsub-floorstructures,channel-likefeatureswhichwerefoundatseveralLPPNBsites inJordan (especially in the south suchasBastaandas-Sifiya).

Most if not all the excavated LPPNB sites in thesouth of Jordan used the same building techniques:naturally occurring rectangular slabswere picked upandbuiltintowallsusingclaymortarandwedgestones.

Remarkably, the inhabitants found themselvesobliged to build their structures at places located faraway from the rivers and wadis.At ‘Ain Ghazal, it

Fig. 1 AreconstructionoftheLPPNBmajorbuildingexcavatedinthe NorthField(drawnbyAliOmari)

Page 26: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

ChangeattheNeolithicSiteof‘AinGhazal

Neo-Lithics1/0926

RubbleSlidesandRapidClimateChange

mustbementionedthatmostifnotalloftheexcavatedLPPNBbuildings (Fig.V)were constructed at someelevations on the slopes (the North Field and EastField), far from water courses. It should be notedthattheLPPNBsettlersof‘AinGhazalneverre-usedtheMPPNB architectural remains. In contrast, thosewerere-usedbythePPNCandPotteryNeolithic(PN)inhabitantsofthesite.

PPNC structures (ca. 7,000 – 6,500 cal. B.C.)MostofthesitesexcavatedinPalestineandthesouthofJordanwereabandonedaround500yearsaftertheendoftheLPPNB(ca.7,000-6,500cal.B.C.).Thiswasdifferentatthesitesof‘AinGhazalandWadiShu‘eibwhereexcavatorsnoticedacontinuationofoccupation(referred to as the Pre-Pottery Neolithic C), but thearchaeologicalmaterialandtheeconomicbackgroundwerecompletelydifferentfromtheLPPNB.

Duringthefirsthalfoftheseventhmillenniumcal.B.C., theoccupantsof ‘AinGhazalhadeitherreusedthe Pre-Pottery Neolithic B structures or built newbuildings,whichlaterbecamecompletelycoveredwithagravel layerofsmallstones.TheLPPNBtwo-levelbuilding stylewasabandonedand replacedby singleroom houses or by a type of corridor building thatconsistedofverysmallroomscarryinganotherstorey(perhapsconsistingofacottage,tent,oralargeroom).

Continuity from the Pre-Pottery Neolithic C (ca.7,000-6,500 cal. B.C.) to the Pottery Neolithic (ca.6,500–5,500BC)isveryobviousintheCentralFieldat‘AinGhazal.Arectangularbuildingconsistingofonerectangular roommeasuring 4 x 3mwas excavated,whichwasconstructedwithsmallandmediumstonesandhad afloor composedofdirt.This structurewasbuiltduringthePPNCandcontinuouslyusedintothePotteryNeolithic(Yarmoukian),whichisdemonstratedbyseveralYarmoukianpotterysherdsfounddirectlyonthefloorofthehouse.

Remains of the corridor-building style wereexcavated at ‘Ain Ghazal (Fig. 2) and Beidha. Theroom size changed little compared to the LPPNB;they were very small and separated by a centralcorridor leading from the front entrance to the backwall. The only completely exposed PPNC structureexcavatedat‘AinGhazalmeasures3.5x3.5mandis

semi-subterraneanwithvery small cells separatedbythickwalls thatperhapssupportedanupperstoreyofunknowncharacter.

TheenvironmentandarchitectureduringthePPNCcanbesummarizedasfollows:

DuringthefirsthalfoftheseventhmillenniumBCpeoplecontinuedtobuilduponsub-floorchannelsforcorridorbuildings.

Housesmovedbacktotheclosevicinityofrunning-water,locatedinthesameareasasduringtheMPPNB.This indicates that the inhabitants did not fear flashfloods.

Twolevel-houses(corridor-buildingsofdiminutivesize)continuedtobebuilt,butsingle-storeystructureswerealsoencountered.

Finely painted plastered floors similar to theMPPNBandLPPNBwereno longermade, but verycrudeandthickplasterappeared.

SomeoftheMPPNBstructureswerere-used.

Pottery Neolithic Structures (ca. 6,500 - 5,500 cal. B.C.) Unfortunately, representative architectural remainsbelonging to the PotteryNeolithic are only availablefrom theYarmoukian layers (ca. 6,500 – 5,500BC),as the evidence from (other Pottery Neolithic sub-phases)consistseitherofasmallexposuresofhousesordwellingpits.

Theexcavatedhousesatthesitesof‘AinGhazalandAbuThawwabincentralJordanwerebuiltofstonesthatstood aboveground level andhad either hard beatenearth floors or very crude and badly made huwwarplasters.ThevariousarchitecturalstylesrecognizedinJordanarerectangular,apsidalandcurvilinearinplan(Kafafi1993).

Several sites belonging to the second half of theseventhmillennium and to the first half of the sixthmillenniumwereexcavatedalloverJordan.Structuralremains have also been found in the badia, themountains,and theJordanValleyregions.Theywereconstructedeitherveryclosetoperennialwatersourcesorinthevalleybottoms.At‘AinGhazaltheinhabitantscontinuedtoliveintheareaswheretheirpredecessorshadlived.

Did the “Yarmoukian Landslides” or a LPPNB Natural Catastrophe Determine the Settlement History at ‘Ain Ghazal?

Whileanalyzingtheexcavatedpotterysherdsexcavatedat several Yarmoukian sites in Jordan such as ‘AinRahuband‘AinGhazal,Z.Kafafi(1989;1990)noticedthatthepieceswerecoveredwithathickandhardlayerofcalcretedsoil.Headdedthatthiscement-likelayercoveringthesurfacesoftheclaypotsmayhaveresultedfrom a natural cause. However, Kafafi (2001; 2004)proposedthatanaturalcatastrophemayhavebeenthereasonbehindthedestructionoftheLPPNBculture.

Weningeretal.(2005)notedthatmostsitesintheFig. 2 AreconstructionofaPPNCbuildingexcavatedintheSouth Fieldof‘AinGhazal(DrawnbyAliOmari)

Page 27: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

ChangeattheNeolithicSiteof‘AinGhazal

27RubbleSlidesandRapidClimateChange

Eastern Mediterranean belonging to theYarmoukianculturewerecoveredbyhugerubbledeposits.Althoughsomeuncertaintiesrelatedtothecalibrationremain,itseemspossiblethattheserubbleswerelaiddownnearlysimultaneously, which coined the term “YarmoukianLandslides”.AccordingtoMigowskietal.(2004),theperiod8,000-5,500BCwasseismicallyquiet,althoughsomebias in theaccuracyof theevaluatedDeadSeacore’s bottom levels might influence this picture. Ifno earthquake took place, an alternative explanationforthedepositionofrubbleslidescouldbeextremelyheavy rainfall events. Such events could have beentriggeredbyanextraterrestrial impact:EliasSalamehandhisteamrecentlydiscoveredameteoritecraterintheareaofWaqfes-Suwwan in the Jordaniandesert.They think that the meteorite impact affected thewhole EasternMediterranean, and might have takenplaceduringtheEarlyHolocene(Salamehetal.2008;EliasSalameh,pers.comm.,January2009).However,Salamehandhis teamdidnotgivetheexactdatesofthismeteoriteyet.

If heavy rains affected the LPPBN settlement at‘AinGhazal,thismightexplainwhy:

LPPNB structures were built in places that willneverbereachedbyafloodorhighwater.

LPPNBhouseswerebuiltonverysteepslopes.A net of sub-floor channels and cells was built

beneath the buildings, draining excess water andreducing humidity. Some of the MPPNB buildingswere re-used during the PPNC (South Field) afteradding very thick walls in the inside of this houseconsistingsmallcells,whichmaywereusedasafirstlevel.Itshouldbemadeclearthatthereisnoevidenceofusing subfloorchannelsat ‘AinGhazalduring theLPPNB.

LPPNBsiteswerenot found in the JordanValleyandthebadia,whichwouldbemorestronglyaffectedbysuchadisaster.

Soils and Sediments at ‘Ain Ghazal as Markers for Environmental Change 1

In order to check the hypothesis that environmentalchangeaffectedthesettlementhistoryof‘AinGhazal,asmallnumberofsoilsampleswascollectedintheSouthFieldandCentralFieldfromthevirginsoilundertheearliestMPPNBstructuresandafewsoilandsedimentlayersoflatersettlementperiods,untilthe“YarmoukianLandslides”. In the South Field, the profile showedhowaredsoilorsoilsediment(terrarossa)hadbeencoveredbygrayishcalcareoussedimentsofca.50cmdepth.Theprofileseems to turngradually redwithinthecovering100cmuntiltheupperpartexhibitsclaycutans and a prismatic structure, but no secondarycarbonates.Bandsofflintdebrisandculturalmaterialarepresentaswell.Itshouldbementionedthatboththeculturalmaterialandthegreysedimentsseemorientedalong the course of the wadi as if fluvial processesled to their deposition (Fig. 3). However, gravels as

indicators of floods are missing, and old occupationlevelsmightlooklikefluviallayers,especiallyiftheyconsistofthinbandsofculturaldebrisasinthecaseof‘AinGhazal.Fornowitcanbesaidthatallexaminedelongated rectangular stoneswere oriented along thecourseofthewadi,whichpointstofluvialaction,butthenumberofsampleswasverysmall.

Inthisprofile,theupperredsoilofunknownageiscappedbyagreytoplayerofca.150cmrubble,whichconsists of undressed stones of more or less similarappearanceandsize(diameter~10cm).Incontrasttothelowersediments,thereisnoorientationvisible.Itgivestheimpressionofamajordestructiveevent,e.g.aslopecollapseorearthquake.Wethinkthattheverysimilar size of the rubble stones points towards theremainsofman-madestructures2. In theSouthField,samples were taken from upper 10 cm of the lowerterrarossa(sample‘AinGhazalMitte1),thecentreofthegreysedimentscoveringit(‘AinGhazalMitte2),andthetop10cmoftheupperterrarossa(‘AinGhazalMitte3),inordertocheckwhetherthecolourchangeisrelatedtosoil-formationprocesses,culturalmaterial,orsedimentation,andtounderstandpossibleconnected

Fig. 3 ThesampledprofileintheSouthField.Notethatthelowerterra rossaiscoveredbyslopecollapseandbarelyvisible

Fig. 4 ThesampledprofileintheCentralField

Page 28: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

ChangeattheNeolithicSiteof‘AinGhazal

Neo-Lithics1/0928

RubbleSlidesandRapidClimateChange

environmentalchangesandtheirprocessesatthesite.In theCentralField, thefloorofaMPPNBhouse

was built over a terra rossa, and covered by the“Yarmoukian Landslide” rubble (Fig. 4). This placeis close to the areawhere the famous plaster figureswerefound.Accordingto theexcavators, theflooroftheMPPNBhousebelongstotheoldestsettlementat‘AinGhazal.Samplesweretakenfromtheterrarossa(sample ‘AinGhazal 1) and the debris on top (‘AinGhazal2).

Wemarkedthesampledlayersintheprofilesheetsdrawnin1984(Figs.5and6),butsomeprobabilityoferrorremainssincepartsoftheprofileshavecollapsed.Everywhere,thelowerpartoftheprofileswasobscuredby debris and it is not possible to saywhether otherdebris layers and soils can be found at deeper levelssincebedrockwasnotreachedduringtheexcavations.Althoughthestratigraphiccontextisnotyetcompletelyclearwe conducted the sampling in order to achievea basic understanding of soils and sediments at ‘AinGhazalandtoapproachtwoquestions:

1.Thegradual increaseofrednessof theupperTerrarossaintheSouthFieldcouldbeduetoanincreasingshare of red soil sediments, or because of in siturubefaction. If the latter proves true, itwould be the

youngest and only example of in situ terra rossaformation at an archaeological site.The terra rossasin Jordan are usually considered as Pleistocene soilformations(Nowelletal.2003,Lucke2008),andallotheroccurrencesofredsoilatarchaeologicalsitesinJordanhavesofarproventobemudbrickorsediment(Luckeetal.2005,2008).2.Soilpropertiesmightallowgroupingoftheexaminedlayers,andprovidecluesabouttheoriginoftheirparentmaterialandsedimentationprocesses.

Results of Soil Analysis

TheresultsofsoilanalysisaresummarizedinTable1.Thefirstparametercatchingattentionistheveryhighconductivityvalues.Suchhighnumbersinaterrarossaareusuallyonlyreachedinremainsofmudbrick,whensoilwasmixedwithdungfortheconstructionofbricks(Lucke2008).However,thereisnoindicationthattheterrarossa foundat‘AinGhazal isfromtheremainsofmudbrick.There is also no indication for remainsof garbage with elevated organic matter contents. Iftheredsoil is theremainsofmudbrick, thebuildingswere large to create such an amount of soil. It alsounderwentsubstantialsoilgenesisafterdisintegration

Fig. 5 ApproximatelocationofthesampledprofileintheSouthFieldontheprofileplandrawnin1984

Page 29: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

ChangeattheNeolithicSiteof‘AinGhazal

29RubbleSlidesandRapidClimateChange

ofthebrickswhichledtotheformationofclaycutansandaprismaticstructure.Thiswouldfinallyimplythatthemudbrickbuildingspre-dated theMPPNBfloors,whichisnotsupportedbytheexcavations.

Therefore another explanation is sought, which canonlybeirrigation–orsomekindofpondinginanaturalenvironment. As planned irrigation is unlikely for theMPPNB,weassumethatthevalleywassubjecttoperiodicwaterlogging,possiblyconnectedwithamuddycreekandvalleyfillascantodaybefounde.g.inWadiQueilbehinthenorthofJordan.Ahighgroundwatertableandwinterrainsmighthavecreatedamarshy,pond-richfloodplaininwinterwhichdriedoutduringsummer.Itis importanttonotethattheareawhere‘AinGhazalwaslocatedmusthave been out of reach ofwinter floods, whichwouldotherwisehavewashedoutthesalts.Inthiscontext,othersoilanalysesfromnorthernJordanindicatethathighsaltcontent in terrarossa soilsarenotquicklywashedout,evenifrelictmudbrickisexposedforsomedecadestothepresentsemi-aridconditions(Lucke2008).

Inthiscontext,thesiltcontentsoftheexaminedredsoilsareremarkablyhigh.Siltvaluesof35%andmoreafter removal of CaCO3were reached in other terrarossasonlyunderaloesscoverortheinfluenceofdebris(thehighclayvaluesofthedebrislayerscanbeexplainedbytheresidueofthecalcareousmaterialaftertreatmentwith HCl). However, debris is usually associatedwith calcium carbonate contents of 30% and more.

Comparedtothetexture,thesoildevelopmentindicesoftheterrarossasat‘AinGhazalareremarkablyhigh,whichisinagreementwiththeprismaticstructureandclaycutans.Buteventhesandcontentsarecomparablyhigh.Putting theseparameters together, they indicatethatsiltandsandweredepositedduringpedogenesis.Thiscouldhavetakenplacefromtheair,especiallyas‘AinGhazalislocatednearthesteppeareaswhicharecoveredbyloess(Cordova2007).However,inthelightofthepondingtheorydescribedabove,thesiltcouldbetheresult fromfluvialdeposition. In the lightof this,and in combination with the relatively low CaCO3-values,itseemsthatthetheoryofinsitusoilformationon the debris flow (‘Ain Ghazal Mitte 2) is correct– but whichmight have taken place during periodicpondingwithsedimentdeposition.However,thisdoesnotnecessarilymeanthattheoccurrenceofredcolourisdue to soildevelopment.Up tonow, terraerossaeinJordancouldnotberelatedtotheHolocene(Lucke2008),butweredatedtotheMiddlePleistocene(Novellet al. 2003).Only additional analyses, including thinsections, canclarifywhether the redcolour isdue toin situ formation of hematite or an increasing shareof redsoil sediments,possiblydue toa reducedflowof the river and prolonged ponding, which allowedan increasing share of clay-sized sediments to settle.The reduced hydrological and sedimentation activitycouldalsoexplainthedevelopmentofclaycutansand

Fig. 6 ApproximatelocationofthesampledprofileintheCentralFieldontheprofileplandrawnin1984

Page 30: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

ChangeattheNeolithicSiteof‘AinGhazal

Neo-Lithics1/0930

RubbleSlidesandRapidClimateChange

aprismaticstructureduringsoil-formingprocesses.TheTi/Zr ratio indicates that the parentmaterials

remainedfairlyuniformuntillargeramountsofforeignmaterial were deposited during the YarmoukianLandslides.

Discussion and Conclusions

AnimportantfeatureofEasternMediterraneanenvironmentsistheappearanceanddisappearanceofvalleyfills(Vita-Finzi1969).Uptonow,neitherthechronologynor theprocessesbehind thedepositionand incisionofvalleyfillshasbeenclarifiedsatisfactorily.Determiningthe chronology suffers from the fact that the extent ofvalleyfillsdependsstronglyonvariouslocalfactors,e.g.,reliefandslope,sothatitcanevenbedifficulttoclarifythechronologywithinonevalley(seethenumerousandsometimescontradictoryworksonfillsinWadiHasa,e.g.,Schuldenrein2007).Furthermore, it is stillunknown towhatdegreehumanactivity,variationsoftheprecipitationdistribution,andvegetationcoverinteract.Butitisknownthat vast valley fills were present at some times. Forexample,afillnearKhirbetIskanderwasincisedattheendoftheEarlyBronzeAge,strippingtheinhabitantsoftheirmost important agricultural area (Cordova et al. 2005;Rosen2007).ManyvalleysinnorthernJordanfilledwithsedimentsaftertheByzantineperiodandstartedtoinciseonlyrecently(fieldobservations2008),whichillustratesthepowerandtime-framesofhydrologicalvariabilityandthe resulting landscape changes.A paleosol near Ba’jaindicatedthatthePPBNsitewaslocatedonanoldwaditerraceorinthebasinofanintramontanelake(LuckeandBäumler2007).

Althoughthenumberofexaminedsamplesislimitedand their stratigraphystill insecure, it seemspossiblethat the settlement at ‘Ain Ghazal was connectedwithavalleyfill.DuringtheMPPNB,theareamighthave enjoyed a high groundwater table and periodicponding, which would have provided good huntingandfarmingconditionsandwater.AstrongfloodmighthaveledtothedepositionofthecalcareousdebristhatwassampledintheSouthField.However,theabsenceofgravelssuggeststhattheupperpartofthevalleywascoveredwithsoilsediments.Debrisdepositionseemstovarylocally,astheabovementioneddebrisismuchlesspronouncedintheCentralField.Thiscouldbedueto theMPPNBbuildingconnectedwith thefloor,butasecurestatement isonlypossible if thestratigraphyis clarified and larger areas examined. The bands of

culturalmaterialandlowerconductivityofthedebrisintheSouthFieldcouldbetakenassignsforaperiodof more frequent floods in a basically unchangedfloodplainenvironment,whichseemstocoincidewiththe re-locationof the settlement to thehigher slopes.Thefollowinginsitusoilformationpointstoareturnofmorestableconditionswithsubsequentresettlementofthelowerareas.

After deposition of the “YarmoukianLandslides”,the environment at ‘Ain Ghazal seems to havechanged irreversibly. Soil formation ceased, and thelow conductivity values point to an end of ponding.It seems likely that the valley fill was incised andremoved due to a different hydrological pattern,probably connectedwith a shift tomore pronouncedwinter rains. This would have had severe impacton the subsistence economy of the village. Köhler-Rollefson and Rollefson (1990) concluded that theincreasing population and domestication of goatsled to overgrazing and soil erosion.However, in thelight of the valley fills, the negative role of humansseems far overestimated.While early human activitymayaccount for localenvironmental stress, itcannotexplainadifferent runoffpattern. If theextentof thesitescanbeexplainedby“shiftingsettlements”(KarinBartl,pers.comm.,October2008),alsothenumberofpeoplemighthavebeenlowerthanpreviouslythought.

Up to now it is not clearwhether the “YarmoukianLandslides” were indeed landslides or whether theywere connected with heavy rains or earthquakes. Thecorrespondinglayersmightjustrepresentculturaldebris,as no comparable deposits were yet described fromnaturalsedimenttraps.However,ifweassumethattheirdepositionwas related to climate, itmust have been atrulybiblicalfloodwhichledtoslopecollapsesthatevenmaskedorobliteratedfluviallayers.

Toconclude,theinhabitantsof‘AinGhazalwereableto build several types of constructions using differentmaterials that were adapted to the environment. Theyalways lived adjacent to water sources, but when theywere threatened by flooding, they moved their housesto higher areas and used different building techniques.Aftertheyfeltthatnaturewasnolongerthreatening,theyreturnedbackandbuiltontheriverandwadibanks.

Acknowledgements: The soil analyses were madepossiblebyagrantfromGermanResearchFoundationin the framework of a project on the environmentalhistoryof Jordan (SCHM2107/2-1&BA1637/4-1).

Sample No. RR (dry)

Corg%

CaCO3 %

Feo [mg/g]

Fed [mg/g]

Fed/(Fet/CaCO3) Mn(d/t) Ald pH Conductivity

(μS/cm)Clay

%Silt %

Sand %

Skeleton % Ti/Zr

‘Ain Ghazal Mitte 3 13 0.1 1 1.08 9.5 3 0.59 0.87 8.1 301 44 46 10 4 21

‘Ain Ghazal Mitte 2 47 0.5 17 1.14 14.9 65 0.53 0.56 7.9 980 67 21 12 46 26

‘Ain Ghazal Mitte 1 30 0.2 0.5 1.32 14.2 1 0.63 0.88 7.8 1235 46 47 7 4 23

‘Ain Ghazal 2 47 1.3 30 0.43 5.8 63 0.49 0.35 8.2 207 56 24 20 49 34

‘Ain Ghazal 1 25 0.2 7 0.76 10.3 15 0.55 0.56 8.6 1112 59 36 5 8 23

Table 1 Resultsofsoilanalyses

Page 31: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

ChangeattheNeolithicSiteof‘AinGhazal

31RubbleSlidesandRapidClimateChange

WethanktheDepartmentofAntiquitiesofJordanforthepermissiontotakesoilsamplesat‘AinGhazalandaregratefultoGaryRollefsonforhissupport.Thanksarealsoduetothefollowingspersons,oftheFacultyofArchaeology andAnthropology/Yarmouk University,forprovidingtheillustrations:AliOmari,YousefZu’biandMuwaffaqBatayneh.

Notes1Themethodsofsoilanalysiswerethefollowing:The soils were analyzed regarding Redness Rating (RR), pH,electrical conductivity, organic matter, CaCO3-content, totalelement contents, and texture. These allow comparison of soildevelopmentfromageneticpointofview.

Colour is a prominent parameter for soil description andsample selection. In order to make it statistically comparable,colours have to be translated into numbers, which is achievedwiththeRednessRating.ThepHdeliversinformationaboutthechemical“milieu”ofthesoil,forexample,theleachingprocessesand base accumulation. The electrical conductivity allows anassessmentofthedegreeofbaseaccumulation,i.e.,soilsalinity.Organicmatterprovidesinformationaboutthehumuscontentandmayindicateburiedlandsurfaces.CaCO3isaweatheringindicatorsince it is leached from soils with increasing age or moisture.The content of pedogenic oxides and hydroxides of iron andmanganeseusuallyriseswithincreasingweatheringintensityandageofsoils.Incombinationwithotherparameters,itissuitedforacharacterizationofdevelopmentstageandrelativeageofsoils.The texture is a criterion that on the one hand delivers relativeageestimation, sincesoils shouldbecomefinerwhenolder,andprovidesontheotherhandinformationaboutthesoil’sbehaviourandsuitability.

Forcollectionofsoilsamples,freezerbagswerefilledfromaca.5cmthickstripinthemiddleoftheidentifiedlayers/horizons.Thesampleswereair-driedfor72hoursat40°Candthensievedby2mm.Thefraction>2mm(skeletoncontent)wasdeterminedandarchived,andallfurtheranalysesconductedwiththefraction<2mm.Colourwasdeterminedinthelaboratoryunderstandardizedlight, using theMunsell Soil Colour Chart. The Redness Rating(RR) was computed with the dry samples according to Hurst(1977).Itiscalculatedaccordingtotheformula:RR=H*Brightness/Chroma,whereHis:5R=5,7.5R=7.5,10R=10,2.5YR=12.5,5YR=15,7.5YR=17.5,10YR=20(theindexbecomesthesmallertheredderthesoil).Forexample,10YR8/1=160,and2.5YR4/8=6,3.

The pHwas determinedwith a glass electrode (pH-meter 530byWTW,with electrode InLab 423 byMettler-Toledo) in distilledwater,withasoil:watersolutionof1:2.5.ElectricalconductivitywasmeasuredwithaGMH3410conductivitymeterinasoil:watersolutionof1:5(accordingtoSchlichtingetal.1995).ContentsofCaCO3andCorgweredeterminedusingaLecoTrueSpecC/N-analyser.Sampleswere finely ground and examined in doubles in the C/N-analyser,which delivered the total C- andN-contents.Additionally, ignitionlosswasdeterminedaccordingtoSchlichtingetal.(1995):thesampleswereheatedfortwohoursto430°C,whichissupposedtoeliminateorganicmatter,butnottoexpelCO2fromcalciumcarbonate.Thesesampleswere then analyzed in theC/N-analyser, too, so thatCorgcouldbecalculated from thedifferenceafter correcting the secondC-contentbytheweightlosscausedbyignition.ThisalsoallowsustocalculatetheCaCO3-contentundertheassumptionthattheremaininginorganiccarbonatesarefixedinformofCaCO3.

Pedogenicoxideswereextractedwithsodiumdithioniteatroomtemperature according to Holmgren (Schlichting et al., 1995),

and the iron andmanganese contentsmeasuredwith an atomicabsorption spectrometer (AAS, M-series by Unicam, thermo-flame-spectrometer). Poorly crystallized pedogenic oxides wereextracted in the dark using buffered (pH 3.25) oxalate-solutionaccordingtoSchwertmann(Schlichtingetal.,1995),andtheirironandmanganesecontentsdeterminedwiththeAAS.TotalelementcontentswereexaminedwithX-rayfluorescenceanalysis(XRF),using a wavelength-dispersive sequency spectrometer type PW2400 after preparing samples according to DIN 51001 (2003).Fromthetotalelementcontents,theTi/Zrratiowascalculatedasgeochemicalfingerprintfortheoriginofthematerial.

ParticlesizeswereanalyzedafterremovingCaCO3with10%hydrochloric acid (until no visible reaction occurred anymore).Hydrochloric acid (HCl) was washed out again and samplesdispersed with sodium hexametaphosphate (Na4P2O4). Wetsieving determined the sand fraction (according toDIN 19683,1973),whilethesmallerparticleswereanalyzedwithaSedigraph5100(Micromeritics)(Gerzabek1991).

2Perhapswallsorfloors:numerousfloorsmadeofhomogeneousfist-sizedstoneswereconstructedatTellAbuSuwwan,whichisthematerialoftheYarmoukian“landslide”layercoveringthesite(pers.comm.byMaysoonal-Nahar,July2008).

References

CordovaC.2007 MillennialLandscapeChangeinJordan.Tucson: UniversityofArizonaPress.

CordovaC.,FoleyC.,NowellA.,andBissonM.2005 Landforms,sediments,soildevelopmentand prehistoricsitesettingsintheMadaba-DhibanPlateau, Jordan.Geoarchaeology20.1:29-56.

GerzabekM.H.1991 DieBestimmungderBodentexturmittelsSedigraph 5100.ÖsterreichischesForschungszentrum Seibersdorf,OEFZSBerichtNr.4592.

HurstV.J.1977 Visualestimationofironinsaprolite.Geological SocietyofAmericaBulletin88:174-176.

KafafiZ.1989 LateNeolithic1Potteryfrom AinRahub,Jordan. ZeitschriftdesDeutschenPalaestina-Vereins105:1-17.1990 EarlyPotteryContextfrom‘AinGhazal,Jordan. BulletinoftheAmericanSchoolsofOrientalResearch 280:15-30.1993 TheYarmoukiansinJordan.Paléorient19.1:101-115.2001 JordanduringtheLateSeventh/EarlySixthMillennia BC.MediterraneanArchaeologyandArchaeometry 1.1:31-42.Rhodes:UniversityoftheAegean.2004 The‘Collapse’oftheLPPNBSettlementOrganization: TheCaseof‘AinGhazal.In:H.-D.Bienert,H.G.K. Gebel,andR.Neef(eds.),CentralSettlementsin NeolithicJordan.StudiesinEarlyNearEastern Production,Subsistence,andEnvironment5:113-119. Berlin:exoriente.

Page 32: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

ChangeattheNeolithicSiteof‘AinGhazal

Neo-Lithics1/0932

RubbleSlidesandRapidClimateChange

KafafiZ.andRollefsonG.1995 The1994Excavationsat AinGhazal:Preliminary Report.AnnualoftheDepartmentofAntiquitiesof Jordan39:13-31

Köhler-RollefsonI.andRollefsonG.1990 TheimpactofNeolithicsubsistenceonthe environment:thecaseof‘AinGhazal,Jordan. In:BottemaS.,Entjes-NieborgG.,andvanZeistW. (eds.),Man’sRoleintheShapingoftheEastern MediterraneanLandscape3-14.Rotterdam:Balkema.

LuckeB.2008 DemiseoftheDecapolis.PastandPresent DesertificationintheContextofSoilDevelopment, LandUse,andClimate.Saarbrücken:VerlagDr.Müller.

LuckeB.,SchmidtM.,al-SaadZ.,BensO.,andHüttlR.2005 TheAbandonmentoftheDecapolisRegioninNorthern Jordan-ForcedbyEnvironmentalChange? QuaternaryInternational135:65-81.

LuckeB.andBäumlerR.2007 SoilsandPaleosolsatBa‘ja.Neo-Lithics02/07:43-50.

MigowskiC.,AgnonA.,BookmanR.,NegendankJ.,andSteinM.2004 RecurrencepatternofHoloceneearthquakesalongthe DeadSeatransformrevealedbyvarve-countingand radiocarbondatingoflacustrinesediments.Earthand PlanetaryScienceLetters222:301-14.

NowellA.,BissonM.,andCordovaC.2003 Wadial-Koumsurvey.AmericanJournalof Archaeology107:453-455.

PetoczD.1987 AnEarlyBronzeAgeSiteat‘AinGhazal,Amman. Levant19:27-32.

RollefsonG.andKafafiZ.1993 The1993Seasonat AinGhazal:PreliminaryReport. AnnualoftheDepartmentofAntiquitiesofJordan 38:11-33.2000 The1998Excavationsat‘AynGhazal:APreliminary Report.AnnualoftheDepartmentofAntiquitiesof Jordan44:91-98.2007 TheRediscoveryoftheNeolithicPeriodinJordan. In:T.E.Levyetal.(eds.),CrossingJordan.North AmericanContributionstotheArchaeologyofJordan: 211-219.London:Equinox.RollefsonG.etal.1990 The1989Seasonat‘AinGhazal:PreliminaryReport. AnnualoftheDepartmentofAntiquitiesofJordan.

RosenA.2007 CivilizingClimate.SocialResponsestoClimate ChangeintheAncientNearEast.NewYork: AltamiraPress.

SalamehE.etal.2008 TheFirstLargeMeteoriteImpactStructureDiscovered intheMiddleEast:JebelWaqfes-Suwwan,Jordan. MeteoriticandPlanetaryScience43.10:1681-1690.

SchlichtingE.,BlumeH.P.,andStahrK.1995 BodenkundlichesPraktikum,2nded.Berlin:Blackwell Wissenschafts-Verlag.

SchuldenreinJ.2007 AReassessmentoftheHoloceneStratigraphyofthe WadiHasaTerraceandHasaFormation,Jordan. Geoarchaeology22/6:559-588.

SimmonsA.andKafafiZ.1988 PreliminaryReportonthe AinGhazalArchaeological Survey,1987.AnnualoftheDepartmentofAntiquities ofJordan32:127-141.1992 The AinGhazalSurvey:PatternofSettlementinthe GreaterWadiAz-ZarqaAreasCentralJordan.Studies intheHistoryandArchaeologyofJordanIV:77-82.

Vita-FinziC.1969 TheMediterraneanValleys.GeologicalChangesin HistoricalTimes.Cambridge:CambridgeUniversity Press.

Page 33: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

IntricacyofNeolithicRubbleLayers

33RubbleSlidesandRapidClimateChange

General Discussion

RubblelayersareacommonfeatureatmanyseventhmillenniumBCsiteslocatedonslopesintheJordanianHighlands. Three of these sites are discussed here:At ‘AinRahub, rubble layerswereobserved in1985in a deep trench transecting a slope; in Basta, theybecame subject of discussions in 1987, where theyform substantial feature of the Post-LPPNB slopestratigraphy;andinBa‘ja,theywerediscoveredquiteunexpectedly during the fifth season of excavations(2003) in the flattest area of the site which, andremarkably, here have no catchment for such hugeaccumulations.At all three sites, the origin of theseaccumulations of angular, fist-sized stones were anenigmaticissue,andindeedpartlystillare.

Significantly,rubblelayershavetheuniquepotentialto serve as an empirical source for furthering ourcomprehensionofabandonmentprocesses,subsistence

shifts,andclimaticchangeintheEasternMediterraneanduring the seventh millennium BC. Therefore, theserubblelayersmightevenprovideevidencefortheroleof natural causes in the decline ofLPPNB traditionsand lifeways (at around 6900 BC), the adoption ofpastoralismduringtheFPPNB/PPNC(firsthalfoftheseventhmillenniumBC),andthepotentialimpactsonagro-habitats in the PNA (Yarmoukian/ second halfof the seventh millennium)1. Although many localparametersareresponsiblefortheaccumulationofanindividualrubblelayer/slide(cf.below),theintenseandwidespreadappearanceofrubbledepositsbytheendoftheLPPNBandinthePotteryNeolithicmustberelatedtotheinfluenceofacommonagentwhichactuatedandcoordinatedvarious localparametersand ingredients:Periodsofheavierrainfallsand/ortopography-relatedflashfloodsandaquaticslopeerosionwouldappeartobethemainfactoroftheseaccumulationsorslides.Inthelightofevidenceforclimatechangeinthelateseventhmillennium BC (8200 calBP “Hudson Bay” event),inearliercontributionsrubblelayers/slideshavebeendiscussed solely in relation to the contemporaneousYarmoukian (Weninger et al. 2005, 2007). Recentconsiderations, however, seem to acknowledge thatrubble layers and slides are a much wider Neolithicphenomenon (Rollefson, this issue; Weninger, thisissue).Indeed,BastaandBa‘jahavelongattestedtoatleastthreerubblelayerepisodesduringtheLPPNBtoPNwhichonlypartlyandlocallyappearintheshapeofslides.

The stratigraphic, structural, and chronologicalintricacy of the Jordanian Neolithic rubble layersand slides warns against a mono-causal explanation.NotoneoftherubbledepositsfoundintheNeolithiccontexts discussed here is similar in terms ofarchaeological morpho-phenomenology and chrono-stratigraphy; rather, they represent locally restrictedand quite dominant depositions of fist-sized angularstone rubble, the origins of which appear quitepuzzlingatfirstglance.Asyet,theappearanceofsuchaccumulationsinnon-archaeological,i.e.naturalEarlyHolocene stratigraphies has remained uninvestigated.Although representing events highly influenced byindirect or direct anthropogenic influence, rubblelayers and slides could be an excellent chance toidentify impacts of Rapid Climatic Change (RCC;Weninger, this issue;Weninger et al. 2009) or otherenvironmental impacts which triggered the physicaldisplacementof rubble.However,undertaking rubblelayer/slide research is a very slippery terrain if itlacks consistent interdisciplinary approaches, and if

The Intricacy of Neolithic Rubble Layers. The Ba‘ja, Basta, and ‘Ain Rahub Evidence

Hans Georg K. Gebel InstituteofNearEasternArchaeology,FreeUniversityofBerlin [email protected]

Fig. 1 LocationsofLPPNBandPNsitesmentionedinthetext

Page 34: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

IntricacyofNeolithicRubbleLayers

Neo-Lithics1/0934

RubbleSlidesandRapidClimateChange

explanationsaredominatedbyabsolutechronological,pheno-stratigrapical, pedological (cf. Lucke inKafafiandLucke,thisissue)orgeomorphologicalarguments.Especially themere focus on supra-regional climaticchangemayleadusinwrongdirections,asmonogeneticexplanations may do in general. For example, adrainage regimemight have sorted and accumulatedrubblewithoutamajormoistphaseintheclimate,andjustbenefitedfromlocalcopiousslopehydrology.

Thispapersummarisesthearchaeologicalfeaturesoftherubblelayers;indepthgeomorphologicalstudiesmustfollow,thuspavingthewayforinterdisciplinaryresearch designed to approach one of the mostspectacularfeaturesoftheNearEasternNeolithic:thediscontinuities in settlement history and subsistencemodes during the seventh millennium BC in theSouthernLevant,andtheirrelationtorubbledepositsandpotentialclimatic/seismicimpacts.

The identification of the various interactinglocal parameters, causes, and forces thatmight havecontributed to the formation of any given rubbledepositisaprerequisiteforanydiscussionoftheroleplayed by RCC, or any other factor, in rubble layeraccumulation. Indeed, we have to accept that suchcomplex phenomena will not just provide evidencefor one singular cause: imagine, for example, theearthquakewhichtriggerstheflowofcolluvialrubble,heavily soaked by regional RCC rains, taking upfield stone clearing piles and cultural deposits on itsway,beforereachingitsfinalplaceofdeposition.Thedemand is that prior to an analysis of its conditionsand characteristics, a rubble layer per se should notbe takenas a signal for anything; in this respect, thefollowingfactors requirecarefulconsiderationbeforeanexplanationisoffered:

1. prevailingpalaeo-drainageregimesandpalaeo-topography

2. anthropogenicbarriersandimpacts(e.g. intra-site architectural barriers such as buildingterraces, agricultural barriers like valleyterraces, size-sorting and stone extraction bymanetc.)

3. evidenceofseismicimpacts4. origin of rubble components (e.g. natural vs.

anthropogenic, e.g. wall stone dressing, floorandwallcomponents,etc.)

5. intra-sitediversityofrubblewithinflow/depositand its sorting (in terms of its sedimentologyanddepositmorphology)

6. identification, chronology, and morphologyof rubble layers/slides in the Early Holocenelandscapessurroundingthesites

Additionally, it should be stressed that the samefactors(e.g.fluvial)thatmayhaveledtothedepositionof rubble layersmayalsohave caused their negativeevidence, i.e. their removal from the stratigraphicsequence.Arubbleslidedepositisonlyasnapshotofasite’ssedimentaryenvironment,andincreasedfluvial

surfaceenergycanalsomanifestitselfinthecompleteorpartialerosionoflayers,includingrubbleslides.

Bethisasitmay,therubblelayers/slidespreservedin settlements dating to the seventh millennium BCdemandexplanation,especiallysincetheiroccurrenceoftenappearsrelatedtodisruptionsinthehistory(intra-siteandregionally)ofoccupation.Indeed,theyrepresentawiderphenomenonin theEasternMediterraneaninthe seventh millennium BC (and in other, younger,time frames, too) at all placeswith an extantgravityregime (slope setting of sites). Indeed, many of oursitesdohavethislandslidepotential.Inafurtherstep,systematicsurveysneedtoinvestigatepotentialrubblelayers on pre-LPPNB and Late Pleistocene sites aswellasbelowandabovePost-Yarmoukianhabitations.Additionally,geomorphologicalsurveysneedtoclarifywhether rubble layers only occur in archaeologicalcontexts or have corresponding formations in thelandscape.

Itisverymuchacommonfeatureofthedebrisandmuddeposits/flows–orrubblelayers/slides–thattheyappearfartooextensiveforthesizeofthecatchmentfrom thematerial is thought tostem.From theBastaandBa‘jasitesitisclearthattheangularstonesoftherubblelayersmustderiveinalargepartfromflakingof the (dressed) wall stones, the fills of the double-faced walls, and (in Basta) the floor constructions.This means that the architectural debris from thesesitesproducedmostoftherubblefoundintherubblelayers.ForYarmoukian‘AinRahubsuchsourceshaveto remainunderdiscussion since the test trenchonlyrevealed in general (by the mudbrick fragments) anarchitecturalcontextoftherubblelayers,whileinsituarchitecturewasn’tcaught.

In our previous publications (e.g. Gebel 2004b,2006) we carefully spoke of rubble layers or rubbledeposits; the term rubble slide was promoted byWeninger et al. (2007) in their discussion of theYarmoukianlandslides.However,recent(spring2010)on-sitediscussionsinBa‘jaandBastawithChristophZielhofer (Leipzig University, geomorphology) andBernhardWeninger(CologneUniversity)regardingthediversityofrubblelayersledtotheconclusionthatweshould ratheruse themoreneutral term rubble eventinsteadofrubbleslide,sinceonlysomeoftherubblelayersshowmoraine-likefeatures.

Preliminary Definitions of Neolithic Rubble Layers and Rubble Slides

ThefollowingdefinitionsarebasedonobservationsofNeolithicrubblelayersatoursites(‘AinRahub,Basta,andBa‘ja),andareboundtotheoccurrenceof+/-fist-sizedangularstones:

A rubble layer consists of +/- fist-size angularstones,generally–butnotnecessarily–embeddedinafinermatrix; thismatrixmaycontainmaterial fromre-depositedcultural layers (charcoal, ash, smallflintartefacts and plaster fragments, etc.); occasionally

Page 35: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

IntricacyofNeolithicRubbleLayers

35RubbleSlidesandRapidClimateChange

rolled/rounded +/- fist-sized stones occur amongthe angular stones. These stone accumulations canbe thin or they form thick and extensive horizontallayers following the inclination of an old surface orrepresenting restricted lenses or piles. Componentsof rubble layersmay not share a general orientation(althoughtheyoftendo),andthematerialcanevenbeofpurely anthropogenicorigin,e.g., from the typicalLPPNBdouble-facedwallsofwhichthedressedwallstonesweresortedoutandtheangularfist-sizedoftheinteriorwallfillremained.Ontheotherhand,rubblecanalsostemfrompurelynaturalsources,e.g.weatheredbedrock from the slope above a settlement. On theupperpartsofslopes,rubblelayershavethetendencytobemoreshallowandlinear,increasinginthicknessand taking on fan-like in-sediment morphologies inlowerlyingparts.Theyalsoevenedoutsurfacesbye.g.fillingsmallsurfacerunnels.Intheirmigrationontothesurfaceofasitetheyareoftenguidedbywallremainsstill exposedon theslopesurface. It shouldbenotedthat fist-sized rubble scatters on old surfaces are notdeemedrubblelayers.

Rubble slides are fluvially deposited rubblelayers, or a sequence of fluvially deposited rubblelayers,whichmaycontaininsituoccupationaltraces,ephemeral or solid installations (walls, burials,chipping floors, surfaces etc.; cf. Gebel et al. 1992).Sequencesoffluviallydepositedrubbleslidesmayalsocontainorbeinterruptedbylensesandlayersofotherwater-laid material (e.g. fine gravels) and/or aeoliansediments. Intra-site rubble slides potentially occurin all locationswhere a drainage or drainage regimeforcestheformation,movement,anddepositionoffist-sizedrubble.

Although the fist-sized stone rubble can containnatural colluvial material at some sites, it normallycomprises (re-deposited) cultural layers andarchitectural rubble; in-site rubblecontextsare rarelyfound sterile of artefacts. Rubble slides normallyassemble in their sedimentary environmentmaterialsfromanysourceslocatedhigheruptheslope,i.e.fromsettlementandfield/gardencontextsthatwereinhabitedor influencedbyhumansduringtheirdeposition.Ourdefinitionof rubbleslides includes thatsuchdepositsnotonlyareattestedonslopesurfaces,butalsofilleddrainages where they can appear – in case of laterincisions–inthesections.

Seventh Millennium BC Rubble Slide Evidence East of the Rift Valley

The preliminary list of Neolithic sites with rubblelayerseastoftheJordan/WadiArabaRiftValleyis(inalphabeticalorder,cf.alsoFig.1):‘AinGhazal,‘AinRahub,AbuSuwwan,AbuThuwwab,Ba‘ja,al-Baseet,Basta,Ghwair,andWadiShu‘aib.Potentialcandidatesfor the rubble layer discussion are ‘Ain Jammam,Beidha(Fig.5),KhirbetHammam,al-Shalaf,es-Sifiya,andUmmMeshratIandII(referencesformostofthese

Fig. 2 es-Sifiya:Sectionofsquarewithpossiblerubblelayer (photocourtesyofH.Mahasneh)

Fig. 3 Ghwair:Sectionofanupperslopeexcavationareawithrubble layersconsistingofrockdetritusandfine-grained(aeolian) material.ViewfromW(photobyauthorwithpermissionofM. Najjar)

Fig. 4 Ghwair:Sectionofanuppermostslopeexcavationareawith arubblelayersconsistingexclusivelyofrockdetritusinits lowerparts,joinedbyfine-grained(aeolian?)materialinits upperparts.ViewfromW(photobyauthorwithpermissionof M.Najjar)

Page 36: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

IntricacyofNeolithicRubbleLayers

Neo-Lithics1/0936

RubbleSlidesandRapidClimateChange

sitesaregivenbyRollefson,thisissue).OmryBarzilai,this issue,providedageneral reporton rubble layersfrommanyareaswestof theRiftValley,also for theNatufian - PPNA and Chalcolithic periods; he alsomentionsadditionalanthropogenicsourcesofangularstonematerialwhichwedonothaveinthethreesitesdiscussedhere.

As mentioned, we should be aware that themorphologies and phenomenologies of rubble layersand slides, featuring angular fist-sized stones andfound more or less compacted in lenses or layersaboveandinNeolithicruins,arenotallthesame.Thenatureofrubblelayersdependsonthecatchmentareafromwhichmaterials are taken up and re-deposited.For example, the purely natural “rubble layers” ontheupperslopeatthesiteofGhwair(Figs.3-4)havea very limited source and catchment: Here a desert-varnish bearing outcrop weathered its “thermal”detritusintotheLPPNBarchitectureintheshapeofarubblelayer,fullycoveredit,andisstillaccumulatingtoday.Theproximityofthissourceof“rubble”tothearchitectureagainstwhichithasaccumulatedhasmadeitalmostimpossibleforothertypesofrubble(e.g.re-depositingculturaldebris)tocontributetothe“rubblelayers” observed in this section. This situation maybe different further downslope where rubble layersare also expected to contain the fist-sized angularstones from the settlement (e.g. Fig. 3). InGhwair’suppermost slope, however, “rubble layers” are ratherthe result of aeolian/dune accumulations and a highshareofbedrockweatheringproducts(Fig.4)fromtheextreme differences between the daily temperatures’maximaandminima.

‘AinJammamisanexamplefor rubble layersnotnecessarilyaggregatingintheupperpartsoftheslope:Duetothesteepnessoftheslope,erosiontransportedallmaterialdownwards, including rock falls, culturaldebris and fist-sized stones, until a stable surfacedeveloped in which the ruined L/FPPNB and PNA

wall topsrest.Here, rubble layerswith theirshareofanthropogenicmaterialhavetobeexpectedinthemoreshallowmiddlepartsoftheslope,andareattestedquiteclearlyatthelowerfringesofthesite.

The date (or dates) and stratigraphic position ofthe horizontal gravel/ rubble layers resting betweenBeidha’s MPPNB architecture and the sandstoneformationtothenorth(Fig.5)needtobecomesubjectoffutureinvestigations;theycanrepresentatleastpartlyseventhmillenniumBCfills,butitisunlikelythatthecatchments reaching the area by the small gorges inthenorthernsandstone formationhavenotconstantlydelivered material onto the spot by the millennia.Nearby Siq al-Barid at least shows considerabledepositssinceNabateantimes.

For the (Post-) LPPNB es-Sifiya and al-Baseetslopes depositional conditions similar to Basta areexpectedwithrespecttotheirrubblelayers:Whilesuchwereobservedinasectionintheyear2000atal-Baseet,suchobservationsfores-Sifiyaneedtobeverified.

One further issue should be addressed here:Recent considerations by Zeidan Kafafi (cf. also thecontribution in this issue) tentatively claim that ameteorite impact in theEasternJordaniandesertmayhavecausedregionalclimaticchangeandmud/rubbleflows affecting seventh millennium BC settlementsin Jordan.This notion, however, has so far not beensubstantiatedbyanysoliddata,andshouldbeexcludedforthetimebeingfromtherubblelayerdiscussion.

Inthefollowing,therubblelayerdatafromthethreesitesdiscussedherearesummarised.

The Basta Evidence

WhenthefirstevidenceofrubblelayersatBastawerediscussed with Hans Joachim Pachur, Ulrich Kamp,andMarkusNüsserby thesectionexposures in1987therewasmuchconjecture.However,evenatthistime,manyoftheideasexpressedalreadyhintedtowardsverycomplexprocesses,includingthetemporalexistenceofagriculturalfieldsandfieldclearingpilesonthePost-LPPNB Basta slopes. In addition, the rubble layerswere discussedwith an evenmore intriguing featureofBasta’s sedimentary environment inmind, the silt

Fig. 5 Beidha:Sectionwithhorizontallyembeddedgravel/rubble layersofunknowndate,locatedbetweenBeidha’sMPPNB architectureandthesandstoneformationsborderingthesitein theN.ViewfromSE

Fig. 6 Basta:ReconstructedLPPNBdrainagepatternonBasta’s present-dayslopes.ViewfromSSE(graphbyU.Kamp, publishedinGebel2004:Fig.1)

Page 37: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

IntricacyofNeolithicRubbleLayers

37RubbleSlidesandRapidClimateChange

Fig. 7 Basta,SquareB70,Loci2-4:SurfaceofUpperRubbleLayers (URL).Notesub-topsoilFine-GrainedDeposits(FGD)inthe sections.ViewfromS

Fig. 8 Basta,SquareB68,CentralRoom/Courtyard1ofBuilding1 withroomsadjacenttotheNE:SectionwithUpperRubble Layers(URL)coveringthetopoftheLPPNBruin. ViewfromSW

Fig. 9 Basta,SquareB85,Room/Space3(foreground)ofBuilding VII:NotetherubbleflowoftheLowerRubbleLayers(LRL)in frontofwalls(Locus7,16,and8)andpassingthroughthewall opening.ViewfromE

Fig. 10 Basta,SquareB68:PartlyremovedUpperRubbleLayers(URL; cf.sectionswithURL)atthejunctionwiththeroomfills. UppermosttopsofLPPNBwallruins.ViewfromE

Fig. 11 Basta,SquareB83:TopofruinedLPPNBwall(Locus16) exposedunderneathandintheLowerRubbleLayers(LRL), locatedatthesameheightastheflimsyFPPNB/PPNCwall remains(Locus10),totheleft,intheLRL.Notetheinclination ofthemudflowstotheE(downslope).ViewfromS

Fig. 12 Basta,SquaresB86-87,SSection:SequenceofFine-Grained Deposits(FGD),UpperandLowerRubbleLayers(URL-LRL) abovethetopofruinedLPPNBwalls.Notethestone accumulationsdepositedaftertheURLformation,possibly representinganoldlandsurface(pavement)andtheremainsof fieldclearingpiles.ViewfromN

Page 38: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

IntricacyofNeolithicRubbleLayers

Neo-Lithics1/0938

RubbleSlidesandRapidClimateChange

depositsofAreaC(Kamp2004,Gebel2006).Onlyinthe1992campaign(Gebeletal.2004)thepost-LPPNBrubblelayersatBastareceivedmoredevotedattention(on account of a planned deep sounding). FlimsyPPNC-relatedoccupations(Fig.15)wereobservedinthelowestpartsoftheLowerRubbleLayer,andforthefirsttimeLowerandUpperRubbleLayers(LRL,URL;Figs.7-14)2weredistinguished; thesewereseparatedfrequentlyfromoneanotherbydeposits/layerswithahigherratiooffine-grainedsediment.Inthecampaignspriorto1992archaeologicalrubblelayerobservationswere hardly carried out, and ironically they werereferred to as the chebabian period, since the quickremovalof these thickdeposits required ahigh levelofman-power.TherubblelayersfindingatBastamightbecomparablewiththoseatWadiShu‘aib(Simmonsetal.2001;Rollefson,thisissue:Fig.5)wheretwosucheventsseemtoseparatethePPNBfromthePN.

TheLowerRubbleLayers(LRL,Table1)ofBastaArea B contain PPNC artefacts, curvilinear wallets(Fig. 15), chipping floor dumps and Tridacna beadworkshop remains,fireplaces, samagah installations/surfaces, stone robbing pits dug into the LPPNBarchitecture (related hoard of stone figurines, cf.HermanseninGebeletal.2004:94,101-102,Figs.15-16),apre-Yarmoukianarrowhead type,andveryfew

intrusive? sherds showing a relation to Yarmoukianpottery, etc. (Gebel et al. 2004: Table 1); of course,they also contained re-depositedF/LPPNBmaterials.TheLRLmusthavestartedtoaccumulateshortlyaftertheabandonmentofthesettlement,sincethewallsofstructureswerestillstandingtallandtherubblelayersmigrated into the ruin,evenpenetrating throughwallopenings(e.g.Fig.9).TheUpperRubbleLayers(URL,Table 1) contain all sorts of re-deposited materials,includingPalaeolithic to F/LPPNB andPN artefacts,re-depositedrubbleoftheLRL;insitufireplacesandsurfaces are less well preserved (compared with theLRL findings), and partially in situ finds of a PNA/YarmoukianchippedstoneindustryaswellasisolatedNeolithicpotterysherdswerefound(Gebeletal.2004:Table1).AsFigs.8-11 indicate, the ruinedwall topsof the LPPNB basements were still poking out ofthe surfaces at considerable heights during the URLdepositions.Thisissomewhatpuzzling,sinceitwouldmean–intermsofourcurrentabsolutechronologicalunderstandingof the rubble layers atBasta (Table1)–thatsomeruinedwalltopsoftheLPPNBbasementswerestillvisibleaftersome700years.Wouldn’t thisfindingnotindicatethattheURLofBastaaresomewhatolder,e.g.datingaroundthemidofthemillenniumBC?

The Lower and Upper Rubble Layers of Basta

cal BC Basta Periods Area A Area B Area C

Fine-Grained Deposits (FGD)? Fine-Grained Deposits (FGD) ?

predominantly

6000

Upper Rubble Layers (URL)/ Upper Rubble Layers (URL)

downslope sedimentation of with remains of clearing piles, debris

PNA cultural debris and mud flows

aeolian

Lower Rubble Layers (LRL) Architectural Phase B0 / Lower

PPNC- downslope sedimentation of Rubble Layers (LRL): curvilinear wall

related cultural debris fragments, fire places and surfaces

embedded in debris and mud flows

6900 sedimentation

FPPNB Architectural Phase AI: Architectural Phase BI: room fills, (silts)

rectangular rooms build of burial ground, rectangular and

undressed cobbles curvilinear rooms build of small slabs,

substructures C208 and

huge accumulations of C217:

workshop refuse (naviform Architectural Phases BII-III village fringe

chipped stones) room fills, large multi-roomed activities

LPPNB and rectangular architecture, (gardens,

Architectural Phases AII-III: substructures burials,

room fills, large multi-roomed chipping floors),

and rectangular architecture, no buildings?

substructures, “trash burials” Architectural Phases BIV ?

7500 in-room and in-channal burials

bedrock bedrock (C217)

Table 1 Basta:Chrono-stratigraphicalsummaryofthePost-LPPNB(afterGebeletal.2006:Table1).

Page 39: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

IntricacyofNeolithicRubbleLayers

39RubbleSlidesandRapidClimateChange

seemnottorepresenttwomajorisolateddepositionalevents, rather they appear as two sets of locallyrestricted depositions. It seems that larger parts ofthe Basta slopes are covered by rubble layers, withonly smaller areas having escaped this depositions.Layer thicknesses are varied and have the tendencyto increase downslope; in general, the Basta rubblelayers tend to form restricted extensions, like largelenses,accumulationsonoldsurfaces,andevenpiles.ThethicknessoftheuppermostFine-GrainedDeposits(FGD;ChristophZielhofer:“Kolluvium”;Figs.12-14)increasesconsiderablydownslope.

Beforewediscuss thevarious scenariosof rubblelayer formation at Basta, the only radiocarbon datethat exists from the context of the rubble layers atthe site (from the earliestLRL, should be presented:KIA30847 (Basta47244)dates the remainsofafireplace (Square B83: Locus 8) contemporaneous withthe deposition of the rubble to cal BC 6749, 6721,6702 calBC (radiocarbon age: BP 7911 ± 56; P.M.Grootes, Leibniz Labor für Altersbestimmung, Kiel,pers.comm.)(Fig.17).Thedatereflectsperfectlythearchaeological PPNC-related evidencewe have fromtheLowerRubbleLayersinBasta(Gebeletal.2004,Gebel2006,Gebeletal.2006).

The understanding of the palaeo-topographicalslope settings are essential for the understanding ofBasta’srubblelayers(cf.Kamp2004:Figs.1-3;Gebel2004a:Fig.1C,2004b:Fig.1):ThetopographicalunitAreaA(Fig.6)representstheNEpartsoftheNeolithicvillageontheslopesbetweenasmallgully(apresent-dayvillagestreet)intheSWandthebedrockoutcropswith quartzite veins to theNE (Kamp2004: Fig. 1).ThelowerpartsoftheslopesareverysteepandborderthebottomofWadiBasta.TheupperpartsofAreaAareratherflatandpassoverintotheflattopographyoftheformerfieldsinAreaC.AreaB(Fig.6)islocatedinthecentral,steeperandspur-likepartoftheNeolithic

Fig. 13 Basta,SquaresB104-105,NSection:SequenceofFine-Grained Deposits(FGD),UpperandLowerRubbleLayers(URL-LRL) above(andbetween:LRL)thetopofruinedLPPNBwalls.Note thestoneaccumulationsdepositedafterURLformation, possiblyrepresentingtheremainsoffieldclearingpiles. ViewfromS

Fig. 14 Basta,SquaresB103-105,SSection:SequenceofFine-Grained Deposits(FGD),UpperandLowerRubbleLayers(URL-LRL) abovethetopofruinedLPPNBwalls.Notetheinclinationof therubbleflowstotheE.ViewfromWNW

Fig. 15 Basta,SquareB83,Locus5:FlimsycurvilinearPPNC/FPPNB wallfragmentembeddedintheLowerRubbleLayers(LRL). ViewfromS

Fig. 16 Basta,SquareA12,NWSection(bulldozercut):Hugesilty rubble/gravellayers(Loci61a-goftheNWSection),covering thetopoftheruinedwesternwall(Locus2)ofRoom16and adjacentareas.Theorientationoftherubble/gravelmixedwith someculturalmaterialsisorienteddownslope.Possibly representsthefillsofaseventhmillenniumBCrunnel.View fromE

Page 40: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

IntricacyofNeolithicRubbleLayers

Neo-Lithics1/0940

RubbleSlidesandRapidClimateChange

village.It isalsolocatedonWadiBasta’sNWslopesbetweentheaforementionedsmallgully(thepresent-day village street) in theNE and theflat slope areasin theWandSW.In theSE it reaches thebottomofWadiBastabyasteepinclination.IntheNWitmeetsaflatareawhichbelongstopographicallytoAreaC.Theoriginalspur-liketopographyofAreaBseemstobetheresultoftwoEarlyHolocenedrainagesintoWadiBastafromtheNW(Kamp2004).

The post-LPPNB sedimentary stratigraphies ofBastaarea sequenceofdepositional, re-depositional,and extraction events which modified the reliefover the seventh millennium BC. While the naturalimpactsonthesedimentaryenvironmentsoftheslopesat Basta were reduced or controlled by F/LPPNB

humanoccupationduringthesecondhalfoftheeigthmillennium BC, natural causes and materials againgainedtheupperhandduringtheseventhmillenniumBC, i.e. following thecloseofpermanentoccupationatthesite.DuringtheF/LPPNBoccupationsatBastaacombinationofdomesticbehaviourontheonehand,andnatural alterations on the other (e.g. by drainageregimes, colluvial materials, heavy rain/snowfall,extreme temperature maxima/minima and otherclimatic parameters) impacted upon this particularlandscape. Against this background, we have toexpect (Kamp 2004,Gebel 2006,Gebel et al. 2006)the existence of protective structural measures, suchas (terrace and barrier) walls and ditches, designedto offer some protection against both aquatic slope

Fig. 17 CalibrateddatefromYarmoukian-relatedrubblelayersin‘AinRahub(top)andfromtheLowerRubbleLayersinBasta(bottom). GraphpreparedbyB.Weninger

Fig. 18 Ba‘ja:TopographyandidentifiedlocationsofRubbleFlows/Fine-GrainedGravelLenses(RF/FGL)andFine-GrainedLayerscharacteristicforthe sub-topsoillayers(FGM),incontrasttothepresent-daysurfacedrainageregimeofthesite

Page 41: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

IntricacyofNeolithicRubbleLayers

41RubbleSlidesandRapidClimateChange

erosion and colluvial accumulation inLPPNBBasta;indeed,naturalslopedrainagerepresentedapermanentthreattoF/LPPNBvillagesontheslopesintheregion.Intra-site rainfall and snow management, debrisflow management, slope pressure management: Allthese factors should be reflected in the architecture,the architectural planning, and the stratigraphies atBasta.However,itisofnotethatthebestevidenceforprotectivewalls,barriers,andditchesshouldbefoundonthefringesofthesettlements.

In the lowest LRL at Basta, dated to the PPNC,rubble deposits were apparently used by squatters,stillresiding,manufacturingbeadsandchippingflintsbetweentheerodingruinsofF/LPPNBwalls,etc.Thedecaying F/LPPNB structures produced thick, ratherhomogeneous, and consolidated fine accumulationsand patches of disintegrating plaster and roof/ceilingmaterials, a characteristic of the LRL. In the upperLRL, fireplaceswere still operated, and other in situtracesofhumanactivitiesareinevidence;infact,theselayers witness someYarmoukian-related features. Incontrast, theURLshowfar fewerhabitational traces;rather, they display locally restricted sequences ofdownslopesedimentation,possiblyinterruptedby(re-deposited) remains of field clearing piles. The URLmay have become deposited around 6200BC, if notearlier(cf.above).

The understanding of the huge silty rubble/gravellayers inAreaA (NW Section, Loci 61a-g; Fig. 16;Gebel2006;69,Fig.2.A),reachingthicknessesof2-3m and covering the ruined LPPNBwall tops is stillpremature.Theydonot containmuch cultural debrisat this spot, as opposed the section layers to theNEand the NE Section (Gebel 2004b). Their formationmusthaveinvolvedsiltymaterialsofAreaC:itappearsthat they represent the fill of a seventh millennium

drainage/runnelinatthisspot(cf.therunnel’ssection/inclinationsinFig.2AofGebel2006).

Asidefromtheanthropogenicrubbleofthevillage,physicalweatheringproducts(angularrockdetritusfromblocksizetosand/silt)andaeoliandepositionwereallimportantcomponentstohavecontributedtothemassofmaterialthatdevelopedinthecatchmentsofBastaandpenetratedintothesettlementarea(Kamp2004).Today, the areawitnesses torrential rainfall episodes,andwehaveeveryreasontoassumethatthiswasalsothe case in the seventh millennium BC; therefore,wemust expect such events to still be visible in oursquaresandsections,too.Theoriginandimportantroleofaeoliansiltinthesedimentaryenvironmentsofthesiteisstillpoorlyknown(e.g.ashareofmorethan30%wasfoundinAreaC,cf.Kamp2004):duststormsmaybetheoriginofthesesiltswhichaccumulatedfor2-3mduringandaftertheLPPNBinAreaC,whereevenindividualaeolianeventscouldbetraced.Thesitewassubject to aeolian erosion in the seventhmillenniumBC,too(cf.alsoabovetheAreaAsiltevidence),butwedohaveyetaclueontheaeolianmaterials’shareinArea’sBrubblelayers(Kamp2004).InAreaBtheaeoliancomponentsseemtobeoflesserimportance.

The Ba‘ja Evidence

Under the heading: Huge Rubble and Fine GravelFlows, Wall Rubble and Air Hollows we openeddiscussionsfocusingontheextraordinaryevidenceforhigh-energyeventstohaveoccurredatBa‘jaandwhichwerefollowedbyLPPNBarchitecturalreoccupationinAreasCandB-Southofthesite(GebelandKinzel2007):Hugerubbledepositsandotherfeaturescharacteristicof earthquake destruction were noted (Fig. 18). Inadditiontothis,the–fluvialorseismic/fluvialrelated– destruction of the eastern part ofArea C by slopesubsidence is also attested (Gebel and Bienert et al.1997:Fig.6),thoughitisstillunclearastotheprecisenature of the accountable high-energy event. Theearlierearthquake inAreaB-South(Figs.21-22)wasfollowedbythickdepositionsofstonerubble(RF,upto1.5minheight;Figs.22-23)2withembeddedwater-

Fig. 19 Ba‘ja,AreaB-South:EvidenceofRubble/GravelFlowswith Fine-GravelLenses(RF/FGL)exposedinSquareB64-South andtumbledwalls(earthquakedamage?)inSquaresB84-85

Fig. 20 Ba‘ja,AreaB-South,SquaresB84-85:Tumbled LPPNBwalls(earthquakedamage?)

Page 42: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

IntricacyofNeolithicRubbleLayers

Neo-Lithics1/0942

RubbleSlidesandRapidClimateChange

deposited fine gravel accumulations (FGL) that restagainstthetallstandingwall(Locus4)inSquaresB64-SouthandB74(Fig.19)orwerefoundunderthelaterarchitecturalre-occupation(Locus5)inC-10/10(Fig.23);thewater-depositedfine-graveldeposits/lensesareastrong indicationofanaquaticslopeerosionwhichtookupandsortedfloor/ceilingcomponents.Severalspots provide indications for some deconstructionprior to the start of the latest architectural phase.Remarkably, there exists no catchment for a naturalsourceoftheseRF/FGLmaterialsatBa‘ja:Therefore,it must be concluded that they are of anthropogenicorigin(contrarytoanassumptioninGebelandKinzel2007, cf. below).Thewall rubble resulting from theearliest earthquake (and fromsubsequent instabilitiesofhousewalls)wereburiedbythesecomplexrubbleand fine-gravel sequences in SquaresB64-South andB74andC-20/20.Afurtherearthquakeappears tobeattestedbythetwistedwallsinupperB84-85(Fig.20).Earlier considerations (Gebel and Kinzel 2007) thattheRF/FGLflowsresultfromflashfloodsreachingthecentralupperpartsofthesettlementfromthegorge(Siqal-Ba‘ja),andthatthefloorofthesiqwasmuchhigherthan today, require revision following new insightsgained from recent fieldwork at the site (ChristophZielhofer,pers.comm;spring2010).

In the following we present and discuss theindividualpiecesofevidencefortherubblelayersand

relatedhigh-energyevents.Foramoredetailedaccountofthesefindings,seeGebelandKinzel2007.

AreaB-South(Figs.18-22):Theexcavationinthesouthern half of Square B64 has provided insightsintohugeintra-siterubbleandgravelflows(RF/FGL)restingagainst theaforementionedhighwallLocus4inB64-SouthandB74(Figs.19,22)andoverthewalls(Loci13,29,25-26),andthewallrubbleaccumulationswithairpockets(Loci16,21,and24);similarfeaturesare reported fromAreaC–cf. below–at adistanceofsome20-30m).Thewall rubble–sometimesstilldeposited in a fallen-domino arrangement – with airpocketswasfoundtobemixedwithahigheramountofloose, re-depositedmaterial, includingmortar/plaster/ceiling debris, containing charcoal, and appeared tohavebeen,atleastpartially,intentionallyburied.Wall13 seems to have been reduced in height, probablyduring the erection of the upper phase ofWall 4 (=coarse-facedupperpartofWall4).OntopofWall13rests themoraine-typeflowoffist-sized stone rubblewithembeddedfinegravellenses(RF/FGL)thatisalsoattestedintheeastsectionsofB64andB74andreachesheights of 1.5m. (Figs. 19, 22). In B74, fine graveldepositsmigrated inside the “gate” ofwall Locus 4,whichwasblockedduringtheRF/FGLevents.WithintheseRF/FGLdeposits, fireplaces and surfaces exist,proving that deposition happened in short episodeswhile the inhabitants were using the (temporary)surfaces.Thewholeaccumulation,however, is ratherhomogeneous, contains aside the angular rubbleoccasionallyfist-sizedlimestonegravel,andgivestheimpressionoffastdepositioninasrestrictedtime.Thethirdhigh-energyeventinAreaB-SouthisrepresentedbythetwistedwallsinupperB83andB84:Theenergytowhichthewallsweresubjectedcausingthemtoleaninalldirections,andthereforenotabidingtoaspecificvector or pattern; this latter feature also leads us toconcludethatthisresultedfromanearthquake.

Fig. 21 Ba‘ja,AreaB-South,SquareB64-South,Loci21and 23:LPPNBwallrubblefoundwithairpockets(earthquake damage?)

Fig. 22 Ba‘ja,AreaB-South,SquareB64-South:Excavatedearliest architecturalremains(LPPNB)withpartlyremovedwallrubble loci(earthquakelociwithairpockets,cf.Fig.17)anddeposits ofRubble/GravelFlowsandFine-GravelLenses(RF/FGL) above.ViewfromS

Page 43: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

IntricacyofNeolithicRubbleLayers

43RubbleSlidesandRapidClimateChange

AreaC,SquareC-10,BaulksC-20/20andC-10/10(Figs. 18, 23):Here, a stairwell inC-20/20 connectsthetwoolderoccupationallevelsinC-10/10/-20/20/21,andalateroccupation/buildingphaserestsonthefist-sized stone rubble flow with embedded fine gravellenses (RF/FGL). Similar to Area B-South, westernArea C witnessed three major impact events: anextensive earlierwall rubble pilewith air pockets inC20 (incompletely excavated) in a rather large openspace, a huge rubble and gravel flow resting againsthigh standing walls, and the reorganization of spaceand architecture during an upper architectural phase.During the latter, also the impressive stairwell inC21 (BienertandGebel2004:Pl.5)musthavebeenerected. For the first time, we were able to isolatelocallyadistinctlaterarchitecturalphaseinBa‘jafroman earlier occupation which represents a disruptionof thesite’sarchitecturalmorphodynamiccomplexityof succeeding modifications that normally preventthe identification of clear sub-phases. Together withbuttressLocus114ofC10andWall6ofC-10,thisE-Wrunningwall Locus 5 denotes the latest architecturalphase inwesternAreaC (Fig. 23). It is erectedon aRF/FGLrubbleflowwithlayersofsmallfluvialsortedand deposited gravel (8-15mm); this is also the casefor buttress Locus 114, Wall 6, and buttress Locus26.Thesewater-laidfinegravelsarealsofoundinthe

northsectionofC20,wheretheyaccumulatedagainsttheE face ofWall 10 (formerBaulkC-20/20).Herethese fine gravels appear as lenses and layers insidethe upper parts of a rubble flow, consisting of fist-sizedstones.Alltheaforementionedwallremainsandlayerswerecoveredbythelightbrownishfine-grainedmaterial (FGM) formingalso the sub-topsoil layer inallAreaB;itsthicknessesreaches60cm.TheRF/FGLrubble/ gravel seems to have terminated the earlierarchitecturaloccupationinwesternAreaC,causingthereorganizationof its space.ThepartialdestructionofthisphaseappearstobeevidencedbythedepositionofthehugewallrubbleintheopenspaceofC20andinthespacebetweentheWalls120inC20and5,26and8inC-10(wheremanylintelstoneswerealsofound).Theorientationsofthiswallrubblearevarious;thedepositsfeature a high frequency of air hollows, revealing arapidandprobablyintentionalfillingofthespace.Itisassumedthatthisactionrelatestothedeconstructionofwallsintheareafollowinganearthquake.ThismustalsohavetwistedthecompletestairwellLocus129inC20,simultaneously leaning it down by the height of onestep:Theearthquake,thesubsequentdeconstructionofarchitecture, and intramural filling of the large spaceinArea C20 preceded the migration of rubble/smallgravelflows(RF/FGL)intothearea.WaterappearstobetheagentoftransportandmovementoftheRF/FGLbefore the walls of the latest occupation in westernAreaCwereerected.

Seismicity has so far been a rather neglected topicwhendiscussingNeolithicrubbleslidesortheinterruption/abandonmentofsettlements.Ifwetakeasameasurethefrequencyofearthquakeeventstohaveaffectedtheareain the last 2000 years, we can assume that every 200yearsamedium-majorearthquakeshouldbeexpected;forexample,in551A.D.Petrawasalmosttotallyabandonedafter an earthquake destroyed its buildings, andAqabawas twice destroyed in 363 and 1068A.D. (Migowskietal.2004,KorjenkovandSchmidt2009).TheLPPNBmega-sitesarelocatedalongtheDeadSeaRifttectonics,andwerethereforealsovulnerabletodestructionbysuchcatastrophic events; however, and quite remarkably, ourdiscussion of the descent of themega-site phenomenonhasuntilnowfailedtoconsidertheroleofseismicityinthe relatedprocesses.SinceLPPNBbuildingunitsweremostly erected upon terraces or built on or into slopes,any leaning walls were simply explained away as theresult of slope pressures, e.g. as was the case with thelongwall inBa‘ja’sAreaD;also,pronouncedcracks inwalls/pillars,e.g. inBastaB68: 18,were also subjectedtothisinterpretation.Certainly,andwithoutadoubt,thisagglomeration of evidence calls for increased in-depthresearch intoseismicityand its impactonourmega-sitearchitectures.

In conclusion, the clearest evidence for LPPNBearthquakes affectingLPPNB sites stems fromBa‘jaAreaB-SouthandwesternAreaC.Here,itshouldalsobe noted thatArea B-South lies between a southernsandstone outcrop and the northern sandstone ridge(Fig. 18), which are at a distance of some 15-20 m

Fig. 23 Ba‘ja,SquaresC10andC20:SequenceoftumbledLPPNB stairwell,openspacewithLPPNBwallrubbleshowingair pockets(earthquakedamage),Rubble/GravelFlowsandFine- GravelLenses(RF/FGL),latestLPPNBarchitecturalphase remains,Fine-GrainedLayers(FGM)deposits.ViewfromS

Page 44: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

IntricacyofNeolithicRubbleLayers

Neo-Lithics1/0944

RubbleSlidesandRapidClimateChange

(BienertandGebel2004:planbetweenPages122and123),andthelowermostarchitectureintheseareasisprobablyindirectcontactwiththeunderlyingbedrock.Itfollowsthatduringanearthquake,shockwaveswouldhavebeentransferredheredirectlyintothewallsofthestructures. To summarise, the following earthquakefeaturesareattestedinBa‘ja:-wallspushedbyperpendicularwalls(tiltingwallsinvariousdirections)-wallrubbleinfallen-dominoarrangements;airpocketsintheirrubble-lateraldeflectionandwallsplitting

Blocked/inserted doorways/wall openings andwallreinforcementsbyaddingparallelwalls(e.g. theblockingandclosurewallofthe“gate”inB74)couldverywellbesecondaryearthquakeevidence,meaningtheresultofspacereorganizationafteranearthquake.TheremightthenbeachanceinAreaB-Southtofindtheskeletalremainsofearthquakevictims.

The ‘Ain Rahub Evidence

At the Late Epipalaeolithic/Early Pottery Neolithicsite of ‘AinRahub (13 kmNWof Irbid and 4,5 kmNNEofSal;GebelandMuheisen1985)Yarmoukianfindswereencounteredinrubblelayerssealedwithinthestratigraphyofa terracespur; the terraceremainsbelong to the lowest terrace inWadiRahub (Hannss’T1 Terrace, cf. Muheisen et al. 1988: 475ff.); thegeomorphological setting of ‘Ain Rahub (420 ma.s.l.) was studied by Christian Hannss in 1985 bystereoscopic analysis of aerial photographs. In thefollowingyears,muchof the topographyof thearea,includingthevicinityofthespring,wasalteredbystreetbuilding,bulldozing,androckblastingfromthenearbylicensed excavation of graves (Siegfried Mittmann,pers.comm.),finallyhinderingfurtherexcavations.

Physiographically, the location represents aterrace spur (Fig. 24: dotted area) between Wadi

Fig. 24 ‘AinRahub(sitearea dotted):Aerialview.

Page 45: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

IntricacyofNeolithicRubbleLayers

45RubbleSlidesandRapidClimateChange

Rahub and a tributary drainage. Its stratigraphycomprisesalluvial,colluvialandculturallayers.In1981, a final Natufian settlement (extending ontothe spur)was exposedduringbulldozingactivitiesat the eastern foot of the spur.A test unit of 3x1m cutting into the slope, carried out by ReinderNeef,wasoriginallyintendedtoreachtheNatufianlayers in order to determine the overall extensionof the site in the spur’s slope.Toour surprise, theTest Unit (Fig. 25-26) revealed concentrations ofmud brick debris, grinding tools, andYarmoukianpottery (Kafafi1989)atdepthsbetween59.70and58.80 m (excavation-internal height) (some evenoccuring at depths of 58.20m; cf. Fig. 25)whichare partly embedded in the rubble layers between59.90 and 58.90 m. At that time, these findsrepresented the second Yarmoukian site east ofthe JordanRiver, and still the nature of the site isnotclearasallof its layersweresealedwithinthe

spur.The rubble layers resulted frompossibly twoimmediately succeeding events and were formedbydenselypackedstones(Figs.25-26),apparentlyrepresentingmudflowswhichtookupYarmoukianculturalmaterialsincludingYarmoukianpotteryandbrick fragments on their way to deposition. FinalNatufian (12000-10200calBC) findsoccurredc. 1mbelowthelowermostrubblelayer,concentratedatdepthsaround57.70m.

Christian Hannss commented (Muheisen etal. 1988: 479) that the „sediments and limestonedebris“oftherubblelayers„mostlikelyarenotofdirect colluvial origin but were deposited as wadiaccumulations.Major colluvial deposits cannot beexpectedhere,astherearenoextensiveslopesabovethe lower terrace of ‘AinRahub.“While the goodpreservation of theYarmoukian sherds contradictsthe interpretation of wadi accumulations, Hannss’understanding thatnodirectcolluvialoriginof therubblelayersshouldbeassumedappearsplausible.Mostlikely,the‘AinRahubevidencerepresentsoneor twointenserubbleslidesmovingonto theFinalNatufian/Post-FinalNatufianslopesurfacesfromtheimmediate slopes to thenorth.Here aYarmoukiansettlementmusthaveexisted,thematerialofwhichbecameacomponentoftherubbleslides.

TheYarmoukianrubbleslideat ‘AinRahub isdatedbyoneQuercussp.charcoaldate(GrN-14539:7480+/-90BP;W.G.Mook,CentrumvoorIsotopenOnderzoek,GroningenandR.Neef,pers.comm.1987).This14C-age(Fig.17), equivalent toa calibratedageof6490 -6170calBC(95%), is ingoodagreementwithotherdatesforthe Yarmoukian (Weninger, this issue of Neo-Lithics).However, whether this date represents the date of therubbleslideitself(e.g.remainsofafireplaceduringthedeposition of the rubble), or not simply the (potentiallyearlier)dateoftransportedcharcoalfromtheYarmoukiansettlement,remainstobediscerned.Thisinterpretationalproblem applies tomany of the available 14C-ages forthe“Yarmoukian”rubbleslides,andcan–atthepresentstateofresearch–onlyberesolvedbyapplicationofdirect(exposure)datingmethods,e.g.OSLand10Be,orbytheradiocarbondatingofwell-observedinsitufeaturesfromwithinarubblelayersequence.

Rubble Layer Archives: Research Perspectives

TheintricacyofseventhmillenniumBCrubblelayersatNeolithicsitesinJordanresultsfromthepolygeneticand polycausal elements that were involved in theirformation. This should not make us ignoring theirpotential as an important source of information onclimatic change. By this, we do not mean that theorigin of rubble (be it anthropogenic or natural) isirrelevanttodiscussions,butwedosuggestthatevenlocally transported anthropogenic rubble may reflecta changed or changing climate regime. Due to thecomplexityof rubble layers, future analysisdemandsa multidisciplinary (e.g. prehistory, geomorphology,

Fig. 25 ‘AinRahub,TestUnit,NWSection.(sectionwidth:1,00m)

Page 46: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

IntricacyofNeolithicRubbleLayers

Neo-Lithics1/0946

RubbleSlidesandRapidClimateChange

pedology, radiocarbon and other dating methods)approach, and any interpretationbasedupona singlegenesis must be disregarded. Future rubble layerresearchmustnotonlyconcentrateoncollectingmorerubble slide archives from more sites in differentphysiographic locations and from different EarlyHolocene contexts, but rubble layers also need tobe properly excavated and observed in terms ofmicrostratigraphy, depositional events, and in situfeatures.Theexcavationofrubblelayersatprehistoricsitesmusttaketheformofajointinfieldcooperationbetween archaeologists and geomorphologists. Itfollows that the analysis of rubble layers withoutdirect correlation with the surrounding naturalsedimentary environments amounts to an incompleteandfragmentaryenterprise.

Rubble layers occurring during and immediatelyafter prehistoric occupations are a most importantsourceforimprovingourcomprehensionofaregion’ssettlement history. Further, they not only provide uswithanexplicitunderstandingoftheoccupationalfateof a given site, but they also help to identify (intra-site) areaswithin a site thatwere deserted during anotherwisepermanentpresenceofhumansat thesamelocation.Inthesite’snaturalenvironmenttheyareoneof the important sources of information on land use,vulnerability of biotic resources, and anthropogeniceco-impacts.

Themainproblemlieswiththeabsolutedatingofrubble layers.Raisedawareness isneeded to identifypotentiallyundisturbedinsitutracesofoccupationandsurfacesinthedepositionalsuccessionofrubblelayers;indeed,thistaskshouldnotposetoogreataproblem.Otherwise,thedatingofrubblelayersissubjecttothehigh risk of datingmuch older re-depositedmaterialtaken up from transformed cultural phases furtherupslope.

Rubblelayerawarenessisrequiredinallrespects.

Acknowledgements:IwouldliketothankBernhard“Bernie”Weninger for initiating the recent rubbleslide and subsequent RCC discussion, and for re-awakeningourconcernofthesephenomenawhich,sinceour1987seasoninBasta,wesimplyreferredtoasrubblelayers.B.Weningerinitiatedaninfieldprojecton the rubbleslidesof ‘AinGhazal,Basta,andBa‘ja(financedbytheSonderforschungsbereich806atCologneUniversity),startingsectionsamplingworkat‘AinGhazalin2009.InSpring2010,andincollaborationwithus,additionalgeomorphologicalsamples were taken by Christoph Zielhofer inBa‘ja andBasta, aswell as 3DLaser Scanning ofthe rubble layers and related architectures by D.Hoffmeister, Cologne University. Since 1987, Ihavediscussedthephenomenologyandmorphologyof our rubble layerswithmany colleagues:UlrichKamp, Hans-Joachim Pachur, Christian Hannss,Bo Dahl Hermansen, Hans J. Nissen, HenningFahlbusch, and others, but only the recent rubbleslide/RCCdebatebrought a new impetus into thediscussionofthishithertomysteriousphenomenon.Sincethe1980s,GaryRollefsonandZeidanKafafidiscussed internally the rubble layers for theirsites, and Gary Rollefson was among the firstwho understood the potential and implications ofthis topic. Recently, discussions were joined byChristoph Zielhofer, Leipzig University, throughhisinfieldgeomorphologicalandgeoarchaeologicalcooperation in Spring 2010, which are awaitingsupplementation by his laboratory results. Thephotos of Basta were taken by Margreth Nissenand Gerald Sperling; all others are by H.G.K.Gebel. Graphical assistancewas provided by JanaPokrandt, and languageeditingwascarriedoutbyLeeClare,CologneUniversity.IthankHamzehM.Mahasneh,MuhammadNajjar, andAlan Simmonsfor the permission to use the photos of Figures23-25.All our research on the Neolithic of SouthJordan would not be possible without the supportof theDepartmentofAntiquitiesof theHashemiteKingdom of Jordan whose constant support wegratefullyacknowledgehere.

Fig. 26 ‘AinRahub,TestUnit:Excavationofthelowerpartsofthe rubblelayers.ViewfromSE.

Page 47: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

IntricacyofNeolithicRubbleLayers

47RubbleSlidesandRapidClimateChange

Notes1AllabsolutechronologyinthiscontributionreferstocalibratedradiocarbondatesBC.Thechronologicalabbreviationsusedhereandtheircurrentabsolutechronologicalequivalentsare:LPPNBLatePre-PotteryNeolithicB(c.7500-7000/6900BC)FPPNBFinalPre-PotteryNeolithicB(c.7000-6800?BC)PPNCPre-PotteryNeolithicC(c.6800?-6500?BC)PNA(Yarmoukian)PotteryNeolithicA(c.6500?-6200?BC)The contents of this contribution became the basis for infielddiscussionsinthefieldinthecourseofB.Weninger’sproject(cf.theAcknowledgements)inSpring2010.ThedelayedNeo-Lithics1/09issueallowedsomereferencetobemadetothisproject,butcouldnotconsiderfullyitsresults.

2 The following abbreviations were used for the characteristicstratigraphicunitsoftheBasta/Ba‘jasedimentaryenvironments.Sincetheoriginandcompositionofthesedimentaryfeaturesarenotexactlysimilar,foreachsitedifferentabbreviationsareused.FGM Fine-Grained Layers, characteristic for the sub-topsoillayers(Ba‘ja)RFRubble/Gravelflow(Ba‘ja)FGLFine-GravelLenses(Ba‘ja)URLUpperRubbleLayers(Basta)LRLLowerRubbleLayers(Basta)FGD Fine-Grained Deposits, characteristic for the sub-topsoil(Basta)

References

BienertH.D.andGebelH.G.K.2004 SummaryonBa‘ja1997,andInsightsFromLater Seasons.In:H.D.Bienert,H.G.K.GebelandR.Neef (eds.),CentralSettlementsinNeolithicJordan.Studies inEarlyNearEasternProduction,Subsistence,and Environment5:119-144.Berlin:exoriente.

GebelH.G.andMuheisenM.1985 Noteon‘AinRahub,aNewLateNatufianSiteNear Irbid,Jordan.Paléorient11.1:107-111.

GebelH.G.K.andBienertH.D.withcontributionsofKrämerT.,NeefR.,Müller-NeuhofB.,TimmJ.,andWrightK.I.1997 Ba‘jaHiddeninthePetraMountains.Preliminary Resultsofthe1997Investigations.In:H.G.K.Gebel, Z.KafafiandG.O.Rollefson(eds.),ThePrehistoryof Jordan,II.Perspectivesfrom1997.StudiesinEarly NearEasternProduction,Subsistence,and Environment4:221-262.Berlin:exoriente.

GebelH.G.K.2004a Present-daySiteSettingandPhysiographicUnits.In: H.J.Nissen,M.MuheisenandH.G.K.Gebel(eds.), BastaI.TheHumanEcology:35-52.Berlin:exoriente.2004b SitePreservationandSiteFormationProcesses.In: H.J.Nissen,M.MuheisenandH.G.K.Gebel(eds.), BastaI.TheHumanEcology:95-116.Berlin:exoriente.

GebelH.G.K.andHermansenB.Dahl2004 LPPNBBa‘ja2003.Neo-Lithics2/04:15-17.Berlin:ex oriente.

Gebel H.G.K., Muheisen M., Nissen H.J., and Qadi N. withcontributionsbyBeckerC.,HermansenB.Dahl,NeefR.,ShafiqR.M.andSchultzM.2004 LatePPNBBasta:Resultsof1992.In:H.D.Bienert, H.G.K.GebelandR.Neef(eds.),CentralSettlements inNeolithicJordan.StudiesinEarlyNearEastern Production,Subsistence,andEnvironment5:71-104. Berlin:exoriente.

GebelH.G.K.2006 TheStratigraphyandLocusData.In:H.G.K.Gebel, H.J.NissenandZ.Zaid(eds.),BastaII.TheArchitecture andStratigraphy:11-132.Berlin:exoriente.

GebelH.G.K.,KinzelM.,NissenH.J.,andZaidZ.2006 Summaryandconclusions.InH.G.K.Gebel, H.J.NissenandZ.Zaid(eds.),BastaII.The ArchitectureandStratigraphy:203-224.Berlin:ex oriente.

GebelH.G.K.andKinzelM.2007 Ba‘ja2007:CrawlSpaces,RichRoomDumps,and HighEnergyEvents.ResultsoftheSeventhSeasonof Excavations.Neo-Lithics1/07:24-33

KafafiZ.1989 LateNeolithic1Potteryfrom‘AinRahub,Jordan. ZeitschriftdesDeutschenPalaestina-Vereins105:1-17.

KampU.2004 GeomorphologicalSiteSettingandGeochemical Results.InH.J.Nissen,M.Muheisenand H.G.K.Gebel(eds.),BastaI.TheHumanEcology:53- 94.Berlin:exoriente.

KorjenkovA.M.andSchmidtK.2009 AnArchaeoseismologicalStudyatTallHujayrat al-Ghuzlan:SeismicDestructionandChalcolithic andEarlyBronzeAgestructures.InLutfiKhalil andKlausSchmidt(eds.),Prehistoric‘AqabaI:79-98. Orient-Archäologie23.Rahden,MarieLeidorf.

MigowskiC.,AgnonA.,BookmanR.,NegendankJ.,andSteinM.2004 RecurrencePatternofHoloceneEarthquakes AlongtheDeadSeaTransformRevealedbyVarve- CountingandRadiocarbonDatingofLacustrine Sediments.EarthandPlanetaryScienceLetters222: 301-14.

MuheisenM.,GebelH.G.,HannssC.,andNeefR.1988 ‘AinRahub,aNewFinalNatufianandYarmoukian SiteNearIrbid.InA.N.GarrardandH.G.Gebel(eds.), ThePrehistoryofJordan.TheStateofResearchin 1986.BritishArchaeologicalReports-International Series396.2:472-502.Oxford,B.A.R.

SimmonsA.H.,RollefsonG.O.,KafafiZ.,MandelR.D.,an-NaharM.,CooperJ.,Köhler-RollefsonI.,andRolerDurandK.2001 WadiShu‘eib,aLargeNeolithicCommunityinCentral Jordan:FinalReportofTestExcavations.Bulletinof theAmericanSchoolsofOrientalResearch321:1-39.

Page 48: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

IntricacyofNeolithicRubbleLayers

Neo-Lithics1/0948

RubbleSlidesandRapidClimateChange

WeningerB.,Alram-SternE.,BauerE.,ClareL.,DanzeglockeU.,JörisO.,KubatzkiC.,RollefsonG.,andTodorovaH.2005 NeolithisierungvonSüdosteuropaalsFolgedes abruptenKlimawandelsum8200calBP. InD.Gronenborn(ed.),Klimaveränderungund KulturwandelinneolithischenGesellschaften Mitteleuropas,6700-2200v.Chr.RGZMTagungen1: 75-117.

Weninger B.,Alram-Stern E., Bauer E., Clare L., DanzeglockeU.,JörisO.,KubatzkiC.,RollefsonG.,TodorovaH.,vanAndelT.2007 AbruptClimateForcingBbservedatEarlyNeolithic sitesinSouth-EastEuropeandtheNearEast. InH.Todorova,M.Stefanovich,G.Ivaniv(eds.), IntheStepsofJamesHarveyGaul,2.The Struma/StrymonRiverValleyinPrehistory. ProceedingsoftheInternationalSymposium ‘StrymonPraehistoricus’,Kjustendil-Blagoevgrad (Bulgaria)andSeres-Amphipolis(Greece),27.09- 01.10.2004,Sofia:7-28.

Weninger B., Clare L., Rohling E.J., Bar-Yosef O., Böhner U.,BudjaM.,BundschuhM.,FeurdeanA.,GebelH.G.K., JörisO.,Linstädter J., Mayewski P., Mühlenbruch T., Reingruber A.,RollefsonG.,SchyleD.,ThissenL.,TodorovaH.,andZielhoferC.2009 TheImpactofRapidClimateChangeonPrehistoric SocietiesDuringtheHoloceneintheEastern Mediterranean.DocumentaPraehistorica26:1-53.

Page 49: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Commentary

Neo-Lithics1/0949

RubbleSlidesandRapidClimateChange

Weninger’smasterfulcompilationofpaleoclimaticdataclearlyshowstheoccurrenceofanumberofepisodesof rapid climate change (RCC), and it is expectablethat suchphenomena shouldhavehadenvironmentalconsequences across the globe. One RCC coincidedwith a phenomenon (the rubble layers) on a numberof essentially contemporaneous archaeological sitesinJordan,anditwasbothtemptingandobligatorytodetermine if the correlation offered some aspects ofcauseandeffect.

ThecontributionbyBarzilaicovered thepresenceof “stone surfaces” in archaeological sites thatmighthaveoriginatedfromagenciesotherthannaturalones,and thiscontention iscertainlyacceptable.OnepointthatshouldbemadeisthatwhenwehavetalkedaboutrubblelayersintheLateNeolithic/Yarmoukianperiod,we were not concerned simply with pavements, butwithvastaccumulations.ThesituationatArdel-Samraappearstoconformtosuchmassiveaccruals,butitisnotclearfromBarzilai’sarticleifthemoundsofstoneswerebeneath,above,orinterspersedwithYarmoukianculturaldebris;inotherwords,couldthismovementofangulardebrisbeduetoflashfloodinganddepositionof materials from the wadis and gentle hill slopesdetectableinhisFig.1?

Barzilai’s description of anthropogenic sources ofangular rock debris covers conditions that are wellrecognized throughout the Levant. At ‘Ain Ghazal,forexample, thereare largeanddense lensesoffire-cracked rock (FCR) – which is almost always fire-crackedflint–duringtheMPPNBintheCentralField,butsuchoccurrencesareofaverydifferentcharacterfromthesituationintheYarmoukianperiod(aswellasintheLPPNBandPPNC).IntheYarmoukianlayers,the rubble is dense, deep, and virtually continuouslydistributedacrosstheentiresite,bothwithinbuildings(probablyabandonedbeforethedeposition)andinthebroadspacesbetweenthesparselybuilt-upYarmoukianvillagearea.In theMPPNB,FCRoccursdenselybutonlysporadicallyintightlydefinedclustersofdebris,andalwaysassociatedwithashydeposits.

ThesuggestionsthatFCRisassociatedwithcookingis probably not the case, or at least not a completeaccountingforthepresenceofthecrackledflint.WhilemanyhearthsincludeFCRinandaroundthem,thereareotherhearths(particularlythoseinsidetheMPPNBhouses) where FCR is absent or only intermittentlypresent.MostoftheFCRconcentrationsareinoutdoorlocations,sotheassociationofFCRislikelyconcernedwithsomeformofprocessingofmaterialsotherthanfood,butjustwhatprocessingremainselusive.

Gebel also considers the likelihood that not allrubbledepositsareduetoclimaticconditions,andthat

“primemovers”asexplanatorydevicesareveryoftensuspicious if not outright misleading and erroneous.EarthquakeevidenceatBa’jaisparticularlyimpressive,andmuchoftherubblethatendsupinrubblelayersmayowetheirultimateoriginsnottonaturalcauses,buttoanthropogenicpracticesaswell.Nevertheless,henotesthat usually there are indicators that water transportwasresponsibleatleastinparttotheaccumulations.

What is importantabout theevidence fromBasta,I think, is that the rubble layers occurred in layersequivalenttothefinalpre-ceramicperiod,thusantedatingaYarmoukianage1.Thisfollowsarefinementoftheso-called “8.6-8.0 k.y.a. event” to indicate that itwas aperiod of time that,while geologically speakingwasa“sudden”development,actuallyspannedarelativelylong time at its onset (see Weninger, this volume).Thisisalsoastrongpieceofevidencethatthe“rubbleevent” actually consisted of several climatic pulses,andthesepulseswerenotnecessarilycontemporaneousacross theNear East but instead varied according togeomorphic andgeographic elements affecting stormtracks. The suggestionGebelmakes, that the end ofthelargeLPPNBoccupationofBastabythebeginningof the 7th millennium BC, is also an excellent caseforarguingthattheLPPNBeverywherewasasmuchaffectedbyclimaticdeteriorationasbyculturalfactors(e.g.,RollefsonandPine2007),althoughsuchculturaldegradation certainly had a coeval impact of theenvironment.

Evenso,theeffectsonthelocalenvironmentattheendoftheLPPNB/FPPNB/PPNCatBastawereclearlymore powerful than in the north at ‘AinGhazal andWadiShu’eib.Thismight relate to thedifferences inannual precipitation: the area around ‘Ain Ghazalreceivesc.250mmrainfalleachyear,whilethemodernsituation atBasta is only160mm (Neef 2004: 188).ThePPNCoccupationat‘AinGhazalcontinued,albeitacrossamuchmorereducedareaofthesite(lessthanthree-fourths of theLPPNB site area and far belowthe density of residential structures and projectedpopulation levels)2. The population density declinedeven more at ‘Ain Ghazal during the Yarmoukianperiod,althoughtherewasstillasubstantialpopulation,perhapsasmuchas300-400people.

As was the case at Basta and Ba’ja, populationsexplodedduringtheearlierpartoftheLPPNB,andlikethe situation at the southern sites, there is a possible“sudden” impact on the site’s people. While thepopulation atMPPNB ‘Ain Ghazal was modest andspread across theZarqaRiver to the eastern bank toonlyamoderatedegree, thesuddeninfluxofLPPNBimmigrantsturnedtheEastFieldintoamajor“suburb”of the main site. But this eruption of settlement

Commentary

Gary O. Rollefson WhitmanCollege,WallaWalla [email protected]

Page 50: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Neo-Lithics1/09

Commentary

50RubbleSlidesandRapidClimateChange

expansion may have been necessary; it is possiblethat the surge in population began to exhaust localresources, especially farmland and pasturage as wellaswoodresourcesforfuelfordomesticuse(RollefsonandPine2007).TheextensionofdomesticbuildingseastwardacrosstheZarqaRiverwaswell-established,butbefore7203±95cal.B.C.alargeritualstructurewas built, cutting intowhat appears to have been anessentially abandoned zone of ‘Ain Ghazal by thattime (Rollefson1998:51-54,but especiallyFootnote24).Theconstructionofthisbuilding,whichrequireda major communal effort) may reflect deterioratingclimaticconditionsalreadybeforethebeginningofthePPNCperiod,aswasseenatBasta.

The situation that Gebel describes concerningearthquakesasapossiblecontributortorubbledepositsbeforethePotteryNeolithicperiodmightalsohaveaparallelat‘AinGhazal,althoughevidenceremainsweakatthemoment.ThefinalstageofthecircularLPPNB“shrine”intheNorthFieldappearstohavesufferedanarchitectural disruption that included severe damageand partial disintegration of the floor; a replacementof thecircularbuildingwasrapidlyundertakenabout5mtothesouth,butthereplacementappearstohavebeen used for a brief time (Rollefson 1998: 47-48).Thefloordamage in theearlierbuildingsuggests thepossibility of earthquake damage, although unrelatedslope subsidence instead can’t be dismissed at themoment.Anotherbitofevidence thatmight relate toearthquake damage at ‘AinGhazal contemporaneouswith the situation at Ba’ja comes from a two-storybuildinginthesouthFieldthatdatestotheLPPNB.Inthiscase,thesectionexposedbybulldozerworkshowsan upper painted plaster floor that collapsed into theconfinesofalowerroom.SuchacollapsewasseenintheNorthFieldat‘AinGhazal,butthiswascertainlyduetoafirethatburnedroofsupports(RollefsonandKafafi1996:13-14)andhadlittleevidentrelationshiptoseismicactivity.

The contribution by Kafafi, Lucke, and Bäumlerleavesonesomewhatnonplussed.Muchofthearticleaddresses architecture both prior to and within theperiodunderconsideration(the“8.6-8.0k.y.a.event”).Twostandinggeological/archaeologicalsectionsweresampled (the eastern South Field and the westernCentralField).Considerableeffortismadetodescribethe composition and development of five very largeandundefinedarchaeological layers (rarely identifiedastoarchaeologicalage),butnoneofwhichdealwiththe layers that are evidently (from their illustrations)Yarmoukian in age.Much of the geological analysisrelatestoterrarossadevelopmentat‘AinGhazal,andthissurelyhaslittletodowiththegray,rockysedimentsthatcharacterizeYarmoukianlayers.Thestatementthat“...itisnotclearwhetherthe‘Yarmoukianlandslides’wereindeedlandslidesorwhethertheywereconnectedwithheavyrainsorearthquakes”isperplexingsinceitseemstobespeculationthattheresearchshouldhaveaddressedinthefirstplace.Itispossible,ofcourse,thattheresearchprojectisongoingandthatthisissuewill

beaddressedinthefuture.In summary, the discussion of the relationship of

rubblelayerswithanthropogenicandnaturalagencieshas shown that both could be responsible, and bothkindsofactivitycouldhavebeeninplaysimultaneouslyat some sites, depending on topographical situation.And it is also possible, even probable, that the rarecloudburst thatdumpedenormousquantitiesofwaterondegradedslopes(eithernaturally,duetodrought,ordue tohumanactivitydue todeforestationandbrushremoval, orboth)did, in fact, result inmovementofmassesofdebrisdownthehillsides.The8.6-8.0“event”witnessedalongperiodofdepressedtemperaturesandreducedrainfall,andoverthose600yearsitislikelythatdifferentcombinationsofnaturalandhumanagenciescontributedtorubblelayersinthehillyregionsofthesouthernLevant.

Notes1 It is intriguing thatGebel insertsacoupleofdistinctions intotheendofthelatepreceramicNeolithicperiod,usingLatePPNB,FinalPPNB,andPPNCsubdivisions.This topic isdeservingofmorediscussioninalaterissueofNeo-Lithics.

2Intheirarticle,Kafafietal.claimthat‘AinGhazal’smaximumareawasc.10hectares;thisisthecasefortheLPPNBsettlementonthewesternsideoftheZarqaRiver.TherewasalsoanLPPNBenclave of 3-4 hectares across the Zarqa River from the mainsettlementduringthisperiod).

References

NeefR.2004 VegetationandPlantHusbandry.InH.J.Nissen,M. MuheisenandH.G.K.Gebel(eds.),BastaI.TheHuman Ecology:187-218.Berlin,exoriente.

RollefsonG.1998 ‘AinGhazal(Jordan):RitualandCeremonyIII. Paléorient24/1:43-58.

RollefsonG.andKafafiZ.1996 The1995Seasonat‘AynGhazal:PreliminaryReport. AnnualoftheDepartmentofAntiquitiesofJordan 40:11-28.

RollefsonG.andPineK.2007 MeasuringtheImpactofLPPNBImmigrationinto HighlandJordan.StudiesintheHistoryand ArchaeologyofJordan10:473-481.

Page 51: NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

Masthead

Neo-Lithics2/0951

EditorialBoard AdvisoryBoard

Co-EditorsGaryO.Rollefson,WhitmanCollege,WallaWallaHansGeorgK.Gebel,FreeUniversityofBerlin

ManagingEditorsDörteRokitta-KrumnowandJanKrumnow,BerlinChristophPurschwitz,FreeUniversityofBerlin

OferBar-Yosef,HarvardUniversityDidierBinder,C.N.R.S.,ValbonneFrankHole,YaleUniversityPederMortensen,CopenhagenUniv.HansJ.Nissen,FreieUniversitätBerlinMehmetÖzdoğan,UniversityofIstanbulDanielleStordeur,Archéorient,CNRS,Jalès

Submissions NEO-LITHICS,Prof.Dr.GaryO.Rollefson,DepartmentofAnthropology,WhitmanCollege, WallaWalla,WA99362,USA,Email:[email protected].

NEO-LITHICS,DörteRokitta-Krumnow/JanKrumnow/ChristophPurschwitz/Dr.HansGeorgK.Gebel, exoriente,c/oFreeUniversityofBerlin,Hüttenweg7,14195Berlin,Germany, Emails:[email protected]·[email protected]·[email protected], Fax00493098311246.

Orders pleasesendto:exorientee.V.,c/oFreeUniversityofBerlin,Hüttenweg7,14195Berlin,Germany, www.exoriente.org·[email protected]·Fax00493098311246.

Subscription Minimumofthreeyearssubscriptionrequested=6issues,c.40-50pageseach,66Euro for6issues/minimumsubscriptionperiod(postageincluded);backissuesavailable;membersof exorientereceiveNeo-Lithicsfreeofcharge(includedintheannualmembershipfee:40Eurofor employedmembers,15Euroforstudents/unemployedmembers).

Deadlines twiceayear:15thofMayand15thofNovember

SubmissionGuidelinesText formats: inWordwithout formatting; for thegeneral styleof text,bibliography, andcaptionsconsult thisor a recentissueofNeo-Lithics-Illustrationformats:individualEPS,TIFF-filesorJPEGinhighresolutions;illustrationsshouldnotbeembeddedintheWordfile.Please,sentahardcopyofthemanuscriptincaseofcomplexcontributions;keepbibliographicreferencestotheutmostminimum.

SubscriptionInformationIntheupperrightpartoftheaddressfield(envelope)youwillfindtheissuementioneduntilwhich(included)youpaidyoursubscription.Ifyoufindaninvoicewiththisissue,arenewalofsubscriptionisnecessaryforthenextthreeyears/6issues.Ifaninvoiceisnotpaidaftertwomonthsitisunderstoodthataprolongationofthesubscriptionisnotdesired,andnofurtherissueswillbesend.

NoteAuthors of Neo-Lithics receive a pdf file of their individual contribution upon publication. Please, understand that yourcontributionissubjecttothecopyrightsofexorientePublishers.However,youarelicensedtocirculatethepdffileofyourcontributionprivately,butbeyondthisweaskyounottopublishit(orpartsofit)intheWorldWideWeb,orinanyotherformwithoutourpriorpermission.

Neo-Lithicsispublishedanddistributedbyexoriente,Berlin.PrintingHouse:dbusiness,Berlin©exorientee.V.,Berlin-ISSN1434-6990