NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

82
NAT L INST. OF STAND & TECH R.I.C. MBS Puhli * cations A-i-l-irB - ! fl D AIBSSFi 78-1499 A1110M S37bm An Evaluation of Existing Models Describing the Migration of Additives in Polymers I. C. Sanchez, S. S. Chang, F. L McCrackin and L E. Smith Polymer Science & Standards Division Center for Material Science National Bureau of Standards Washington, D C. 20234 Semi-annual Report for Period September 1, 1977 - March 30, 1978 Issued July 1 978 Prepared for Bureau of Foods Food and Drug Administration Washington, D.C. 20201 Interagency Reimbursable Agreement -QC 100 . U56 78-1499

Transcript of NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

Page 1: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

NAT L INST. OF STAND & TECH R.I.C.

MBSPuhli *

cations

A-i-l-irB-!— fl D

AIBSSFi 78-1499 A1110M S37bm

An Evaluation of Existing

Models Describing the Migrationof Additives in Polymers

I. C. Sanchez, S. S. Chang, F. L McCrackin and L E. Smith

Polymer Science & Standards Division

Center for Material Science

National Bureau of Standards

Washington, D C. 20234

Semi-annual Report for Period

September 1, 1977 - March 30, 1978

Issued July 1 978

Prepared for

Bureau of FoodsFood and Drug AdministrationWashington, D.C. 20201

Interagency Reimbursable Agreement

-QC—100

. U56

78-1499

Page 2: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS
Page 3: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

NBSifi 78-1499* * 1

AN EVALUATION OF EXISTINGMODELS DESCRIBING THE MIGRATIONOF ADDITIVES IN POLYMERS

witmastdartis

6RC 10 0

, DC U

!. C. Sanchez, S. S. Chang, F. L McCrackin and L. E. Smith

Polymer Science & Standards Division

Center for Materia! Science

National Bureau of Standards

Washington, D.C. 20234

Semi-annual Report for Period

September 1, 1977 - March 30, 1978

issued July 1 S78

Prepared for

Bureau of FoodsFood and Drug Administration

Washington, D.C. 20201

Interagency Reimbursable Agreement

Mi55 £&pr' > /vt3s i R ^iir isqa.

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps. SeentmvDr. Sidney Herman. Under Secretary

Jordan J. Saryeh, Assistant Secretary for Science end Technology

fyATIONAL BUREAU OF STAWDAflDS. EmM Ambler, Director

Page 4: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS
Page 5: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

AN EVALUATION OF EXISTING MODELS

DESCRIBING THE MIGRATION OF

ADDITIVES IN POLYMERS

I. C. Sanchez

S. S. Chang

F. L. McCrackin

L . E . Smi th

Report to: Bureau of FoodsFood and Drug Administration

Covering the period September 1, 1977

to

March 30, 1978

Page 6: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS
Page 7: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

SUMMARY

The objective of this work is the development of mathe-matical models that describe the migration of a variety ofsmall molecules in polymers that have applications in foodcontact uses. In the most general cases, these models willbe able to predict the amount of additive migration givenany particular time and temperature history. These models canserve as the technical basis for more efficient regulatorymethods under existing frameworks or in the design and imple-mentation of new indirect additive regulations or policy.

The existing data on additive migration applicable tofood contact uses have been surveyed and organized for reference.Existing models describing additive migration into food-simulating solvents have been surveyed and evaluated. Fromthese considerations four main conclusions can be drawn:

1) At a given temperature above the glass transitionof the polymer, diffusion in the polymer isinvariably proportional to the concentrationgradient of the diffusing species. The concentra-tion gradient is the rate of change in concentrationwith distance in the polymer.

2) Diffusion in polymers below their glass transitionis complex and difficult to generalize.

3} Above the glass transition temperature, the temperaturedependence of diffusion is primarily determined by theproperties of the polymer and relatively independent ofthe size and shape of the diffusant.

4) The temperature dependence of the diffusion isstrong and non-Arrhenius. This means that a plotof the logarithum of the diffusion constant versusthe inverse of the absolute temperature will generallybe non-linear.

To model migration of minor constituents from a polymericfilm to a food simulating solvent requires knowledge of (1) theequilibrium distribution of a migrant between polymer and solventphases, i.e., the distribution or partition coefficient K and(2) the diffusion coefficient D of the migrant in the polymer.This is the minimum amount of information required to describepolymer/migrant/solvent system. For a polymer at a temperatureabove its glass transition temperature, knowledge of K and Dallows one to calculate migration as a function of time and asa function of temperature if the temperature variation of K andD are also known.

l

Page 8: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

We have shown that the distribution coefficient isrelated to the migrants' chemical potential in the polymerand solvent and have demonstrated how K and its temperaturedependence can be calculated using recently developedtheories of the chemical potential. Our preliminary calcula-tions have been very encouraging. Additionally , K isamenable to experimental determination by utilization of gaschromatographic techniques.

Existing theories of the diffusion coefficient can becharacterized as being correlative rather than predictive.We have formulated a new theory for D which promises to bemore predictive than existing theories. This new theory isbased on the thermodynamic theory of fluctuations and dependsoni (1) the shape and size of the diffusant, (2) the polymer-diffusant intermolecuiar interactions, and (3) the isothermalcompressibility of the polymer.

Page 9: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

TABLE OF CONTENTS

Page

INTRODUCTION ..... ........ 1

SURVEY OF MIGRATION DATA APPLICABLE TO FOOD-CONTACT USES ......... 3

Introduction .... ....... 3

Key to Abbreviations .............Ordered Index to Available Data ........ 7

Literature References ........ 15

REVIEW AND EVALUATION OF AVAILABLE MIGRATIONMODELS ........ 33

Introduction ................. 33

Distribution Coefficients ........... 34

Diffusion Constants ..... 42

General properties ...... 42Diffusion above Tg ............ 44Diffusion below Tg ....... 47

References ............. 53

PRELIMINARY CLASSIFICATION OF ADDITIVE TYPES .... 55

Page 10: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS
Page 11: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

INTRODUCTION

The effective regulation of indirect food additivesarising from the migration of substances from plasticpackaging materials involves three main technical questions

:

1) What substances are present in the packagingmaterial that can migrate into foods?

2) To what extent and at what rate can thesesubstances be reasonably expected to migrateinto the food?

3) What are the physiologic consequences of theingestion of these quantities of these sub-stances by the public?

The first of these questions can generally be answeredby consideration of the synthesis and fabrication steps of thepackaging material supported by straightforward analyticalmethods. The third question is a complex toxicological problemwhich at present can only be answered with case by case testingand even then is subject to considerable debate. The secondquestion , however, is a measurement problem capable of generalresolution and is the subject of this FDA-sponsored work.

The objective of this work is the development of mathe-matical models that describe the migration of a variety ofsmall molecules in polymers that have applications in foodcontact uses. In the most general cases, these models willbe able to predict the amount of additive migration givenany particular time and temperature history. The models willbe designed to require a minimum of laboratory data determinedfor the particular polymer-migrant system.

These models will serve several purposes. They can serveas a basis for the classification of polymers and additivesinto groups with similar migration behavior for regulatorypurposes. They can reduce or eliminate the need for extensiveextraction data to qualify new polymer-additive systems forfood contact uses. For example, a change in a packaging process

-]-

Page 12: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

requiring a higher filling temperature could be considered onthe basis of an extrapolation from existing data without theneed for additional laboratory work.

Physical models of migration can allow a relatively rapidestimate of maximum exposure of the public to any criven additiveor additive type. These estimates can guide public policy andprovide a quantitative basis for toxicological assessments ofrisk. Finally, physical models or description of migrationbehavior can provide the technical information for a comprehensivereview or adjustment of the total regulatory framework coveringindirect food additives.

The first steps in the development and assessment of suchmodels are given in this report. The first section presentsa preliminary survey of migration data applicable to food contactsituations that are available in the current literature. Thesecond section surveys available models describing migrationand evaluates their present and potential utility.

- 2 -

Page 13: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

SURVEY OF MIGRATION DATA APPLICABLE TO FOOD CONTACT USES

INTRODUCTION

The following literature survey collects and organizesavailable data on migration rates of low molecular weightspecies from polymeric matrices that have primary applica-bility to food contact situations. Only data that apply tofood contact situations have been included. References thatare useful in formulating and testing general models ofmigration will be added as the need arises. References priorto 1970 are also not explicitly included as these papers areadequately referenced in the cited, later work.

The ordered index is sorted first by type of polymer,then by the nature of the migrating species, and then bysolvent. The abbreviations used are explained in the followingsection. The remarks primarily refer to the type of datapresented and the time and temperature interval for whichdata are available.

Page 14: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

KEY TO ABBREVIATIONS

o.^s^^PQLYMERS******

ARS ACRYLC NITR ILE/EAdS/MA ABS/MA/MMA CGPO,CA CELLULOSE ACETAE/P ETHYL. ENE/PRCPYLt/PHAC ETHYLENE/PHENYL£/ VAC ETHYLENE/V INYLEPXR EPCXY RESINHP FLUORCPCL YMER

S

MFR MELAMINE FORMALN6 NYLON 6

NR NATURAL RUBBERPA P CL YAM IDESPAN POLYACRYLGMTklPAT POLYACETALpa d PCLY BUTADIENEPOMS POLY 0 I METHYLS IL

PE polyethylenePES POLYESTERPM A

PM M A

PM PPOMPPPPHACPRPSPUPVCPVC/ABSPV DCSANSBRSRV/ APB

ACETATEACETATE

RESIN

POLYMETHACRYLATEPCLY { M ETHYE METHACRYLATESPOL Y i 4—METHYLPENTENE— 1

i

PCLYOX YMETHYLENEPCLYPRCPYLENEPOLYPHENYL ACETATEPHENOL IC RESINPOLYSTYRENEPOLYURETHANEPOYL ( V I NLYPOLY ( V INYL

SILICONEVINYL ACi

CHL C RI DE )

CHL C RIDE ) / AB S

I DEN E CHL OR ID E )

R YLU N I TRI LETADI E NE RUB EE RUDHE R

ATE/ V I NYL P YR RO H'JTYL ETHER

* *****MI GRANTS******

ABCAC AAHAANHOGBHA

ACETYL TR I BUT YL C I TR A TERCTO NIC A C ID E c TERS0-4- HYD RC X YANT H R A GU I NONEN ITR ILEENE CL I GC MERUT YL-4- HY DRO X Y A N I SCLE

- 4-

Page 15: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

outtJPOGHPOH5TOTAE)T ACCASTCl>

08PDBSOB SNDC DADHADHBPDNPOOPDO SNDTCTDTPHCHOHE B PHM BPHO BPHXDMGSTMM AMM BPMSNMWNAAQODEOHBPPAPPoPH

t ADM IUM01 BUTYLC SBUT YLD I BUTYL

2 . e-u i-tert-butyl-p-ckescl ; ignul; advastab ahBUTYL FHTHALYL HUTYLGI.YCCLATEBENZCPFENONE DERIVATIVES; DA S7 I B- 24 4 . - 256 *-? 8 •

BUTYL STEARATE3ENZ0TKI AZCLE-FHLNOLS J TIMJVIN P; TINUVIN 320C HLGRCBENZDTF I AZOLE-PHENOLS i TINUVIN 326“» TINJVIN 3? 7

CALCIUM STEARATEP I G ME IN T S

PHTHALATESEBAC ATETIN C C MPOUNDS

DICYANCIAM I DE1 * 4— DI HYOROXYAMHR AQU INCNE2 • 4- D I HYDRCXYBENZOPHENCNEOINCNYL PHTHALATE0 IOC T YL PHTHALATEDIOCTYL TIN COMPOUNDSN-DCTR IACCTANED I DGOECVL — 2 „3 e -THI CPRCPIGNATh

i-GXYBENZOPHCNONt l CAST 13 24?!NGNC» UV ABSORBER MOB 5 ADVASTABJCNE; ADVASTAB 46; CYASQkB UV531

DECANEIUM STEARATE

METHYL4—MET H YL— 6 — TER T—BUT YL PHE NQL i l 2246

METHYL TIN COMPOUNDSM SCRC W AX4 —M TRC— 4 * — AM I NCAZO BENZENEN-OCTACECYL-D IE THANUL AMINEN-OCT A DEC YL-B-( 4 “—HYDROXY — 3 * 5*— DI —T—6'J T YL PHE N YL » PROPIONATEPCLY AD IPATELEADPHENOL

ESTERS

C EH YD t

OXY-4 -C 2 » - ET HCXY-4 -M E T hOX Y

CXY-4 -C C T C XY a

DEC AN £

IUM S TE A R A TEME TH AC R Y L AT E

ETH YL EN E- O I S-

T I N CC MR C UND

45

RP AL KYL FHTHAL

A

TE S

RSE AL KYL SULFON

I

C AC I D

S STYREN E

SA STEARI C ACID AM IDESN T I N CC MPCUNDSST P DI STEA R YL T H I CD IPROTBC 4 » 4 9 — I HI 0-8 I S - ( 6-T-TCP TR ICRE SGL PHC SPhATtTEP TR I ETH YL PH C S PH ATETU TR IGL YCER 2 DES1 1 02 T I TAN I UM DICX I D LTNPP TR I S- I NGN YL PH EN YL I

TTB 1 9 3 « 5— TRIMETH YL -2.

4

VAC VI NYL ACETATEVC V I NYL C HL GRIDEWAX PA RAFF IN WAXXY Z BE NZ EN e; chlo KG BENZ

N- AL KANEZNST Z I NC S TEAR ATE

ADVASTAB PS802J ANT IOXYDANS AS.RESOL); ADVASTAB 4 15; SANT ON 3

X

PHOSPHATE; ADVASTAB TNPP« 4 » 6-TR I Si 3 , 5— D I — T—BUT YL— 4—HYDROXY BENZYL, i

LTHYLENE GlYCQL; ETHYL EH TEH ITHANOl.

- 5 -

Page 16: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

AQ AQUEOUS SOLUTIONS OF SALTS; DETERGENTS; E T C

»

3L BLCODDP DAIRY PRODUCTSETON ETS-ANCLET20 DIETHYL ETHERFHC FLUORCH YD ROC ARSONHC HYDROCARBONSH20 WATERHQ AC ACETIC ACIDMEOH METHANOLMF MEAT AND FATNH N— HEPTANEOIL OIL! FAT AND SIMLANTROH ALCOHOLSR20 ETHERSTG INDIVIDUAL TRIGLYCERIDESVEG VEGETABLE

# *****METHCDS******

CA CHEMICAL ANALYSISCOLOR CCLOR IMETRYGC GAS CHRGMATCGR APHYGM GRAV IMETRYPHOTO PHOTOMETRYPOLAR PCLARC GRAPhYRAD RADI CANAL YS I

S

SECT SECTIONAL ANALYSISSPEC SPECTROSCOPYTLC THIN LAYER C HRC M ATOR GR APH

Y

******F<EMARKS******

AC ACTIVITY COEFFAPP APPA RATUS/METHCMT CORREL AT ICN/MOCP CONCENTRAT IOND DIFFUSION CCEF,EN I EXTRACT NOT IDGR GRAPHSH* ACTIVATION EKEK PARTITION CCEFMiC MIGRANT CONCENNC NC COMPOSITIONNKD NO KINETIC DATNS NC SURFACE ARENTT NC TEMPERATURE

I C IENTCODEL/THEORYGRADIENT PROFILEF IC I ENTFNT IF I EC

R G Y

F IC I ENTT RAT I C N

A

A INFORMATIONOR TIME INFORMATION

Page 17: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

PHRPTSOSECTSQLUNITS

PAPTS PER HUNUPEQ PARTS CF PC.SIN

pc CM TEMPEPATUPESCRPT ICN-OESQPPT IQN

SECTICNAL CBSEPVATICNSOLUBILITYC-CELCIUS; D-DAY; H-HOJR; M-MQNTH, W-WEEK Y- YEAR

ORDERED INDEX TO AVAILABLE DATA

POLYMER M 1 GRANT SOLVENT METHOD REMARKS (DATA POINTS AT TEMPERATURE/TIME) REFERENCE

ABS ABC ETCH NKDj TO 80C/70 50 124ABS ABC H2C NKD « TO 80C/TO SO 124ABS AN AO gr: RT/ TO 2C qd 144ABS AN H20 GRZ RT/ TO 2600 1 44ABS BST ETOH NKD • TO ©OC/TO 50 . 124ABS BST H2C NKD, TO 80C/TO 50 1 24ABS S AQ gr: RT/ TO 2000 } 44AOS s ETOH NKD, TO 80C/TO 50 124ABS S H2C NKD, TO 80C/7 0 50 1 24ABS s H2Q Gk: RT/ TO 2000 144ABS XVZ INTER-POLYMER, APP, 70C/TO 13200 S 1 2

CA OOP ET 20 GC NKD, TO 96C/T0 130 10CA OOP HC GC NKD , TO 98C/7Q 100 10CA OOP OIL GC NKD, TO 98C/TO IOD 1 0

CA OOP TG GC NKD, TO 98C/70 100 10CA XYZ 1 00E/P HXD 0 141

EPXR CMT 99FP HCHO H2C NKO, 0-90C/I-100 I 22MFR HCHO H2C NKD 32NR CTCT D 141NR tel AX TO 2800 1 9

NR XYZ GM BLOOM l 56NR XYZ D.' CMT, SMEAR 14 4

PA CD ETOH e oc/6H 1 90PA CO E T 20 8CC/6H 190PA CO H2C 8CC/6H 190PA CD HOAC 80C/6H . 1 90PBO HXD C, CMT 1 39PBD HXD 0, CMT, SMEAR 140PBO HXD 0 14 1

POMS OTCT 0 141PE EHA E T 20 GC NKO, TO 98C/T0 iOD 10

PE BHA HC •GC NKD. TO 98C/T0 IOD 1 0

PE EHA OIL GC NKO, TO 98C/TO 100 1 V

PE eHA TG GC NKO, TO 98C/T0 100 1 0

PE EPD ETOH 45C/2.10D, 70C/2H, 100.121C/0.5H 1 66PE EPD H20 45C/2.100. 70C/2H, 1 50 , 1 2 1 C /C' • 5H 1 68PE SPD HOAC 4SC/2.10D. 70C/2H. 100, 12IC/C.5H 1 66PE BPD OIL 45C/2.10D, 7JC/2H, 1C 3. 121C/0® 5H 1 68PE E7AC ETCH TLC NKD, 45C/10D 1 70PE ETAC HC TLC NKD. 45C/1CD 1 70PE ETAC HC GR: 4D-65C/TG 600 1 1 0

PE ETAC H20 TLC NKO. 45C/10D 170

7 -

Page 18: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

PE ETAC HO AC TLC NKD, 45C/100 1 70PE etAC 0 IL POLAR 4.20-25C/1.2. 3.6M, 45C/10D.6M 1 66PE ETAC OIL TLC NKD. 45C/10D 1 70PE ETAC OIL GR: 4D-O5C/T0 60D 1 1 8

PE CO ETOH 80C/6H 1 <30

PE CD ET2C ecC/6H 1 90PE CO H20 ECC/EH 1 90PE CD HO AC A 3C/6H 190PE DHBP H2C RAD CMT, 0, 44—75C/TO 1 OOOH 1 77PE DCP INTER-POLYMER. APP, 70C/TQ 1320D 1 1 2

PE DTP RAD C. H*. CMT, SMEAR, 20-7BC 73PE HEUP ETOH 45C/2.10D, 70C/2H, 1 00 » 1 2 1 C/0 . 5K 1 6BPE HEBP H20 45C/2.1J0. 70C/2H. If 0 , 1 2 1C/0. 5H 1 68PE HEBP H 0 AC 4 5 C/2,100, 70C/2H, ltj, 121C/0.5H 1 68PE HEBP OIL 45C/2.10D, 73C/2H, 100 , I 21C/0.5H 1 68PE HMBP ETOH TLC NKD. 45C/10D 1 70PE HMBP HC TLC NKD, 45C/10D 1 70PE HMBP H2C TLC NKD, 45C/I0D 1 70PE HM6P HO AC TLC NKC, 45C/I0D 1 70PE HMBP OIL TLC NKD, 450/ 1 OD 1 70PE HOBP ETOH 45C/2.10D. 70C/2H, 1 0 0 . 1 2 1C /O* 5H 1 68PE HCDP H2C RAD D, H*. SMEAR, EXTRACT *)44C/T0 255D 77PC HCBP H20 45C/2.100, 7 j C / 2 H , 1 C 0 , 1 2 1C / 3 • 5H 1 68PE HCBP HO AC 45C/2.10D. 70C/2H, l u ), 121 C/0 • 5H 1 68PE HOBP CIL 45C/2.10D. 7vC/2M, 1 C 0 . 1 2 1 C/0 . 5H 1 68PE MMBP RAO D, K, 1 NTER—POLYMER 1 3

PE CDE RAD C, H*. CMT, SMEAR. 20— 7 8C 73PE SA E T 20 RAD 200/600. 65C/5H, GR : 0.5-5H 1 32PE SA F HC RAD 2CC/43.60D 54PE SA HC RAD 4-25%DOP. APP, 20C/30.60D, 40C/10D, GR : TO eoc/TO 80 D 46PE SA HC RAO 20C/43.60D 54PE S A HC RAD 2CC/6CD, 65C/5H, GR : 0.5-5H 1 32PE SA MECH RAD 20C/6OD, 65C/5H, GR : 0 . 5-5H 132PE SA CIL RAD APP, 20C/63D. 65C/5H, GF. : TO 65C/TO 6 3D 39PE SA CIL RAD 2 0 C/30.600 4 5

PE SA OIL RAD 4-25XD0P. APP. 20C/30.60D, 400/100, GR : TO boc/to BCD 4oPE SA OIL RAC 65C/2.5H. GR! TO 6H 51PE SA C IL RAD 20C/33.OJD, GRJ 600 52PE SA CIL RAD APP, FAT-PENETRATION. 20C/3O.60D, 65C/2.5H 53PE SA OIL RAD 20C/43.60D 54PF SA CIL RAD 20C/60D. 65C/5H, GR: 0.5-5H 1 32PE SA R2 C RAD 4-25-*D0P. APP, 20C/30.600, 40C/10D, GR : TO BOC/TO BOD 46PE SA R20 RAD 2CC/43. 600 54PE SA TG RAD 65.B3C/2.5H 36PE SA TG RAD 2UC/3J , 600 45PE SA TG RAD 65C/2.5H, GR: TO 6H 51

ua SA TG RAD 200/30,600. GR: TO 60D 52PE SA TG * RAD APP. FAT-PENETRATION. 20C/30.60D, 65C/2.5H 53PE SA SURFACE 5)PE TTB E T 20 RAD 20C/6>D, 65C/5H, GR : 0.5-5H 1 32

PE TTB FHC RAD 2 JC/43.60D 54PE TTB HC RAD 4-25*0OP. APP, 200/30*630. 40C/10D. GR : TO 80C/T0 8 3D 46PE TTB HC RAD 20C/43.60D 54

PE TTB HC RAD 20C/oJD. 65C/5H, GR: 0.5-5H 1 32PE TTB MECH RAD 2CC/6JD, 65C/5H, GR: U.5-5H 1 32

PE TTB CIL RAD APP, 20C/ 6 jOt G5C/5H. GR : TO 65C/T0 6uD 39PE TTB CIL RAD 2lC/30 .600 45

PE TTB OIL RAD 4-25XD0P. APP, 20 C/3 0 • 6 OD , 40C/10D. GR : TO B DC/TO 8 30 46

- 8-

Page 19: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

PE Y T0 C 20 RAO 65C/2,5H, GR 1 TO 6H 51PE TY6 OIL RAO 2CC/30 • BOO * GR: to’ 600 52 '

PE TTS OIL RAD AFP, FAT-PENETRATION, 20C/30,oQD. 65C/2.SH 63PE TIB OIL KAO 20C/4 3 » 60 0 54PE 7 TB OIL RAO 2tC/6<jD. 65C/5H, GR : 0,5-SH 1 32PE TTB R2C RAO 4—25%D0P s APP, 29C/30.69D, 40C/1QD, GR I TO 80C/TQ 600 46PE T TO R2C RAD 20C/43, 600 54PE TTB TG RAD 6 5, 83C/2 « 5H 38PE TTB TG RAD 2 LC/ 30 ® 600 45PE TTS TG RAD 65C/2.5H, GR: TO 6H 51

PE TT0 TG RAD 20C/3C ,600, GR: TO 600 52PE TTB TG RAD APP, FAT-PENETRAT ION, 200/30,600, 65C/2,5H 53PE xvz H20 TO 50C/TQ 1 19

PE 66PE RAO 0, H*, CMT » SMEAR, 20-78C 73PE OIL FAT-M IGRAT ION 96PMA CBP EYQH POLAR NKD, 4SC/10D 1 89OMA obp HC POLAR NK D , 45C/100 1 89PMA CBP H20 POLAR NKO. 450/ 1 00 1 69PMA OBP HOAC POLAR NKC, 45C/100 1 89PMA OOP ETCH POLAR NKD, 45C/IOO l 89PMA OOP HC POLAR NKO o 45C/10D l 69PMA OOP H2C POLAR NKO, 45C/10D 1 69PMA OOP HOAC POLAR NKO, 45C/100 1 69PMMA HM8P ETCH TLC NKO, 45C/10D 170PMMA HMBP HC TLC NKO, 45C/IQD 170PMMA HMBP 020 TLC NKO, 45C/SOO 170PMMA HM8P HOAC TLC NKO, 45C/100 170PMMA HMBP OIL TLC NKD « 45C/100 170PMMA M MA H20 CMT, GR: 37-90C/10H 162PMMA XVZ SCOPMP OTP RAD D, H*. CMT, SMEAR, 20-78C 73PMP RAO D, H* , CMT, SMEAR, 20-78C 73POM DCDA H20 PHOTO 3 7C/ 1 ,3,5, 70, 1 00C/2H* GR 1 TO 100 97POM hcho 0.20 PHOTO 37C/1 .3,5, 70, 100C/2H, GR t TO 10D 97POM MM6P H20 PHOTO 37C/1 ,3,5,70. 100C/2H, GRI TO 1©0 97PP 8HT NKO, 45C/1Q0 1 67PP ETAC HC GRI 40-65C/TO 600 i 16PP ETAC 0 1L GRI 40-6SG/TO 600 1 18PP QHBP H20 RAO CMT, 0 « 4 4— 75 C/TO 1000H 1 77PP DTP RAO C, H*, CMT, SMEAR, 20-78C 73PP HOBP ETCH 4 5C/2 , 1 jD , 70C/2H,- 1 C 0 , 1 2 1C /O. 5K 168PP HOBP H20 4 5C/2 , 1 00 , 70C/2H, 1 0 ? , 1 2 1 C /O . 5H 163PP neap HOAC 45C/2 , 100 « 70C/2H. 160. 1 21C/0. SH 163PP hOBP GIL 45C/2.130, 70C/2H, ICO, 1 21C/0* 5H 16S «

PP ODE RAO 0, H*, CMT, SMEAR, 2‘3~76C 73PP CUSP HC GRI 4 5—6 5C/T0 600 i i aPP OHBP OIL • GR: 40— 6 5 C/TO 600 118PP RAO 0, H*, CMT, SMEAR, 20-78C 73PP HCHO nc. 20-aoc 1 65PR PH NC, 2 9-80 0 165PS OHT E T 20 GO NKO, TO 98C/T0 100 10PS 8HT HC GC NKO » TO 90C/TQ 100 SOPS 8HT OIL GC NKO, TO 98C/T0 100 1 9

PS 8HT TG GC NKO, TO 98C/T0 100 1 3

PS EHT NKO, 45C/1CD 1'67

PS EST ET20 RAD 2CC/60D, 65C/5H, GRI 0.5-5H 132PS BST F HC RAD 200/43,630 54

- 9 -

Page 20: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

PS bst PC RAD 4-2SXD0P, APP, 200/30. 60D, 4OC/10D, GR : TO 80C/TO BCD 46PS EST HC RAD 20C/43.60D 54PS EST PC KAD 2:C/60D, 65C/5H, GR : 3.5-5H 1 32PS esT H2C gr: 60c/ro iy 1 23PS EST ME. CH RAD 2v,C/6vlD, OEC/5H, OR! ''•.5-5H 1 32PS BST C 1L RAD APP, 20C/60D, 65C/5H, GR: TO 65C/T0 6 0 D 39PS BST OIL RAD 2DC/20 . 600 45PS BST OIL RAD 4-2 EXOOP • APP, 20C/30.60D, 40C/10D, GR : TO 6 DC /TO 8CU 4 6

PS BST OIL RAD esc/2,5H, gr: to en 51PS BST OIL RAD 200/30,600, GR: TO 60D 52PS BST OIL F AD APP, FAT-PENETRATION, 23C/30.60D. 6SC/2,5H 53PS BST OIL RAO 20C/43 , 60D 54PS BST CIL RAD 20C/6&D, 65C/5H, GR : 0.S-5H 1 32PS BST R 20 RAD 4-2SXD0P, APP, 20 C/30 1 600, 40C/10D, GR : TO 80C/T0 80 D 46PS esT R 2 C RAD 20C/43.60D 54PS BST TO RAD t 5.83C/2, 5H 38PS BST TO RAD 2C C /3 0 , 60

D

45PS esT TG RAD 65C/2.5H, GR: TO 6H 51C? BST TG F AD 20C/30. 6v D , GR: TO 600 52PS BST TG RAD APP, FAT-PENETRATION, 20C/30.60D, 65C/2.5H 53PS BST CMT, D, 2 0,40 » 6 OC / 1 0 )D , GR: 10-10CD I 74

PS CC ETCH 8CC/6H 1 90PS CD E T 20 eoc/tH 1 90PS CD P2C e 0C/6H 190PS CD HO AC 80C/6H 190PS DCP ETCH NKD. TO 8CC/T0 50 1 24PS DGP H2C NKD , TO 80C/TO 5D 1 24PS HPBP ETCH TLC NKO. 45C/10O 170PS HMDP PC tlc NKD, 45C/10O 1 70PS HMBP P2C TLC NKC, 45C/10D i 70PS H MB P PO AC TLC NKD, 45C/10D 170PS HMBP CIL TLC NKC, 45C/100 170PS HOBP ETCH 45C/2.10D, 70C/2H, 1 00 , 1 2 1 C /O • 5H 1 68PS HOBP H2C 45C/2.1DD. 70C/2H, 1 00 . 1 2 1C/0. 5H 1 68PS HOBP HO AC 4£C/2,IiyD, 70C/2H, 1 0 0 , 1 2 1 C / 0. 5H 1 68PS HOBP 0 IL 4SC/2.10D, 70C/2H, 1 C 5 , 1 2 1 C/0« 5H 1 68

PS H XD C, CMT, SMEAR 1 40PS PAP l NT ER— POL YMER , APP, 70C/TO 1320D 1 12

PS S AO NTT, 1.3.5D 1 26PS S DP GC CMT, D. GR: TO 20C/TO 30D 29PS s ETOH GR: 23-70C/0. 01-720D i 31

PS s H2C GC CMT, D, Gw: TO 20C/TO 30D 29PS s H2C NTT, 1,3,50 1 26PS s H2C GR: 60C/TO 1Y 1 2 3

PS c H2C gr: 2 3— 7 0 C / 3 • 0 l — 7 2 0 D 131

PS s H 20 CMT, GR: 37-90C/I0H 1 fc?

PS s HCAC NTT , 1,3,50 1 26

PS s HO AC•

gr: 2 3— 7L C/0»01—720D 131

PS s OIL NTT , 1 , 3, 5D 1 26PS s OIL gr: 23-7CC /O, 0 1— 720D 131

PS s CMT, 0, 2C , 4G , 6 SC/ t OOD , gr: 10-1000 1 74

PS STP NKD, 45C/1JD 1 67

PS TBC NKD, 45C/1GD 1 67

PS T NP P NKD, 45C/U0 1 67

PS TTB ET 20 RAD 20C/6jD, 65C/5H, GR: O.S-SH 1 32

PS ttb FHC RAD 200/43,600 54

PS TTB HC FAD 4-25XDGP. APP, 20C/30.60D, 40C/10Q. GR : TO 8QC/T0 BOD 46

PS TTB HC RAO 2w»C/43,60D 54

- 10 -

Page 21: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

PS T7B HC RAO 200/600* 65C/5H, 0*5-5H 1

PS TTB MECH RAO 20C/630® 65C/5H, GR l 0.5-5K 1

PS TTQ OIL KAO APP, 23C/60D, 65C/5H, GR l TO 65C/T0 600PS TTB C IL RAO 2GC/3d»60DPS TTB OIL HAD 4-25XDOP, APP, 200/30,600, A0C/10D, GR % TO 30C/TQ 800PS TTB CIL RAD £5C/2,5H, GR: TO 6HPS TTB OIL RAO 2GC/39 , 6uD , GR: TO 600PS TTB CIL RAD APP « FAT-PENETRATION, 20C/30,60D, 65C/2,5HPS TIB CIL RAO 2CC/43.600PS TTB CIL RAO 2CC/600, 65C/SH, GR 1 0,5-5H 1

PS TTB K2C RAD 4-25%00P, APP, 2C C/30, 600, 40C/10D, GR TO aoc/TO 80 DPS TTB R2Q RAO 200/43,600PS .

TTB TG RAD £ 5 » 83C/2 s 5HPS TTB TG RAO 2CC/30 ,600PS TTB TG RAO 6 5C/2 , 5H , GR % TO 6HPS TTB TG RAO 2CC/3G.6DD, GR 1 TO 600PS TTB TG RAD APP, FAT-PENETRATION, 200/30,600, 65C/'2,5HPS XYZ H20 TO 50C/T0 Stt 1

PS XYZ i

PS XYZ CM7, SO 1

PU CHBP RAO 0, H*, SMEAR, 36-75C/T0 300PU HGBP RAO C, HA* , SMEAR, 36-75C/TQ 300PVC ABC ET 20 GC NKO, TC 98C/T0 100PVC ABC HC GC NKD, TO 98C/T0 100pvc ASC CIL GC NKD, TO 9 SC/TO 10DPVC ABC TG GC NKD, TO 98C/T0 100PVC ABC 20C/1 ,3, 70PVC ACA OIL 4 ,2G-25C/I , 2. 3, 6M. 45C/100 1

PVC EPBG 2QC/1 ,3,70PVC ETA ETCH TLC NKD, 45C/10D I

PVC ETA HC TLC NKO , 45C/100 l

PVC ETA HC GRt 40—65C/TO 600 l

PVC ETA H2C TLC NX 0 « 45C/100 1

PVC ETA HOAC TLC NKD, 45C/10O 1

PVC ETA OIL POLAR 4,20-250/1,2, 3. 6M, 45C/iOQ,6M 1

PVC ETA CIL TLC NKO, 45C/100 I

PVC ETA CIL GR: 40-65C/TO 600 1

PVC CAST H2C SPEC 5 »50C/2,4,6,8WPVC CBP ETCH RAD 25C/TO 500pvc OBP ETCH RAD 2G-60PHR, 1G-65C/1-800PVC OBP E72Q GC NKD, TO 98C/T0 100PVC OBP HC GC NKD, TO 98C/TG 1QD’PVC OBP HC RAO 2J-6GPHR, IO-&OC/2-800PVC OBP MEGH RAO 2C-60PHR, 1Q-60C/ 1-800PVC OBP CIL GC NKD, TO 98C/TO 100PVC OBP CIL RAD 23-63PHR, 10-60C/I—700PVC OBP ROW RAD 2C-60PHR, 10-60C/1-80DPVC OBP TG * GC NKD, TO 90C/T 0 IODPVC OBP RAD 20-6GPHR, 10-60C/I-70DPVC CBS 2CC/ 1,3,70PVC OBSN AQ 5CC/2,4,6W l

PVC OBSN ETCH 53C/2 , 4 , 6W 1

PVC CBSN HC 5CC/2 ,4 ,6W l

PVC D8SN H20 SPEC 5,500/2,4, 6, 8WPVC OBSN HOAC 500/2,4 ,6W 1

PVC ONP AO INI, 3B-56C/TC. 120PVC ONP AO NKO, 20-56C/TO 150 1

PVC ONP AQ EM, 4G-80C/TO 200 l

323239*54651

525354324654384551525319CO7269691 0

1010108367837670187 J

706670i a

3078801C1079801081

801081o i

2525253025868283

- 11 -

Page 22: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

PVC DNP OP E N I » 38-56C/T0 120 36pvc DSP OP NKD, 2D-S6C/TU 150 182PVC DNP DP 2G-63C/T0 200, ENI 1 84PVC DNP OP 43-73C/TO 1 20 , ENI 1 85PVC ONP H20 ENI, 38—56C/T 0 120 86PVC ONP H2C NKD, 20-56C/TC 150 1 82PVC DNP H 20 4C-70C/TO 120, ENI 185PVC OOP AC £CC/2.4,6W 125PVC OCP BL GC NS, 4C/5-21D 75PVC OCP ETOH RAO 25C/T0 500 78PVC OCP ETCH RAD 2G-60PHR, 10— 60C/1-80D 83PVC OOP ETOH TLC NKD, 1 —5% DOP , 45C/2D 1 68PVC OCP ETCH 50C/2,4 .6* 125PVC DGP E T 20 GC NKD, TO 98C/T0 100 13PVC OOP ET 20 TLC NKOr 1-5XDCP, 45C/20 188PVC OCP EC GC NKO , TO 98C/T0 100 13PVC OOP HC RAD 23-60PHR, 10-60C/2-800 79PVC OOP HC TLC NKD, 1-5X0CP, 45C/20 1 38PVC OOP HC 53C/2,4,6» 1 25PVC OOP H2G GC IC 0C/6H 1 6PVC OOP H2C RAD GK: 2 2— SO C/5H— 9 00 3 2

PVC OOP H20 TLC NKD, 1-5X0CP, 45C/20 1 86PVC OOP HC AC 50C/2.4.6* 125PVC OCP MECH RAD 20-60PHR, 1 0—6 OC/ 1 —SOD 83PVC DOP OIL GC NKO, TO 98C/T0 100 10PVC OOP CIL RAD APP, NKO, 0.25-25X, 20C/60D. 40C/10D 40PVC OOP CIL RAO APP, 0,25—25XD0P. GR : TO 43C/TO 300 43PVC DOP CIL RAO 20-60PHR. 10-60C/ 1-700 81

PVC DOP CIL RAD NKD, 92PVC OCP OIL AFP, CMT, SECT, CP, FAT-M I GR AT I ON , 40C/1 ,2, 4, 9, 16, 250 1 30PVC OCP RCH RAO 2C-6CPHR, 10-60C/1-80D 8)PVC OOP TG GC NKO, TO 98C/TC 100 1 3

PVC OOP RAO 2C-6CPHR, 10-60C/1-70D 81

pvc OCP INTER-POLYMER, APP, 70C/TO 13200 1 12PVC CCSN AQ ENI, 38-56C/TC 120 86PVC OOSN AQ ENI, 40-80C/TO 200 1 83PVC OOSN OP ENI, 38—56C/T 0 12D 86PVC DC SN OP 2C— tOC/TO 200, ENI 1 84PVC CCSN OP 4G-70C/TO 1 20 , ENI 185PVC OOSN ETCH R AO NKO, 2 C C/8 W 91PVC DCSN ET 20 GC NKO, TO 98C/T0 10D

.

10PVC OOSN ET2C R AD 2CC/60D. 65C/5H, GR : 0.5-5H 1 32PVC OOSN FHC RAD 2D C/43, tOD 54PVC DCSN HC GC NKD, TO 9 SC /TO 100 13PVC DC SN HC RAD 4-25XD0P. APP, 20 C/30, 600, 40C/10D, gr : TO 8CC/TO 6 30 46PVC OCSN HC RAD 2GC/4 3 , 600 54PVC OOSN HC ,

RAO 20C/63D , 65C/5H , GR: 0*S-5H 1 32pvc OCSN H2C SPEC E , 5 JC/2, 4 , b,8W 30PVC DCSN H2C ENI, 38-56C/TC 120 86PVC DCSN H2C 4C-70C/TO 120, ENI 1 85PVC DCSN MECH RAO 2LC/6CD, 65C/5H, GR: 0«5-SH 1 32PVC OCSN CIL GC NKD, TO 98C/TC 10D 1 3

pvc OCSN CIL RAO APP, 2 DC/ 6 0 0, 65C/5H, GR : TO 65C/TO 630 39PVC OOSN CIL RAO APP, 0,2 5— 2 5 X 0 0 P . GR: TO 40C/TO 300 43PVC DCSN CIL RAD 2QC/30 , 600 45PVC OCSN CIL RAO 4-25XDOP, APP, ' 2?C/3C»6CD, 40C/10D. gr : TO 8 3C/T0 8 30 46PVC OCSN CIL RAO NKD, 4-25X00P, 4CC/1CD, APP 48PVC OCSN CIL RAO 65C/2.5H, GR: TO 6H . 51

- 12 -

Page 23: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

PVC OOSN CIS. RADPVO DOS N OIL RAOPVC DCSN CIL RAOPVC DOSN CIL RAOPVC DCSN C IS. RAOpvc OCSN CIL RADPVC DCSN CIL RAOPVC OCSN OILPVC OCSN R20 RADPVC OCSN R2C RADPVC OCSN TG GCPVC DCSN TG RAOPVC OCSN TG RAOpvc OCSN TG RADPVC OCSN TG RADPVC DCSN TG RADPVC HMBP ETOH TLCPVC Hf»8P HC TLCPVC HMBP F2C TLCPVC HMBP rC AC TLCPVC HMBP OIL TLCPVC MGST H20 SPECPVC m Map RAOPVC MSN H2C SPECPVC MSN C IL RADPVC MSN CIL RACPVC PAP AQPVC PAP AGPVC PAP AQPVC PAP OPPVC PAP OPpvc PAP OPPVC PAP OPPVC PAP H2Cpvc PAP H20PVC PAP H2GPVC PBPVC RSE AGpvc RSE AQPVC RSE OPpvc RSE OPPVC RSE OPPVC RSE H2CPVC RSE H 20PVC SN ETCH CCLCIri

PVC SN £7 20PVC SN HCPVC SN H2C ’ COLORPVC SN HC ACpvc SN CILPVC SN VEGPVC TEP H2C RAOPVC T IC2 F2G SPECPVC TTB ET 20 PADPVC TTQ HC RAOPVC TTB MECH RAOPVC TTB CIL RADPVC TTB CIL RAD

20C/30.60D, GR1 T

AFP, FAT— PENETRAT20C/43 .600GR: 2 G-AGC/Oo 1-30ZC C/6 jO , 65C/5H,2CC/30D. 4 5 C/ ICC*NK D * 3, 1C ,20,30,44 , 23-25C/ 1,2.3,4-25SS00P, APP,29C/43 ,600NKD , TC 93C/T0 1306 5, 83C/2 * 5H2CC/30 ,63065C/2.5H, GR 1 TO 6H20C/30.6GD, GRI TO 600APP, FAT-PENETRATION,NKD, 45C/1CONKC, 45C/10DNKO , 45C/10DNKO, 45C/10DNKO, 450/1005 ,500/2,4,6,3

W

D, K, I NTCR— POLYMER5 , 500/2,4, 6, 6W20C/30D, 40C/10D,40C/5-240KEN I , 38-56C/TC 120NKO , 2G-56C/7C 150EN I , 4 j-eoc/To 20 0EN I , 38— 5 t;C/7 0 1 2 DNKD, 2C-56C/TC 1502C—

6

SC/TO 200, EN I

46-70C/TO 120, ENIEN I , 38-56C/T0 120NKD , 20-56C/TC 1504G-70C/TO 12D, ENINC , 20-80CEN I . 38-56C/T0 120EN I , 4V-80C/T0 200ENI , 38—56C/T0 1202C-6JC/TO 200, ENI40-7GC/TO 120, ENIEM, 38-56C/T0 1204 j—70C/TQ 120, ENIRT/1-138H, SURFACE-WASHRT/C .5, 1 » 1 1MR T /C « 5 , 1 , I 1MRT/1-133H, SURFACE-WASHAPP, NO. NS, NTTRT/0.5, l.UMAPP, NO, N£* NTTGfi: 2 2—800/ 5H— <5 305 ,500/2,4 ,6,8*200/600, 65C/5H, GR: 0®5-5H200/600, 650/ 5H , GR: 0.5-SH2uC/60D, 65C/5H, GRI 0 , 5-5MAPP, 20C/60O, 65C/5H, GR : TO200/30 ,60 0

52650/2, 5H 53

5455

l 3?15 5

1 561 87

gr: to aoc/TO 800 46541033455152

650/2, 5H 531 701731 70l 701 703 3

1 3

30TO 30 D 42

4485

i 821 8386

1 821 8413 5

861 821 8516586

1 8366

I 341 8586

18534

1 801 8034

I

1801

1 2

301 321321 32

65C/TO 600 3945

Q 600ICN. 200/30,600,

OGR: 0.5-5HNKO50/100, 750/20

6M, 4 50 /I CD200/30,600, 400/10D,

200/30,600,

7 00/0 » 5H , gr:

- 13-

Page 24: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

PVC TTB CIL RAD b SC /2 « 5H » GRI TO 6H 51

pvc TTB CIL RAD 22C/30.60D. GR: TO 600 52PVC TTB CIL RAD APP, HAT-PENETRATION, 20C/30.60D. 65C/2 ,5H 53PVC TTB CIL RAD 20C/60D. 65C/5H, GRI 0.5-5H 132PVC TTB TG RAD e 5 , 83C/2 , 5H 38PVC TTB TG RAO 2 JC/30 .600 45pvc TTB TG RAD 6 5C/2 » 5H» GP: TO 6H 51PVC TTB TG RAD 20C/33 . 60D . GR: TO 60D 52PVC TTB TG E AD APP, F A T— PENETRATION, 20C/3C.6DD. f 5C/2.5H 53PVC VC ETCH GC NS. 22C/3.6.9, 12M, GR: TO 49C/T0 1 OY 27PVC VC ETCH GM SCL. SD, 30—9 OC 7

pvc VC ETCH GR: 23— 7CC/C. 01—7200 131PVC VC HC GC NS. 22C/3 ,6,9. 12M, GRt TO 49C/T0 1 OY 27PVC vc HC GC K , S/D 1 16PVC VC H2C GC NS. 22C/3.6.9 »12M, GRI TO 49C/T0 1 OY 27PVC VC H2C GC K, CMT. SD 62PVC vc H2C GC K, SD, AC 63PVC VC H2C GC K , S/O l 16PVC vc H2C GM SCL, SD. 30— 9 OC 7

PVC vc H2C MC , 2 3 C / 1 — 1 80 D 5

pvc vc H2C GR: 23-7CC/C. 01-7200 131PVC vc HOAC GC NS, 2 2C /3.6.9.12M. GR: TO 49C/TO 1 OY 27pvc VC HOAC GC K, SC, AC 63PVC vc HOAC GR: 23— 70C/0. C1-720D 131PVC vc CIL GC 40C/1 0.20D . RT/35D. GR : TO 160D, CP 93pvc vc OIL GC NS, 22C/3. 6.9.12M, GR: TO 49C/T0 1 OY 27PVC vc C IL GC K, CMT, SD 62pvc vc CIL GC K , S/D 1 16PVC vc OIL GRI 23-70C/C. C1-720D 131PVC vc GC AIR, MODEL, GR: TO 38C/T0 30D 26PVC vc GM C. SD. CMT, 20-90C 8

PVC ZNST H2C RAD GR: 22— 80C/5H—90D 12

PVC ME GC 4 C / 1 .2.8.4D 28PVDC DCP OIL APP, CMT, SECT, CP. FAT-MIGRATION , 40C/ 1.2. 4,9. 16.25D 130P VDC ETCH GR: 23— 70C/0.01-720D 1 31

PVDC H2C GRI 22-70C/C ,C 1-720D 131PVDC HOAC GR: 23-7CC/C . C 1-720D 131

PVDC CIL GR: 23-70C/C. 0 1-720D 131

SAN AN ETCH GR: 23-70C/C , 0 1-720D 131SAN AN H2C GRI 23-7CC/C. 0 1-720D 131

SAN AN HC AC GR: 23- 7CC/C ,C 1-720D 131SAN AN OIL GRI 23-7CC/0.C1-720D 131

SBR BCO D 141

SDR HXD C , CMT 139SDR MW GM BLOOM 1 58

SDR MAX TO 28CD 19

V/APQ VAC H2C 6VC/1H, NKO 20V/APB VC ETCH

•14

V/APO VC H2C 14

PAN AN H2C GC K, SD. AC 63PAN AN HOAC GC K. SD. AC 63PVC/ ABS AN ETCH POLAR NKD , RT/4D 95P VC/ABS AN H2C PCLAR NKC. RT/4D 95PVC/ ABS AN HOAC PCL AR NKD, RT/4D 95

PVC/ABS AN CIL PCLAR NKC, RT/4D 95PVC/ ADS EST ETOh PCLAR NKD, RT/4D '95

PVC/ABS esT H2C PCLAR NKC, RT/4D 95

PVC/ABS bst HOAC PCLAR NKD, RT/4D 95

- 14 -

Page 25: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

PVC/ ABS esr C SI PCLAP NKD 9 RT/4D 95PVC/ ABS OCP ETCH PILAK NKC « RT/40 95PVC/ ABS OOP H2C POlAk NKC * RT/40 95PVC/ A3S OCP HC AC PCLAB AKO « RT/40 95PVC/ ABS OOP C1L P CL AR AKCg RT/40 95PVC/ ABS s ETCH PCLAR NKD • RT/40 95

PVC/ ABS s H2C P CL AR NKC. RT/40 95PVC/ ABS s hCAC POLAK NKD 9 RT/40 95PVC/ABS s Cl L PCLAR NKC t RT/40 95PAT xvz CIL RAO APP » 40C/10D 1 15

PES xvz H20 TC 50C/TO aw i 1 9

ABS/MA ETCH 3 9-6 EC/ l —70 e NKD 1 79A8S/MA H2C 39-65C/1-7D* NKD l 79ABS/MA HO AC 39-6SC/ I-7C. NKD 179ABS/MA 39-65C/1-70* NKD 1 79

APP 41APP 49

LITERATURE REFERENCE

Is A dcoc k 9 L. H»New Test Tells How A <1 d i t ives in Packages Migrate into FoodPackage Eng©* VoU 2i» No* 9* pp© 45—6 (1976)

2« A l f r e y » T ® * Gurnee* E ® F ® « and Lloyd* W « R «

Diffusion in Glassy PolymersJ* Polym* Sc i e C» Vol» 12* pp« 249 ( 19661)

3 . Asada. Ta» InouetDiffusion in thePolymer J** V o l •

K©» and Onog i * SoNylon 12 and Hater System6# No® 1* pp® 21-29 (1975>

4® Oaydonaite® V ® A © * and Yushkevi chyutei S»S«Migration of Anti os i dants between Polyethylene and PVCPlast® Massy* No* 9* pp « 53 ( 1 9 7 5 ) « Inti® Poly© Sc i * Technol®

Vol. 3* No t 2» pp® 70 (1976)

5© Banzer. J © D ®

The Migration of Vinyl Chloride Monomer from PVC Pipe into WaterSoc® Plast® Eng® NATEC* Now® 1977* pp© 33—34

6® Bent* F * A ® « and Pinsky® J *

Theoretical Investigation of the Mechanism of Transfer of Materialsthrough Polyethylene

Wright Air Development Centers Technical Report 53—133* P t * 2 ( 1965)

- 15 -

Page 26: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

7® Berensi A © R

©

The Solubility of Vinyl Chloride in Polyivinyl chloride)Polymer Preprints# Vol® 15® IP* 157 (1574)

8® Berens® A ® R ©

The Diffusion of Vinyl Chloride in Polyi vinyl chloride)Polymer Preprints® Vol* 15® pp. 203 (1974)

9© Berenst A® R« « and Can iels» C®A«Prediction of Vinyl Chloride Monomer Migration from Rigid PVC PipeP © l y m © Eng® Sc i « < Vol® 16* No® 5® pp® 52 (1976)

10® Berg ner® K • G ® * and Berg® H®

Migration of Additives from Plastics in Triglycerides Comparedwith their Extractabi i i ty by Organic Solvents

Dtsch® Lebensm® — Rundsch®® Vol© 68* No® 9® pp® 28 2— 8 (1972)

11® Bethune® J»L©Directed Transport of Mo n om er — S a n g 1 e Polymer Systems® Comparison

of the Countercurrent Analog and Asymptotic ApproachesJo Phys® Chenis * Vol© 74® No® 22. pp. 3337-45 ( 1970)

12® Bloom « P « J o

Contribution to the Investigation into the Migration into Li qui a

Foods of Auxiliary Substances Used in Plastics ManufacturingProcessing® Part II© Migration of Auxiliary Substances ofPolyi Vi nyl Chloride) into Drinking Water

Dtsch® L e ben sm « — R u n ds c h © * Vol* 72* No® 6® p p* 194—7 (1976)

13© Bobrovskaya® T®S©» Markelov* M S A©« and Semenenko® Eel®Migration of Dioctyl Phthalate from Plasticised PVC into WaterPlast® Massy® No® 4® pp© 56 ( 1974); Inti© Polyin. Sc i • Technol •«

Vol© 1. No. 7® pp. 10 (1974)

14© Boikova® Z ® K © * and Petrova® Lai®Migration of Vinyl Acetate from Copolymers Based on it

Plast© Massy® No® 12® pp* 43 ( 1 97b ) « Inti. Polym® Sc is Technol*.Vol* 4® No® 5® pp® 25 (1977)

15® Booher® T®R©« and Stringer* C®D®Study of Additive Migration from Films to Food by 14f—LabelingACS Abstr , « Div® Cry. Coat® Plast®. Vol® 152® pp* T 2 2 (1966)

16® 8 o t r e » Co® D® Antoni* L#» Memoli* A © » and Pallotti , G«Chemical® Technl copharmac eu t i c a l and Legislative Aspects on the

Transfusion Blood and its Components® Note II© Extraction o

Plasticizers from Blood in the Poly (Vinyl Chloride) ContainerPass* C h i m . » Vol© 27® No® 5® pp® 245—8 (1575)

17® Brit. Plast. Fed®* and Brit. Ind© Biol® Res© Assoc©Plastics for Food Contact Applications® A Code of Practice for

Safety in UseLondon® pp. 54 (1569)

18© Bro i twan® A « Y a © « Putilina* L e V © ® and Podval'naya, E»K«Toxicolgy of Vinyl Acetate-Vinyl Pyrroli done CopolymersPlast. Massy* No. 12* pp*4E (1976)5 Inti* Polym. Sc£® technol®®

Vol© 4® No© 6* pp® 50 (1977)

an

f

s

- 16 -

Page 27: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

1 9 • Brown* D®W®« andriern^s Law and

Po l y C v i n y L

J • p o l y m o 5c i a »

Lowery® R ® E *

Diffusion Constants of Vinyl Chloride inchloride? at High TemperaturePclym® Chew* Sect*® Vol* 15® pp®2623-39 {1977?

20* Bruck® C*G« vow® Eckert® W.R®. and Rudolph® F®B®Migration of Vinyl from P VC PackagingFette* Seifen® A n s t r i c h e m • » Vol* 76® No* 8® pp® 334— 7 (l c>76?

inti* P o L y m « Sci* Technol*® Vol* 3® No® 1C® PP® 103 C1976?

21* Brucki C • G • Vorrt® Figge® K * * Piater® He® and Wolf® V®Migration of Plastics—Processing Adjuvant Substances from Films

into Liquid and Solid Fats and Simuianis® IX® Results ofPrevious Extraction and Migration Studies

Otsch® LebensiB®- Rundsch*® Vol* 67® No® 12® PP® 44 4—50 (19 71)

22* Chalyukh* A * E

Diffusion of Mononers in PolymersVysokomol* Soedin*. Ser® B® Vol® 17® No* 3* pp® 215—19 {1975?

23* Chantrey® Go® and Rattee® 1*D»Influence of Polymer and Dye Characteristics on Diffusion in

Nylon 66J« Appl* Polym* Sci « t Vol* 18® No* 1® pp* 9 3 — 193 {1974?

24* Code of Federal Regulations® Title 2i« Food and DrugsPart 175© Indirect Food Additives! Adhesive Coatings and ComponentsPart 176* Indirect Food Additives! Paper and Paperboard ComponentsPart 177® Indirect Food Additives! PolymersApril 1, 1977

25* Chernova® T*V»Hygienic Evaluation of SNP— 2P Polystyrene Containers Intended for

Packaging FoodstuffsVopr. Pitan. ® Vol. 30. No. 5* pp. 56-58 {1971?

26* Crider® L ® B ® * C'Mara« M • M * « and Bowles® R ® L ®

A Model for the Diffusion of Vinyl Chloride Monomer from PVCUnder Various Conditions of Storage

Soc* Plast. Eng. NATEC® Nov* 1977, 195-9

27* Daniels® G®A®* and Proctor® DsE®VCM (Vinyl Chloride Monomer? Extraction from PVC BottlesMod* Package* Vol® 48® No* 4® pp* 45—8 (2975)

28* Daun® He® and Gilbert® S*G«Migration of Plasticizers from Polyiwinyl chloride? Packaging Films

t o M e a t

Jm Food Sci®, Vol® 42® No® 2. pp* 561-2 (1977)

29* Davies® U • T «

Migration of Styrene Monomer from Packaging Materials in Food®Experimental Ver i f icat ion of a Theoretical Model

J • Food Technol®, Vol® 9® No e J i p p « 275-83 { 1974

)

30 . Dietz® G « R ® * B anz e r » J a 0 * ® and Miller® tz $ M

Water Extraction of Add i t

i

v e s from P VC Pipe

- 17 -

Page 28: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

3 1 •

3 2 »

3 3®

3 4®

35®

36.

3 7.

38®

39.

4 0.

41 *

42 •

Soc® Plasto tugs KATECe Nov. 19779 pp« 25—9

Ootreppe-Gfisard« N«Control of the Migration of Adjuvants of Plastic Materials in

Food LiquidsTr ib« Cebedeau (Cent® Be lye Etude Coe. E a u x i ® Vol® 25* No® 3 41

pp . 198-20 1 ( 1972 1

Dot 5enko« V©Ae® and Shiba® V©V©Methods for a Ssni tary-Chemical Evaluation of Polymeric Materials art

Products Made from them in Contact with Foods and DrinksGig© San i t » « Vol» 10® pp. 96— 2 C i 9 7 2 )

Downes® T©&®The Mechanism of the Migration of Oryanoti n Stabilizer from

Polyivi nyl chloride) into Containing MediaDiss. Abstr® lnt«» 0* Val, 33* No® 8* pp® 37J2C Order* No® 73-4740 IIP -”

Downes® T ® to ® ® and Gilbert® S ® G .

The Effect of Surface Treatments on the Migration of Organot i

n

Stabilizer from Polgi vi nyl chloride) Films to Contacting LiquidMedia

Dtsch* Lebensa.-Rundsch.* Vcl. 71® No. 12* pp« 4 2 2— 425 U ° 7 5 <

Easterling® R ® E . » Johnson* E ® * and Napier® E ® 4 & « Jr®Plasma Extraction of Plasticizers from Medical Grade

Poly( vinyl chloride) TubingProcs Soc® Exp® Biol® Med** Vol 0 147* No® 2* pp • 572-4 (1974)

Evstatieva® M

Migration of Some Azo Dyes from Prepared Polymer MaterialsKh i g® Zdraveopaz®* Vol. 16* No® 5* pp® 479—82 (1973)

FDA Guidelines for Chemistry and Technology®Requirements of Food Additives Petitions

Bureau of Science® FDA® HEW (August 1966)

Figge® K .

Migration of Processing Aids from Plastic Film into Food FatsKunststoffe® Vol. 61® No. 11, pp. 832-8 (1971)

Figge® K ©

Migration of Additives from Plastic Films into Edible Oils andFat Simulants

Food Cosset • Toxicol.* Vol® 10* No® 6® pp® 81 5— 28 ( 1972)

Figge* K .

Determination of Total Migration from Plastics-Packaging Materials i n^|Edible Fasts Using a Carbon-14—LaOeled Fat Simulant

Food Cosniet* Toxicol®* Vol. 11* No® o« pp. 9 63—74 (197 3)

Figge® K»Method for the Determination of the Total weight of All Components

Migrating from Packaging Material into Edible Fats* the So — C alienTotal Migrate* Using Fat Simulant HB 3 0 7— ( 1 4 )

C

Dtsch. Lebensm.— Rundsch. « Vcl® 69* No® 7* pp. 253—7 ( 197 3)

Figge® K •

4

m- 18-

Page 29: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

43 .

44 *

45 .

46*

47 .

48 .

49 .

50 .

51.

52.

Migration °f M e t h y 1 1 In Thioglycclic Acid Esters from Rigid P VCP a c k a g t ngs into Fat—Containing Foods

Verpsck*-Kundscn« i VoU 26. No. 8® pp* 59—63 ( 1975)

F i g g e » X •

Radi oanalyt i c Method for Determining the Passage of PackagingIngredientsnt o Foods

J. Radioanal® Chem®, Vol® 32* No* 2* pp. 315—43 (1976)

Figge* K.< and Pieber® rteC.

Migration of Methyltin Stabilizer Advastab TM 131 FS from Rigid PVC intoFat Simulant HD 3 L 7 . 11. Migration Behavior of Several c tab i l i zerComponents

Verpack.-Rundsch* * V o l • 26* No. 8® pp. 1 1 — 22 ( 1975)

Figge* K.» Eder® S.R.® a md Pi ater * Ho

Migration of Plastics Processing Additives out of Foils in Liquidand Solid Fats as uel L as Simulants* XI* Synthetic TriglycerideMi (ture as General Fat Simulant

Dtsch. Lebens9i*-Rundsch* , Vol® 66® No® 11® pp® 259—67 ( 1972)

Figge® K«« and Koch® ,J®

Effect of Some Variables on the Migration of Additives fromPlastics into Edible Fats

Food Cosmet. Toxicol.® Vol. 11® No. 6® pp. 975—983 (19735

Figge® K.« and Koch® J.Determination of the Migration Rate from Plastics onto Nutritional Fats

by means of a C a r bo n— 1 4 —L a b e l e d Fat Simulating AgentReport AEC-Con f-72-461-l» PP® 12 ( 1973)

Figge® K.» and Koch, J®Determination of the Total Plastic Packaging Components Migrating into

Edible Cil by Using a C arbon— 14— Labeled Fat SimulantFette® Seifen, Anstrichm.® Vol. 77® No. 5® pp® 184-8 (1975)

Figge® K.» and Pi ater , Fi*

Methods of Migration and Extraction Studies with 14C—LabeledAdditives® III. Migration of Plastic Additives from Films IntoLiqu id and Solid Fats and Simulated Fats

Dtsch. L e ben s m «— R u n d sc h . ® Vol. 67, No* 1® pp® 9—15 (1971)

Figge® K«« and Pi ater* H®Migration of Adjunct Materials of Plastics Processing from Films

into Liquid and Solid Fats and Similar Substances. IV® Amountsof Additives on the Test— Film Surfaces

Dtsch* Leb en sm»— Rundsch.® Vol. 67® No® 2® pp. 4 7— 8 ( 19 71)

Figge® K®» and Plater® H®Migration of Adjuvants of Plastics Manuf acturing from Films into

Liquid and Solid Fats and Simulated Fats* V* Extraction andShort— Term Study Data

Dtsch. Lebensm®— Rundsch* Vol® 67® No® 4® pp® 1 1 J — 19 (197 1)

Figge® K®» and Plater® h*Migration of Auxiliary Materials from Plastic Films into Liquid

and Solid Fats or Fatlike Compounds. VI* Migration andLong-Term Tests with Liquid Fats and Fatlike Materials

- 19 -

Page 30: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

Disc

h

Q Leben$®»-Rundsch V o i 6 7® No® 5s pp<® 15 4—61 {19 7 1)

53 .

54.

5 5®

56 a

57

58a

59®

60 *

61 •

62 •

63.

64®

FCgge® K « ®

M i graft IonVII®i» i ft fa

Dt sch, L e

and Plater ( H ®

of Adjuvants Usees in PlastiMethod and Results of EntrSolid Edible Fats* P e n e t r a

ben s ra ®— Ru n d s c h ® * Wot* 67® No

cs Manufacture fro® Films®action and Migration Enoerition of Adjuvants into Soli® 7® pp* 235-42 {1971)

m e n t s

d F a t si

F a g g e » K « ®

Migrationandand

Qtsch® L e

and Plater® H®

of Auxiliary Manufacturing Substances from Films IntoSolid Fat and Simulants® X® Passage of Additives intoD i-n- Alkane Ethers as well as Into other Organic Liquibensta.- Rundseh®. Voi.® 68® No® 1 0 . pp® 3 13 —3 19 {1972)

L t qu a a

N— Alkaned s

Figge® K <® « and Zeman® A®Migration of Tin Stabilizers fro® Unplasticized PVC Film Into Far —

Containing Foods® X—Ray Photoelect ron— Spect roscopic andRadi oanalyt ical Examination of PVC Surfaces

Kunststof fe. VoU 63® No® 8® pp« 5 4 3 — 5 5> C1973)

Franzket C«® Uhde® k. J. • and Waggon® H®Migration of Antioxidants and Stabilizers from Plastic Packing

Into Edible CllPiaste Kautseh*® VoU 17* No® 5® pp® 327 — 3 U {197 3)

Frawley® J e P «

Toxicol© Evaluation of Migration of Food AdditivesACS a b s t r » ® 03 v. Crg® Coating Plast. ( Vo l* 152* T23 (66)

Frisch® H®L®» Wang® T. T. » and Xwel® T.K.Diffusion In Glassy Polymers II®J® Potym© Sci® A ® » Vol® 2« No® 7* pp® 879 11969)

Fritz® Wo® and Waggon® H©Migration of Carcinogenic hydrocarbons from Carbon — Block Stabilized

Plastics into FoodsZe Gesamte Hyg® Ihre Grenzgeb*. Vol© 19. No© 5. pp® 349—352 {1973)

Ganeva® M«® and Radeva® V®an Approach and Methods for Determination of Dye Migration from

Plastic P ac king for Food ProductsKhig® Zdraveopaz*® Vol® 19® No* 3® pp® 281-5 (1976)

Gardner* K«L«® and Mcnatly® G ® M e

Morphology of Polypropylene in Relation to Dye DiffusionJ© Soc© Dyers Colour®® Vol* 93. No. 1® pp® 4-7 {1977)

Gilbert® S « G ®

Migration of Minor Constituents from Food Packaging MaterialsJ* Food Sci. « Vol® 41® No® 4» pp® 955—8 (1976)

Gilbert® S.G. « and Giaein® J»R®Migration of Indirect Food Additives from Plastic

Packaging Materials! Physical Chemistry Consi derationsSoc. Plast® Eng® NATtC s Nov® 1977® pp® 35-36

Guricheva* Z©G®1 Rudakova® M*N®

- 20 -

Page 31: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

Effect of the Composition of Polystyrene Plastics on Migration of Low—^olecuUi— Weight Substances from them

Plast* Massy* No© IP* pp© 3*5 — 40 (197o)

t» 5 • Curichevdt Z»G®* Krymskaya* i.L«* ku d a k ov a * M * N © * and duKevich* G®M©To* icclog ica l Evaluation of the Migration of Phthalocyani ne Blue

Dye from PolyethyleneG i q « Pr imen • Poi. i«» Mater® Izdel t t N i k h » No® i® pp® 34 7—5 4 ( 1969)

66© Gur ichevai Z© G • » Rotenberg* V © V © * and Shaulova* N © S »

Migration of Lake Red ZHE from high—Pressure PolyethyleneGig© San t + * . No© 6® pp® 9 4— 5 (1974)

67© Gutsaiyu l« V • G • « and Samosova « N © S ©

Migration of Plasticizers from Polyi vinyl chloride) Plasticsinto Salt Water Solution

I z v • Akad® Nauk Kaz® S S R » Ser© Khi «• * No® 2 » pp® 95 (1962)

68® Guzeev® V » V ® * Belyakova® L»K®» Khokhlova® M • M » » Fomina® T © A • « andLebedev® V # P ®

Migration of Low-Molecular weight Plasticizers from PlasticizedPoly (Vinyl Chloride) Into Polyethylene

Plast® Massy® No® 9® pp® 53— c (1959)

69# Hauserjsan* R © G • ® and Johnson® M »

Diffusion of Stabilizers in Polymers® III©2® 4—Dihydro*ybenzophenone and 2— Hy d ro x y — 4— Oc t o k yb e nz o p h e n on e in

PolyurethanesJ® Appl® Polyra® Sci©« Vole 20® No* 9® pp® 2533-9 (1976)

70© Hearaings D©F«« Collins® J®D®* and Datyner* A®

The Effect of Competitive Adsorption on the Rate of DiffusionJ® Appl® Polym® Sc i ® » Vol® 20® PP© 597—607 (1976)

71# Hill® M* P » L © « Millard® P • L © » and Gwen® M © J ©

Migration Phenomena in Silicone Modified PolystyreneACS Civ© Crg© Coat® Plast® Chern. Pap®» Vol® 34® No® 1® pp® 334—6 (1974

72® Ingle® G * W a

Quantitative Aspects of Migration of Food AdditivesACS Crg* Coat® Plast® Chern®® Vol* 152® T21 (1966)

73© Jackson® R©A®» Cldand® S«R®0®* and Pajaczkowski « A©

Diffusion of Additives in PolyolefinsJ® Appl® Polym® S c i ® » Vol® 12® pp® 129 7— 1309 (19 6 8)

74© Jaeger® R©J®Extract ion® Accumulat ion® and Metabolism of Phthalate Ester

Plasticizers from PoLy( Vinyl Chloride) Medical De vicesP h • D * Thesis* Johns Hopkins U n i v ® » pp® 194 (1971)

75© Jaeger® R®J®» and Rubin* R © J #

Migration of a Phthalate Ester Plasticizer from PolyC vinylChloride) Dlood Bags into Stored Human Blood and its Localizationin Human Tissues

N. Engl® J. Med®. Vol© 287® No© 22® pp® 1114-8 (1972)

76® Jaeger® R®J®« and Rubin* R©J«

- 21 -

Page 32: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

Metabolism® and

7 7©

78 .

7 9©

30 e

3 1©

82

83®

8 4©

85®

86 s

87©

68 *

Plasticizers from Plastic Devices : ExtractionAccumulation by biological Systems

Science® Vo U I 7 C « Ko • 3 9 5 6. p p • 4 6 C — 2 (19 7 0)

Johnsons M © ® and Westlake® J « F ©

Diffusion of Stabilizers in Polymers© II®2—Hydroxy — 4—Cctoxybenzop henone in Polyolefins

J • Appl« Polya. Sci. « Vol© 19. No© 6. pp® 174 5— 54 ( 1975)

Karapouris® E © M *

Study of Plasticizer Migration by Radioactive LabelingRev© Gen© Caoutch* P l a s t © » Vol» 5 2® No® 4. p p © 2b 9— 92 ( 1975)

Karapourls® E©M®Migration of Plasticizers Into Petroleum GilsEur© Polyin. J®. Vol, 11® No© i L ® pp* 70*5—10 (1975)

Kampouris® EoM©Migration of Plasticizers from Po ly ( V i ny l Chloride) into Edible OilsPolya

»

Eng® Sci®. Vol© lc» No© 1* pp© 59—64 (1978)

Kampourl s <

MigrationPolymer®

Karel© M ® ®

MigrationFood

MIT C am br1963

Kataeva© S

Deters! naFilm

Gig® San!(Eng

E«M,« Regas i F © * Rokotas. Se® Polychronakis. S«

of PVC Plasticizers Into AlcoholsVol. 16. No. 11® pp© 840-4 (1975)

and kogan® 6©N©of Substances from Flexible Containers for Heat

s and P a n t a zc

Processeds

idge Civ© of Sponsored Res© Tech©® Report No® 4» Jul 196

« E « ® and Kofanov® V © I ©

t! on of Cicarbonylic Acid Esters in PolyCvinyl chloride)Ex tracts

t*« Vol® 36® No© 7® ppa 6 7— 69 (1971); Hyg« San i t .

« TransD* Vol© 36. No© 7 — 9® pp© 81-4 (1971)

Keller® A«A#® Sheldon. A®to©» and Simmons® I©

Fast Extraction Tests for Food-Grade (PolyCVinyl Chloride))Mod® Packag©. Vol® 48® No# 8® pp© 42—4 (1975)

Keller® A • A « « Sheldon. A » W « » and Simmons® I©L®Accelerated Extraction Tests for Food—Grade Uctyltin Stabilized PVCSoc© Plast. Eng*® Tech© Pap.® Vol. 20»« pp© 514—17 (1974)

Kierueler# F®» Evers® K © — w © . and w 1 Idbrett « G »

Use of Plastics for Foods© XIV® Simulated Practical Test for MilkPipes

Dtsch® Leoensm©— Rundsch®® Vol* o 5 » No© 10. pp© 3 0 5-1 1 (1989)

Kim. J © — \M © ® and I i j i m a » T «

Diffusion of Dye Mixtures in Nylon 6® Binary Mixtures ofDisperse Dyes

J« Apple Polym* Sc i® • Vol© 2Q« pp© 1 J 5— 113 (1976) 5— 11 (1969)

Klein. J ©

Diffusion of Long Molecules through Solid PolyethyleneI© Topological Constraints

- 22 -

Page 33: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

J © Polyas Set e » Polyjn « P h y s « Sect©® VoU lb, 2057-64 (1977)

89® Klein® J© and Briscoe® B * J ©

Diffusion of Long Molecules Through Solid Po l yethyleneIS® Xeasurements and Results

J. Polyra. Scl«« Polya* Phys* Sect* , VoU 15* 2665—74 { 1 97 7 i

90* Knibbe> D.E®Theory of Estraction of Additives from Plastics by Swelling

S o l v em t s

PI ssticat Vo l * 24* No. 8 * pp* 25 8— 63 ( 19 71)

91® Koch* J© « and Flgge* K®Migration of Tin Stabilizers from PVC Bottles into BeerZ * lebensBi*-Unters« Forsch** Vol© 147* No. 1® pp. 8— 10 (1971)

92® Koch* J® » and Flgge* K®Decreasing the Fat Siaulant Quantity in Migration Investigations on

PlasticsDtsch* Lebensm*-Rundsch» » Voi* 70* No® 6* pp© 2 5 7— 8 £1974)

93® Koch® J * and Flgge* K»Alteration of the Composition of Fats by Contact with Plastics

and Its Effect on the Accuracy of the Total MigrationOetensination Methods

Dtsch© Lebenm.—Rundsch®* Vo l* 71* No. 5* pp® 170-7 (19

7

6 )

94® Koch® J©® Robinson* L®« and Flgge® K®Deferilnation of Fat Release by Foods® I® MethodsFette* Seifen* Anstrichm.® VoU 78* No® 9* pp* 371—7 (1976)

95* Kosnat su* Y®» Naeiiki. T®»amd Mori* F ©

On the Estractabi l ity of C£— Alkyl Tin Compounds from RigidPoly {vinyl Chloride) Containers

Jo Food Hyg® Soc® Jpn© (Shokuhin Elseigaku Z a s s h I ) * Vol® 11*No© 1 * pp. 17-22 ( 19? J »

9 6® Komarova* E © N ® ® and Maksimova* N « S ®

Hygenic Properties of PVC/AES compositionsPlast. Massy® No. 12* pp* 29 £1976) Inti® Polym* Sci « Tech not®

Vol© 4® No© 5® pp© 5 (1977)

97® Kotova® V • N © • Koval'chuks V . M © * Platonova* T . V ® *

Tsivinskaya® L©K©, and El # tsefon e 6©$©Toxicity Investigation of Polyformaldehyde PlasticsSoviet Plastics* Vol© 1972® No© 1® pp® 7 4— 6 ( 19 7 2)

90© Kovgan* N ® A ®

Hygienic Evaluation of Met a l i t Utensils for Food ProductsVopr© PIten©® Vol® 28® No® 4* pp® 75—76 (1969)

99® Kwe i • T © K © » and Zupko® H » M ©

Diffusion In Glassy PolymersJ® Polym© Sc i * A • • Vol. 2* No 7 * p p © e 6 7 ( 16 6 9)

100© Kwei, ToK®Diffusion In Glassy Polymers VI©J « Polym. Sci® A®. Vol© 2* No. IQ, pp. 1849-1651 ( 1972)

- 23 -

Page 34: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

101 o

102 ,

103®

104®

i 05

o

10 6®

1 07 e

i oa®

109 a

110®

lila

112 ®

K. w e 4 ® T«Kt t and Wang® s © * ©

Diffusion in Glassy PolymersPolymo Set© Technola, Vole 6® Permeability Plaste F i 1ms Coate Gases®

Vap©« Liq®« p p ® 63—71 (1974)

Kweit T © K ® ® Wang® 7 ® T ® » and Z u p k o ® H ® M ©

Diffusion in Glassy Polymers V® Combination of Fickianand Case 11 Mechanisms

Macromole® Vol« 5® pp© 645 (1972)

aa

Lefaus® R ®

Migration of Monomers in FoodsE r

n

a e hr

u

n

g

s f o r sc h u

n

g » Vo i« 16® No® 4® pp® 617-25 (1972)

Lehmann® H»0«Migration of Antistats in PlasticsChem«® Phys® Chem® Anwendungsteche G r en z f l a e c he n a k t i v e n Stoffe®

Inte Kongr, ( Vol, 6 » No® 3® po® 661 — 9 ( 1972)Per*

Leimgruber® R © A © ® and Figge ( K ®

Substances Migration from Plastics Food Packaging toContents as a Function of the Solvent Volume to SampleSurface Area

Soc® Plast® Eng® NATEC® Nov® 1977® pp© 4 0—43

Lewis® TsJ®Diffusion of Isopropyl Nitrate® Acetone® ana Water into Nitro-

cellulosePolymer® Vol® 19® PP® 285—290 (1978)

Machin® D® and Rogers® C»£«C o n c e n t r a t i o n Dependence of Diffusion Constants tn PolymersCRC crit® Rev® Macromol® Sci ® « Vol® 1® pp®24 5— 2 13 ( 1972)

Maksimova® N®S©« Sukhareva® L«V*« Guricheva® Z®G«» Demidova®V © M « ® Lazareva® N © P © ® and Sokolova® T®G®

Migration of Stabilizers from Polymers Used in MedicinePlast. Massy. No. 10® pp. 61-2 (1972)

Markelov® M®A©» and Semenenko® E«I«Oetermination of Vicroconcentraiions

Polymer Materials to Water•Plast® Massy® No® 1® pp® 57-? ( 1976 )

° f Substances Migrating

Matveeva® E®N®Determination of

MaterialPlast® Massy® No

the Migration of Antioxidant on the Surface

8 , pp. 68-9 ( 1975

)

Mazur® H«» and Lewandowska® I®

Study of the Migration of Benzophenone Derivative U V (Light)Stabilizers

Rocz® Panstw® 2akl® H i g « , Vol® 27® No® 6. pp «, 61 1—19 ( 1976)

from

o f Polymer

I

Meier® L •

Results of Studies on the Migration of the Plasticizer from PVCinto Tharisoplast ics

- 24 -

Page 35: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

(Hastwerarbe 5 ter Vat 2 8 » No 4 » p p © 165-98 Cl 9 7 7 5

113 .

114 .

1 1 5 .

11b.

117.

1 1 8 .

119.

120 •

12 1 .

122 .

123 .

124 .

Ml Uen* W « » and H a w k e s * S ®

Diffusion of n — Alkanes in Polyidimathylsilonanes!Macro is o l « « Vote 1 0 • No® t • p p » 1 2 5 J —

2

(1977)

Ministro per la Sanita> II

Modification of the Regulation 15 th April* 196 6 * HealthRegulation for wrappings

Industria Conserve* Vot. 43* No. 2* pp. 1 58-9 (19695

Moranot J.Sorption of Vinyl Chloride In Various Poly(vinyt chloride 5

Food Simulating Solvent SystemsPh.D. Thesis* Rutgers Univ©* 1975

Morano J • R ® » Giacin* J « k . « and Gilbert* S © G ©

SorptSon-Desorpt i on of Vinyl Chloride in Selected PVC-Tcod S

Solvent SystemsJ. Food Sci * * Vol. 42* pp. 23C i 1 9 7 7 j

Morita* Z®» Abut hossain* T ® M . * and li jina* T .

Diffusion and Adsorption of a Model Cationic Dye*M— N i t r o b e nz y l

a

m i n e * in PolyacrylonitrileBull. Chem« Soc. Jpn.« Vol. 48* No. 4* pp® 1196—9 (1975)

Morsiers A. DeMigration of Plastic Adjuvant Agents with Regard to To* icoto

AspectsErnaehrungsforschung* Vol® 16* No© 4, pp ® 637—41 (1972)

Narkisi N ® * and Narkis* M ®

Slow Release of Watei— Soluble Salts from PolymersJ. Appl® Polym© Sci.» Vol* 20* No© 12* pot 3431— c (1976)

Novitskaya* L®P®e Kazarinova* N®F® 9 and Kuznetsova* V»N«Determination of Certain Stabilizers— Antioxidants during San

and Chemical St u dies of Polymeric MaterialsGig© Sanit., No® 7, pp. 74-7 (197 7)

Gsiromow* F©Detection of Traces of Additives In Migration from Finished

Polymer Products by Determining the Functional Groups o

AdditivesAnn® 1st® Super. Sanita®* Vcl® 8* No® 2* pp. 474—89 (1972)

Pestova* A ® G © » Oavidan* R ® G ® » and Vladimiskaya* F * E ©

Toxicity Characterization of Polymeric Materials Used inthe Food Industry

Soviet Plastics* Vol® 1972* No® 3* pp® 84-6 (1972)

Peterlin* A©Dependence of Diffusive Transport on Morphology of CrystalliJ. Macromol® Sci® 6* Vol. 11* No® 1* pp© 57—87 (1973)

Petrova* l « I

»

Migration of Low-Molecular— weight Substancesfrom Polystyrene Plastics into Liquid Media

- 25-

i m u l t a n t

g i c a l

I tar y

H { gh

f Su c h

ne Polymer

Page 36: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

T echnol# «P 1 a s t © f^assy » No® 12 e ppe 34—5 S 1 9 7 fc ) *, I n t U Poiym© Sc i «

Vol© 4 « No« 5 g p p < 72 (1977)

125© Petrova* L®I©® and Eoikova? 2®K®Study of the Health Aspects of U P M— 7 03 H« I » PolystyrenePlasi® Massy® No® 5* p p © 62 (1976)1 Inti® Poiym* Sc i « Techno U t

Vo l • 4® No. 1. pp® 24 ( 197 7

)

126© Petrova® L«2©« and Boikovas Z®K©Possibility of the Use of ABS Plastics in Contact with FoodPiast* Massy® No© 12® pp® 31 (1976) Inti® Poiym# Sc i © TechnoU,

VoU 4® No. 5® pp© 99 ( 19 7 7)

127® Petrova® L ® £ a a Boikova® Z » X « « and Guricheva® 2©G©Migration of Styrene from Polystyrene Plastics into Food Products

and a Method for Determining the Mo noraer In themPlast. Massy® No® 11* pp® 57—60 (1970)

123® Petrova® L © 1 © ® Cu richevss Z®G®» Bailova* GaD«® Egorova® E© 1 «

®

Maksimova * K®S« 5 and Rudakowa® M « N

Toxicity Properties of High Impact Polystyrenes Based onVarious Rubbers

Soviet Plastics® No© 5® p p* 67—9 (1972)

129® Pfab® *a®

Methods for Determining Total Migration into Fatty FoodsAnn* 1st© Super* Sanita»« Vcl® 8® No. 2® pp t 385—94 (1972)

150® P fab ® M*

Diffusion in a Plastic—Fat SystemD + sch* Lebensist-Rundsch® i Vol® 69® No* 4® pp. 151 — 62 ( 1973)

131® Pfab® ® and Muecke* G*Migration of Selected Monomers In Foods and Food SimulantsDtsch® L e ben ssn ® — Ru nd s c h * © Vcl. 73® No. 1* pp. 1—5 ( 1977)

132® Piafert h* « and Figge® K«Migration of Additives of Plastic Manufacturing from Films into

Gils and Fats® and Model Systems® Comparison of GravimetricallyDetermined Residues from Extraction Solvents with ActualExtracted Additives

Dtsch. Lebenscia-Rundsch** Vcl© 67® No® 8* p p * 26 5— 9 ( 1971 )

133© PS ekaezi E©Public Health Evaluation of Polyethylene TerephthalaieRoe.z® Panst® Zakl© Hig®« Vol© 25® No* 3® pp® 281-265 (1974)

134. PUr\er» S.Kh.® and Govorukhina® V « 1 •

Diffusion Properties of Plastics Films In BrineRybn® Khoz»* Vol. 45® No. 1® pp® 70—71 (1969)

135®

136.

Poorten* R® Van CerMigration from PlasticsRevue De L'Agricu Iture.

Pugina* M • 1 . * Zaikovai GoDaumant i ene • V © ® Ja

Effect of Stabilizers an

Packagi ng Ma t eri a l s into Da C r y Pr o du c t s

Vol® 27 9 No® 6® p p © 1501 -15 2 0 ( 1974)

E ® « Mo i s e e v ® Yu» V © ® T o r n a u » E© ® Kviklys® A

ske levi c i us® B ® ® and Mac i u l i s ® A*

d S t a b i l 5 z a t I o n Methods on the Pr op«rti e s

«

- 26 -

Page 37: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

of Polymer ter » a ls» 7 ® Kinetic Laws of DiffusionStabilization of Polyamides

L let « Tsr Mokstu Akad* Darb*» Ser® D » No® 2® pp» 69—7 ‘3 (1974)

137® Quankenbos« H ® M ©

Plasticizers of Vinyl Chloride Resins Migration of PlasticizerInd« Eng® Chein®® Vol® 46® pp® 1235 (19541

138® Reed® M*C®» Kleimir® F ®F • « and Schulz® EoF®Plasticizers of Vinyl Chloride Resins* Removal by Oil® Soapy Water and

Dry PowdersInd® Eng® Chemc® Vol® 46® pp® 1244 (1954)

139® R he e » C • K * * and Ferry® J®D®Diffusion of Radioactively Tagged Penetrants through Random and Block

S t y

r

en e — 6 u t a d i e n e Copolymers and Filled c i s —Po i y bu tadienej® Appl® Polym* Scia® Vol® 21® pp® 467—476 (1977)

140® R'nee* C © & ® ® and Ferry® J®C®Diffusion of Radioactively Tagged Penetrants through Rubbery Polymers®

1® Penetrants with Very Low SolubilityJo Appl# Polys. Sc i . ® Vol* 21® pp® 7 7 3-7 8 1 ( 19 7 7)

141® Rhee* C®— K®» Ferry® J®Do® and Fetters® L*J®Diffusion of Radioactively Tagged Penetrants through Rubbery

Polymers® II® Dependence on Molecular Length of PenetrantJ® Appl® Poiym* Sci®» Vol® 21® No® 3® pp® 783—90 (1977)

142® Rienzi® R®Determination of Migration of Vinyl Chloride Monomer out of PVC

Containers for BeveragesInd® Celle Qevande® Vole 4® No® 5® pp® 11 o— 118 (1975)

143# Robinson® L a

Anal® Sys® for the Admission of New Additives and the Control ofMigration

Ann* 1st* Super® Sanita*® Vol® 6® No* 2® f • p » 542 — 9 (1972)

144® Rozaci* C « • Burda® J®« Hlavnicka® J®» Krizek® V®® and Svoboda® ^ ®

Migration og Additives from RubberPlast. Kaucki Vol® 11® No® 12® pp® 360 (1974)

145® Roe® ft®- J#Physical Factors Controlling Retention of Additives in

PolyolefinsACS® D I v # Crg# Coat® Plast® Chem# 9 Prcpt®, Vol® 34* No® 2* pp» 132—7

(1974)

146® Rohleder® K • « and Bruchhaussni B® VonDirect Determination of Plasticizer Migration from Plastics into

Fat and Fat-Containing FoodsDtsch® Lebensm® —Fundsch*® Vol* 68® No* 6® p p * 180—184 (1972)

147® Rombusch® K © » and Maahs® G®On the Distribution and Migration of Antistatic Agents in Specimens

fronrs Polyolefins and PolystyreneAngewo Makroroot® Chem® (Switza.De Vol® 34 ,

, No® 5 31® pp® 55—

7

j (1973)1NASA-TT-F- 1 4794

- 27 -

Page 38: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

148 • Rost* S- »E e

Contamination of Fats with Phthalaies from PlasticsFette® Se i fen « Anstrich®** VoU 72® Not 7, pp. 5 52—3 { 1 97 y

)

149© Rubin® R « 0 .

Biomedical Implications of the Migration of Phthalate EsterPlasticizers from PVC Plastic

Tech® Pap®® Reg® Tech® Conf » « Sac® Piast«« Engs , Palisades Sect®pp® 81-3 { M arch 20-22, 19731

150. Rudto U«Effect of Plastics or. FoodsGordian, Vole 71, No® 4® pp® 102 — 95? No® 5, pp®I4l — 45 (1971)

1 5 1 o Rysavyi L ©

Water Extraction of Stabilizing Additives and its Effect onAtmospheric Aging of Polypropylene Films

Plasty Ka uc ® , Vole 1.3* No® 10* pp® 29 7— 9 ( 1976)

152® Salamet M.The Prediction of Liquid Permeation in Polyethylene and Related

PolymersSPE Trans®, VoU 1« No, 4, pp® 1 — 11 Cl 96 1 )

153® S a l am e • M © , and Pinsky® J«

Permeability PredictionMod® Packag®, No® * pp® (1962)

154® Salvatore, G®Method of Determination of the Global Migration of Plastics and Rubbe

in Fatty Foods®Rass© Chira®, Vol® 27, No® 2, pp® 57—69 (1975)

155® Seidler® F © ® Haeftigs M » » Woggon, H® « and Jhde, m ® J ©

Examinations on the Migration of (1— 1 4C ) — 2—Ethyl—Hexyl Ester ofD i — N— Cc tyl Tin Dithioglycolic Acid (Stabilizer Gt s 15) f r om HardPVC into Edible Cil

Nahrung, Vol© 15, No. 2® pp. 167-90 (1971)

156® Seidler® H ® « Waggon, H © « haerf ig* M® « and Uhde, w ® J ®

Testing of Plastic Commodities? the Migration ofHi s( 2—Ethyl hexyl) ((Di (Cetyl— 1— 1 4 C ) Stannylene)D5th£o)Diacetatcfrom Rigid Poly(Vinyl Chloride) into Edible Oil

Nahrung* Vol. 13® No. 3, pp. 25 7—64 { 1 9 b 9 )

157. Seidler, F e , Woggon® H® » and Haerti g« M®

Testing Plastics® Study of the Migration of Di — n-Dctyl ( l — ( 1 4 ) C ) Tin2— E t b y l h e x y l — D i t h i o g l y c o l a t e from Rigid Poly (vinyl chloride) iniEcible Cils

Nahrung, Vol. 13® No. 3, pp. 15/— 64 (19b9)

158® Semenenko, E®I®» and Markelov, M«A.Physicochemical Basis of Sanitary Chemistry of Polymer MaterialsKh im* Farm. Zh® Vol® 10, No* 9, pp® 129—136 (1976)

Phar®« Chem® J* (Engl® Trans U j »

159® Sluzewska, L®

Page 39: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

160 •

161.

162 •

163 •

164 •

165.

166 •

167.

168.

169.

170.

Preliminary Hygienic Evaluation of Silicones Intended for Contact withFoods

R o c z ® Panst« Zakl® Hi 9 . « Vol® 21* No® 2» pp« 16 9- 75 (197 3)

SoKolowsKa ® R

»

Phenol Detenaination Methods and their A 0 p l i cation to HygienicEvaluation of u lastics Utility Products. IV® Migration of Phenolsfrom Products Made from Phenol-Formaldehyde and Epok y—Pheno l Pesi ns

Rocz© Panst* Zakl© Hi g.« Vol® 20* No. 4* pp* 382—89 (1969)

Soholowska * R

&

Identification of Antioxidants Use .d in Polyethylene* II® Identificationin Plastics Items and Migration Study

Rocz® Panst. Zakl. Hi g, , Vol® 23* No® 6 * pp. 661—72 (1969)

Svoboca* P®» Krali cek# J®» Vo ndruskova » Rozaci < G®» Vanek® P © *

and Cockali J ©

Migration of Paraffin Waxes* I • Behavior of Paraffin 58/60 inSBR and in Natural Rubber

Plast® Kaucuk* Vol. 13* No. 8 * pp. 241 (197o)

Tarasova* N © A ® ® Feofanov* V ® C ® » and G u l e V © 2 ©

Benzene Content in Medium-Pressure PolyethyleneGig. Sani t. • Vol. 36. No. 11 * pp. 114-16 (1971)

T roparewskys A.® Pi sarel lo De T r®, MeL.® and M i t t a » A« E« A*Determination of Migration of Plasticizer by 14C Labeled CompoundsReport C N E A « No® 391* pp. 11* Avail. INIS Atominde*, Vol© 7, No® 5.

Abstr. 22760 (1976)

Tsam* Z « M ®

Hygenic Evaluatio n of New P 0 Lymer Materials Used In Dr inkingWater System

Hy g» San S t® » Vela 36, No® 7 - 9 ® p p « 453-5 ( 197 1 )

Uhde » ( d • « and fc o g go n » H ®

Testing Plastics® 3® Migration Rate of Hy droxyphenylbenzotr i azolePlastics into Edible Cil

Nihrung* Vol. 12. No® 8 * pp® ft 2 5— 3 4 ( 196 8 )

Uhde® W.J.. and Woggan® H.Analysis of Plastics Utensils. Migration of Antioxidants from Food

WrappingsDtsch. Lebensm®— Rundsch.* Vol. 67, No® 8 * pp® 25 7—262 (1971)

Uhde* W ® J ® « and Waggon* H®Recent Results Concerning the Migration Behavior of Benzophenone Based

Ultraviolet Absorbents from Polyolefins in FoodsNahrung* Vol® 20* No# 2* pp® 165—94 ( 1976)

Uhde® W.J.® tooggon* H© « and Koehler*Testing from Plastics® 2® Migration

Plastics into Edible OilNahrung® Vol® 12® No® 8 ® pp® 812— z4

U a

of 4 ® 4 * — Thao — b i s( 6~ t — Rut y t— m — Crcso l )

(1968)

Uhde® w © J . * Woggon® H®« Zydek® 6 a * and Koehler© U ©

Testing Plastics® Migration of UV— Absorbents from Food PackagingMateri als

- 29 -

Page 40: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

Dtsch® L e ben s ro « — Run d s c

h

«

9

Vole 65 # No » 9® PP 2?l-78 (196 r')

17 1 ®

172®

173®

174®

175.

176.

177®

178.

179®

180.

18 1 ®

182.

Varsanoo J®L©. and Gilbert. S«G®bva luat i o n of Interactions Retween Polymers and Low —Molecular Weight

Compounds by GLC (Gas-Liquid Chromatography). I. Methodology andInteract Evaluation

J. Pharm, Set.® Vo L 6 2® No. 1® pp. 87—9 1 ( 1973)

V I e t h » W ® R ® ® ana Am ini. Mary A®

Generalized Dual Sorption TheoryPolyrn® Sci® Techmola 6 » Permeability Plast • Films Coat.

Gases® Vap®» L i q « ® p p » 46—61 11974)

Vieth* W ® R ® ® Howell® J.M**Dual Sorption TheoryJ® Membrane Sci.* Vol* 1*

and Hsieh J.H

pp. 17 (197 )

Vorob'evs V ® P ® » GurCcheva* Z«G«« Petrova* L ® 1 ® « and Sazhin. Bel®Description of the Migration cf Low-Motecular-Weighi Components

from Polystyrene Plastics by Diffusion EquationsPlast. Massy* No® 7* pp® 57—60 (1972)

Wang* T.T.* and Kwei* T®K®Diffusion in PolymersPermeability of Plastic Films and Coatings

and Liquids. Hopfenberg* H. 8 .* Ed.Plenum Press* N*Y®» pp. 62 (1974)

to Gases* Vapors*

Westerdahl* C«A»L»Diffusion and Persistence of Silicone Gil in Rubbers and Low Density

PolyethylenePicatinny Arsenal Technical Report* No. 2185® March 197c

Westlake® J a F ® « and Johnson® M®Diffusion of Stabilizers in Polymers® 1®

2 » 4— D i h y d r o x y b en z o p h en o n e in PolyolefinsJ. Appl. Polyro® Sci®» Vol® 19. No® 2® pp® 319—34 (1975)

Wewerka* D®» Fruwirth* Co* and Hummel* K®Reactions in Crosslinked Polymers® 2® Purification of

Polytutadiene by Extraction with Liquefied ButaneKaut, Gumrni* Kunstst.* Vol. 27, No. 3* pp® 92—3 (1974)

Wharton* F«D« * Jr* < and Levin skas* G® J®Toxicological Studies on Nitrile Barrier PolymersChew. Ind. (London)® Vol. 11® pp. 47 0— 4 ( 197 6)

WIeczorek* H©Isolation and Quantitative Determination of Qrganot in Compounds in

Edible Oil and Vinegar after Contact with Stabilized Rigid PVCFi l nr. s

Dtsch® Le ben sm .-Rundsc h . • Vol. 66® No. 3* pp* 92—95 (1970)

Wilobrett® G ®

The Extracting Effect of DetergentMl Ichwi ss«nscbaf ti Vol. 28* No® 7.

Solutions on PVf Milk tubespp. 443-446 (1973)

Wildbrett® G®

Page 41: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

Diffusion of Phthaiic Acid Esters from PVC Milk TubingEnviron® health Per spectu Vol# 3* pp# 2 9—35 ( 1 9735

183® W ( Icbrett* G © * Evers® K • w ® « and Kiermeier* F®Investigations and Observations on the Application of Plastics

for Foods# XII® Migration of Monomeric Plasticizers from PVC MilkTubes into Cleaning Solutions

Fette* Seifen* Anstri chra» * Vol® 71* No* 4® pp« 3 3 J — 335 ( 1 5o5 5

184® Wildbrett® G ® ® Evers* K .— W « . and Kiermeier, F »

Investigations and Observations on the Application of Plasticsfor Foods® XIII® Interaction of Plastics with Milk

Z* Lebensm.-Untsrs. Forsch.* Vol® 142* No® 3* pp» 205—15 (197^5

18b® Witdbrett* G®» Evers* K ® — W ® * and Kiermeier® FaInvestigations and Observations on the Application of Plastics

for Foods® XVI® Diffusion Process in PVC Tubing for FoodsWerkst® Kcrros®* Vol® 22# No® 9* pp® 753— 7 59 { 19715

186® Wilks* R ® A ® * Jr © * and Gilbert* S®G»Sensory and Instrumental Evaluation in Model Systems of Residues

Migrating from Can CoatingsJ. Food Set®. Vol. 37* No® 1. pp. 72-76 (1972)

187* Woggon* H®« Jehle® D® * and Uhde® «« j#Testing of Plastic Commodities® Migration of PVC. (Pol y( V i ny i

Chloride!! Stabilizers into Edible CilNahrung* Vol® 13* No. 4* pp® 342-50 (1569!

18Q® Woggon® H»* and Koehler* U©Testing of Plastic Utensils Polarographic Determination of D t - (2 — Ethyl

He«y l l-Phtha late and Investigation of the Tendency to MigrationKunststoffe* Vol® 57* No® 7* pp® 583—586 (1967)* NA SA—TT— F— 1 38R9

189® Woggon* H # * and Koehler* U#Testing Plastics* 4* Migration of Plasticizers from

Po lyeiethacr y lates into FoodErnaehrungsforschung® Vol® 13* No® 4* pp® 651—55 (19685

190® Woggon* H • » Koehler* U * * and Uhde » nt#-J*Testing Plastics® Migration of Cadmium Pigments from

MaterialsDtsch® L e b e n s m . — F u n d sc h * « Vol® 64* No® 8* pp® 243—47

191® Woggon® H®» and Uhde* W«J®Antistatic Finishing of Plastics from the Food— Tosicoiogical Point of

ViewNahrung* Vol® 21* No# 3* pp® 235—45 (19775

192® Woggon® h®« Uhde* W®J©« and Saeuberlich® H®New Results on the Migration of Qrganotin Stabilizers in FoodErnueihrungsforsehuny* Vol® 16* No® 4® pp® €45— 55 (1572 5

193® Woggon® Ho® Uhde® W®J®« and Zydek® G®Testing of plastics® Migration of 2* 6—Di-tert-Oui yl-p-Cresol (BUT) in

Edible GilsZ® Lebensra® —(Inters* Porsche* Vol® 138® No® 2* p p » 16 9— 77 ( 19 6 8 5

Food Packaging

( 19685

- 31 -

Page 42: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

1 94 « Yen® WsCoHsQuantitative and Qualitative

Stabiliser from PolyCvinJiss« Abstr, Ints 0« 5c i © Enj

70- 1 1<36 2 l l <370 »

s t u i y o f the M i yra t ion o f Or y a n o t i n

y i chl o r » de ) t o L » quid Poo d s

& V Vol © 3 1 » No <# d » po» 134 -j *—> 9 Order « No 3

EOF : 16270 :

NC C0Rf< EC T I C N S APPLIED©

3GFFSEND

- 32 -

Page 43: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

REVIEW AND EVALUATION OF AVAILABLE MIGRATION MODELS

Introduction

Migration of minor constituents from a polymeric film to a food or

simulating solvent is controlled by both transport and thermodynamic

factors. Neither can be ignored if a complete description of migration

is desired. For example, the diffusion of a species (hereafter referred

to as the "migrant") from a polymer film of thickness 2% and volume V

to a stirred solvent of volume V is given by

oo

FT1 1 '2^ 2a(1 +

2}

2exp (1)

00 _ -j 1 + a + a q ^n= i n

where the q n‘ s are the non-zero positive roots of

tan + aq„ = on n n n ( 2 )

and

D= migrant diffusion constant in polymer

K = C / C = equilibrium distribution coefficientS

Cp= equilibrium concentrat ion of migrant in film

Cc= equilibrium concentration of migrant in solvent

Mt= amount of migrant transfered to solvent at time t

M = amount of migrant transfered to solvent at infinite time

If the initial concentration of migrant in the polymer film was C ,

M = VC ando p o

i

Cp _ M

]_ e

°° = a

C 1+a0 0

- 33-

( 4 )

then

Page 44: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

Notice that Eq. (1) is a function of both D (a transport property) and K

(a thermodynamic property). Equation (4) determins the maxi mum amount

of migration that can occur and is strictly an equilibrium or thermodynamic

property of the system.

Equation (1) is the complete solution for a certain class of migration

problems; viz., those systems which obey Fick's two laws of diffusion

and for which D and K are known. Therefore, modeling migration behavior

for this type of system can be reduced to estimating, either theoretically

or by semi -emperi cal methods, K and D.

If the polymer film is appreciably penetrated by solvent, the

diffusion constant is not constant and Eq. (1) will no longer hold. But

even in these systems Eq. (4), which is only a function of K, is valuable

in the sense that it yields an upper limit for migration. Of course,

this upper limit equals (complete extraction of the migrant) if the

solvent mass is mtich larger than the film mass; i.e., if the film

is placed in an infinite solvent reservoir, migration continues to

completion at infinite time. However, in many food packaging applications

(e.g. plastic bottles) a will be finite and a residual amount of migrant

will be retained by the film.

In the next section, methods of theoretically estimating distribution

coefficients will be discussed which will then be followed by a discussion

of theoretical methods for estimating diffusion constants. A general and

practical migration model will ultimately depend on how well K and D (and

their temperature dependences) can be calculated from the physical

properties of the polymer, solvent, and migrant.

Distribution Coefficients

In principle, a relatively good estimate of K should be possible for

some polymer/solvent/migrant systems by using either the Flory equation

2-4of state theory of solutions or the lattice fluid (LF) theory of

5Sanchez and Lacombe . An important prerequisite for the application

- 34-

Page 45: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

of either theory is that the thermodynamic behavior of the

migrant + polymer can be treated as an equilibrium mixture

of two fluids. The amorphous component of a semi -crystal 1 ine

polymer, such as polyethylene, can be treated as an equilibrium

liquid if the temperature is above the polymer glass transition

temperature. Under these conditions, the chemical potential

of any organic migrant species (liquid or gas) within the

amorphous regions can be calculated.

According to the well-known Flory-Huggins (F-H)

theory of solutions^, the chemical potential of component 1 in

a binary mixture is given by

(p1-w

1°)/RT = In*, + (1-V

1/V

2 )* 2* xo2

2(5)

where is the molar Gibbs free energy of pure liquid

component 1 at temperature T, ^= 1-<|>

9 is the volume

fraction of component 1, V-j and V ? are the respective molar

volumes of the two components and x is the reduced residual

4chemical potential . In the original formulation of

F-H theory, x was strictly an energetic parameter that was

proportional to the energy required to form a 1-2 bond

from a 1-1 and 2-2 bond. It also had a simple 1/T temperature

dependence and was independent of solution composition. Now

it is known that x is in general concentration dependent

and possesses a more complicated temperature dependence than

1/T. Experimental ly , x is treated as an empirical parameter

which is adjusted as a function of concentration and

temperature to fit experimental ly determined chemical potentials.

- 35 -

Page 46: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

Even in solutions containing polar components, positive x

4values are usually required . Large positive x's are,

of course, thermodynamically unfavorable and will limit

miscibility.

This positive character of x has highlighted the

failure of F-H theory because the sign of x should be the

same as that of the heat of mixing, AiiL Exothermic mixing

requires a negative x> yet there exist many examples

where AHm

is negative and positive x's are required for

the chemical potentials. Even more puzzling within the

context of F-H theory is that large negative heats of

mixing often occur with mixtures of non-polar components

which require relatively large positive x values (see Table I

for some examples). However, both the new Flory and LF

theories have resolved this apparent paradox. Experimentally*

x often has a large positive entropic component which arises,

according to the Flory and LF theories, from differences

in the equation of state properties of the pure components.

Formally, the concentration dependence of x can be

expressed as

Xs X-j+ x 2

(J)

2+

( 6 )

There are two important limiting values of x-

xrxUfD oo(7)

x°°= xU-j

=o) =? xi (8)

In almost all polymer solutions that have been studied,

x°° > x-j for the solvent chemical potential.

- 36 -

Page 47: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

At equilibrium, the chemical potential (or activity) of

the migrant up

in the amorphous regions of a semi-crystal 1 ine

polymer will equal the chemical potential of the migrant

in the solvent phase:

Pp - PS

(9)

Let the migrant be component 1 and present in small

quantities compared to the polymer film or simulating solvent;

thus 4>

2+ 1 and the migrant chemical potentials approach

the following limiting forms:

(yp-u°)/RT = lntj>p + 1 + Xp 0°)

(ps-p°)/RT = 1 n<(>

s+ 0-V

m/V

s) + X

s

" (11)

where V_ and V_ are the molar volumes of migrant and solventm s

respectively (Vm/V

p- o and is ignored), <j>

sis the migrant

volume fraction in the solvent phase, <(> is the migrant

volume fraction in the polymer phase and x~ anc* x"T ^re theP ^

x°° values of the migrant in polymer and solvent phases,

respectively. At equilibrium, Eq. (9) holds and thus the

distribution coefficient is given by

K = 0 /<*> = exp ( V /V + x“

- x°° ) C12 )

S pm S

p s

Equation (12) offers an alternative to extraction

experiments for experimentally determining distribution

coefficients. Recent advances in gas chromatographic

techniques have made it possible to determine x°° in low molecular weight

systems such as n-hexane/squalene7

and in polymer/sol vent

gsystems such as polyethyl ene/n-decane. The necessary

equations required to obtain chemical potentials from

equilibrium chromatograms are discussed in references 7 and 8

-37-

Page 48: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

9 10and in more recent papers by Purnell and Bonner and Brookmeier .

10

For polymers, measurements are normally carried out above the

polymer melting point or glass transition temperature. These

temperatures will usually be well above the anticipated use

temperatures of the polymeric food packaging material. However,

co

with the aid of theory, experimental x values can be

extrapolated accurately to lower temperatures.

The Flory and lattice fluid (LP) theories incorporate

the "equation of state" properties of the pure component

fluids. Both theories require 3 equation of state parameters

for each pure component which are determined from PVT data.

5For the LF, about 60 low molecular weight fluids and 10

1

1

different polymers have already been so characterized.

For a binary mixture, LF theory requires 7 parameters: 3 for

each pure component, which are already known or are calculable

from PVT data, and a seventh parameter that characterizes

the interaction between the two components. The Flory theory

requires an eighth parameter that is related to the surface/vol ume

properties of the pure components. A relatively concise

review and comparison of these two theories has been given

by Sanchez‘S.

oo

For the LF, x for component 1, the migrant, is given by

where

voo

M

* *

(13)

M-j= molecular weight of component 1 (migrant)

T-j , v- , p.j= characteristic temperature, volume, and mass

density, respectively, of the migrant

- 38-

Page 49: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

r\j * 'Xj

p-,= p-j/p-j= 1/v-j reduced migrant density

P2= p

2/p

2= reducecl polymer density or reduced

simulating solvent density^ *T^= T/T-j reduced migrant temperature

X1

= aP*v*/RT (14)

and aP represents the net change in cohesive energy

density upon mixing components 1 and 2 at the aosolute

zero of temperature. X, is_ the only unknown parameter in

Eg. (13) . All others are known or derivable from pure

component PVT data. An experimental value of x°° would

establish the value of X-j , of course, but other kinds of

solution data (often more accessible experimentally) such

as heats of mixing, critical temperatures , solution densities,

etc. can be used to determine X-5

. Thus, LF theory offers a

method of calculating x°° values without actually measuring

chemical potentials directly. To illustrate this possibility,

x°° values have been calculated for some polyisobutylene

solutions using AHm

data to fix X-j. As a polymer solution

becomes dilute in polymer (component 2), the heat of mixing

approaches a limiting value, AH (»), defined by:

AHm(oo) = lim AH

m/4>2

(15)

In Table I AHm(°°) values at 298 K for polyisobutylene in

n-pentane, n-octane, cyclohexane, and benzene are tabulated.

A striking feature of the data is that 3 out of 4 of these

non-polar solutions are exothermic. Notice, however, that all

- 39 -

Page 50: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

*of the calculated aP and X-j values are positive as one

might expect for these non-polar components. The calculated

. oo

X- values have then been used in Eq. (13) to calculate x ;

oo

the experimental x values are also tabulated in Table I

for comparison. Also listed are the experimental and theoretical

values of x-| ax ( 4>=1 ) which shows how x can vary with concentration.

Although the agreement is not spectacular, it is encouraging.

Similar results can be obtained with the Flory theory whereas

the Flory-Huggins theory would fail miserably.

- 40 -

Page 51: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

TABLE

I

1/1

aso LO U3 r-»

sc r— lT“ 6— r—

<V3

ass_ A

a) CO CO oo oo<o is- r— p— r— IT—

-o oss-

a ID co ^3“ COJx *3- oo VD

«3 • « • *

O O O o o,

Xcn vo o

Cl ^r «=s- DX • • • •

O) o o o o

o 00 VD COID CO CO

<tS • • • ®

a o o o o

X4-> CO <o ma. cr> ID %r> IF”

X • • • •

(X) o o o c—

6— sxoo_ o O

• • •

o VO ocx2

CM

<3^

SIo o CO CM oCO CM CO

X cr> l~ r—(— • • • •

X CM CM CO

o8 o r— Oi CO CTi

""eE o

CMID CO o

<“D 8 I D 4-

<Dc

as ft!

c as X05 c as 054-> <o -C S=

C +-> o asas o r— N1

CL o o C1 ! X 0J

C E o jd

- 41 -

Table

IA

comparison

of

experimental

and

theoretical

reduced

residual

chemical

potentials

for

polyisobutylene

solutions

at

298K*

Page 52: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

Diffusion Constants

1. General Properties

Typically, the self-diffusion constant D of an

-9 2organic liquid is about 10 m /sec. At low concentrations

in a polymer, the same organic species diffuses at a drastically

-13 2reduced rate; D can vary from about 10 m /sec at T + 100 K

-20 2to about 10 m /sec near T^.

Most diffusion studies have taken the form of

permeation or sorption experiments performed on amorphous

polymers (lightly crossl inked) above their glass transition

temperatures. Whereas diffusion behavior is relatively

simple at temperatures above T , it is exceedingly complex at

temperatures near or below T^.

In the usual absorption experiment a polymer film,

initially free of diffusant molecules, is suddenly exposed

to an organic vapor at a fixed pressure and the gain in weight

of the film is monitored as a function of time. Desorption

of the diffusant can also be studied by reducing the pressure

to a new fixed value and following the film weight loss.

Data from a sorption experiment (either absorption or desorption)

are generally represented by plotting the amount of vapor

Mtabsorbed or desorbed against the square root of time. At

long times equilibrium is approached and M^-^M^.

Crank^ discusses at length the method of data

analysis required to obtain diffusion constants from sorption

data. It is assumed that D(c) is a function of concentration

c, but not of time, and that the diffusant concentrations at

Page 53: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

the film surface increase or decrease instantaneously

with pressure to their equilibrium values. Under these

conditions the sorption is called Fickian and sorption

curves are expected to possess the following properties:

1 /2a) Sorption curves are initially linear in t

'. For

absorption, the linear region extends to over 60%

of M . For desorption, linearity is obtained almost

up to equilibrium if, as would normally be expected,

dD/dc > 0.

b) Above the linear portions, both absorption and desorption

1 /2are concave to the t axis, irrespective of the

form of D(c)

.

c) Sorption curves are superimposable. A series of

absorption curves for films of different thicknesses (i)

1/2are superposable if M

tis plotted against t /i. The

same applies to a corresponding series of desorption curves.

These properties are independent of the form of D(c) and

provide an experimental means of determining whether a given

system exhibits Fickian sorption. One of the most important

findings of sorption studies is that at temperatures well above

Tg

, the sorption kinetics of organic vapors are invariably Fickian .

Temperature dependent sorption studies have also

revealed another characteristic property of small molecule

diffusion in polymers: the temperature dependence is

strong and non-Arrhenius. A plot of log D vs 1/T will usually

18be non-linear. For example, Hayes and Park studied

sorption of benzene in natural rubber and found that the

*apparent activation energy, aE e-R dlnD/d(l/T), is about

29kJ/mole at 373 K but increases to 96kJ/mol at 273 K.

- 43 -

Page 54: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

Another feature of the temperature dependence, which is

especially relevant for migration studies, is the finding that

aE often appears to be independent of the diffusant's chain length or

branching. Such has been the case for isomeric hydrocarbons

•; g 20in natural rubber and polyisobutylene and n-alkyl acetates

21 22in polymethyl acrylate 5

. In the case of natural rubber,

*the constancy of aE has been shown to hold up to as

23large a molecule as octadecane . These findings tend to

support the thesis that the temperature dependence of

diffusion is largely determined by the properties of the

polymer and is relatively independent of the size and shape

of the diffusant.

2. Diffusion above

Theories of the diffusion constant fall into two broad

classes: In one, which is especially relevant for migration

studies, attention is directed at how the magnitude of D and

its temperature dependence are affected by such factors as

the size and shape of the diffusant, the nature of the polymer,

and the intermolecular interaction between diffusant and

polymer. In the second class, interest is focused on

interpreting the concentration and temperature dependence of D

and not its magnitude. A 1973 review of the latter class

24of theories is available while the former and more important

25class was reviewed in 1968 by Kumins and Kwei

Of the theories reviewed in 1968, two stand out. These

26 27are the free volume theories of Cohen and Turnbull ’ and

28 *Bueche . Both theories require the probability P(v )

that the local volume v associated with the molecule or a

"segment" of the molecule be greater than some critical

ic

volume v . The theories are different in that different

- 44 -

Page 55: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

methods are used for calculating P(v ). Cohen and Turnbull

assumed that a multinomial distribution of free volumes

exist in a liquid to derive:

it

P(v)

= exp (yV /V f)

D ^ u P(v )

( 16 )

07 )

where f is the fractional free volume, v&

is the molecular or

segment volume when f=o, yis a dimensionless constant (1/2 <y<l).

where <v> is the average segment volume, B is the isothermal

compressibility of the polymer and erfc is the complementary

error function.

Although both of these theories in their original

formulations did not consider the diffusion a small molecule

in a polymer, they have been successfully applied to such

29systems. Fujita has demonstrated that the Cohen- l urnbul

1

theory adequately describes the temperature dependence of

diffusion in polymers in several systems. (Acutally Fujita

used an empirical equation for D due to Doolittle‘S which

29is equivalent to the Cohen-Turnbul 1 equation for D). Fujita

31 -33and others have shown that the Cohen-Turnbul 1 theory,

properly modified, adequately accounts for the concentration

34dependence of D up to 10% of diffusant. Kumins and Roteman

have used Bueche's theory successfully to correlate the diffusion

behavior of small gas molecules with their van der Waal volumes.

and u is the average molecular or segment velocity [u=(kT/M) ‘^ 2].

Beuche used the thermodynamic theory of fluctuations,

orginally derived by Einstein, to obtain

v - <v>

07 )

08 )

- 45-

Page 56: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

However, the success of both theories must be viewed as being

primarily correlative rather than truly predictive.

Recently Sanchez 35 obtained the following expression

for the diffusion of a small molecule in a polymer:

D = D(c=o)o (19)

— oo

where v is the partial molar voi ume of the diffusant in the

limit of zero concentration, 3 is the compressibility of the

polymer, and ail other symbols have the same meaning as before.

Equation (19) can also be suitably modified to treat the

diffusion of a large molecule composed of N segments, each

of which is able to execute independent diffusive motions.

Although Eq. (19) has yet to be tested quantitatively,

it has the potential of being a predictive theory of diffusion.

It is predictive in the sense that all of the requisite

parameters and variables can be determined independently

from other physical data; v can be determined from

viscosity or self-diffusion data on the pure liquid diffusant;

• oo

v can be semi-quantitatively calculated using either the

2-4 5Flory or lattice fluid theory of solutions; and 3 can

be determined either experimental ly or theoretically.

The attractive property of Eq. (19) is that it embodies

all of the physical factors judged important for diffusion in

* -00 *polymers through v , v , and 3; v is a unique property of

the shape and size of the diffusant; v°° is a property which

depends sensitively on the polymer-diffusant intermolecular

- 46 -

Page 57: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

interaction; and b, of course, is a cha racteri Stic property

of the polymer.

Qualitatively, Eq. (19) also explains why the diffusion

of a small molecule decreases by 4 or 5 orders of magnitude

in a polymer. This can best be illustrated by expanding

36erfc X in an asymptotic series so that Eq. (19) becomes

(val id for large X)

;

The equation for the self-diffusion constant of the

diffusant will be the same as Eq. (19) or (20) except

— oo

that v is replaced by the molar volume v , of the diffusant

and b is replaced by the compressibility 3^ of the diffusant.

Compressibilities of polymer liquids are just about one

order of magnitude smaller than those of similar low molecular

weight liquids. Thus, the big difference between and DQ

is the compressibility of the medium in which the diffusant

molecule finds itself. (Volume fluctuations are directly

proportional to 3 ). Decreasing s by an order of magnitude

can diminish D by a substantially larger

amount since 3 appears in the exponential.

Analysis of migration or diffusion in polymers is

often based on ideal conditions. That is, the diffusion

constant is assumed to be constant independent of the

concentration of the diffusing material in the polymer and

the concentration in the polymer is assumed to be given by

Henry's Law

( 20 )

C=kp- 47 -

( 21 )

Page 58: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

at equilibrium, where p is the pressure of the diffusant

in the gas surrounding the polymer or the concentration of the diffusant

in a solution surrounding the polymer. However for some

polymeric systems, especially glassy polymers, these

conditions do not hold, so that a more complicated analysis

is required.

37Vieth and others have studied diffusion and sorption

in systems in which Eq. 21 is not obeyed. An example of

such a system is methane in orientated polystyrene. The slope

of the solubility versus pressure is not constant as in Eq. 21, but

decreases with pressure and becomes constant at high pressures. Vieth

and coworkers postulated that two modes of sorption are

operative in such systems. The first mode of sorption,

Cq, is proportional to the pressure, while the second mode of

sorption, C^, obeys Langmir sorption. Thus at equilibrium.

c = C n + cu = k np

=C'

Hbp

1 + bp ( 22 )

The second mode of sorption, C^, is considered to be

due to holes or voids in the polymer. Methods have been

37 1

given to determine the constants k n , b and C_ in Eq. 22

from sorption curves. It was demonstrated that the

equilibrium gas solubilities in glassy polymers may

be characterized by the dual sorption model mathematically

expressed by Eq. 22.

- 48-

Page 59: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

38Vieth and Sladek developed a theory of diffusion in

systems that have dual sorption. They assumed the concentration

in the Langmuir isotherm, CH

, of the adsorption did not

contribute to diffusion and that the diffusion constant D

of Cg, the Henry's law isotherm , is independent of concentration.

They obtained the diffusion equation

D =

2

C'

Hb/k

D

(l+bCD/k

d )

2(23 )

and applied Eq.23 to transient sorption of CO 2 in

Mylar. Eq. 23 could not be analytically solved for the

boundary conditions of transient sorption because it

is not linear in C^. Therefore, numerical solutions of Eq. 23

were obtained for assumed values of b, C^' and kp. A

method was given for matching these theoretical curves to

the experimental sorption curves to obtain the diffusion

constant D. Good agreement with the observed absorption was obtained.

The method has since been applied to other systems exhibiting dual

sorpti on

.

39Paul and Kemp have investigated time lag experiments

for systems exhibiting dual sorption. While Eq. 23 cannot

be solved analytically for the boundary conditions (Barrer

conditions) used for time lag experiments, analytic expressions

40for the permeability and time lags were derived. Kemp made

time lag experiments on a membrane of a silicone rubber

impregnated with molecular sieve particles. Becasue the

molecular sieve particles exhibited large Langmuir adsorption

of the gases used, the membrane exhibited dual sorption.

- 49 -

Page 60: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

He was able to determine the constants b, C^, k, and D

from measurements of the silicone rubber and molecular

sieves and predict the results of the time lag experiments.

Good agreement was obtained.

The time lag experiment may be used to determine if

a material obeys ideal diffusion. Fig. 1 shows the amount of

CO^ (AQt

) diffused through a membrane versus the time. At

times greater than 100 minutes, the amount increases linearly

with time with a slope, transmission coefficient, of

P = 0.1564 cc/min. Extrapolating this linear relationship

(dashed curve) to AQt

= 0 gives a time lag of 81 minutes.

The amount of C0£ versus time that would diffuse through the

membrane for ideal diffusion with these values of the transmission

coefficient and time lag has been computed and is shown by

the crosses. This curve is far from the experimental curve

indicating that diffusion of CO^ in this membrane is not

ideal. In fact, the membrane is one made by Kemp to have strong

dual sorption. Thus, examination of the time lag curve

of a membrane may be used to determine if the system shows

ideal diffusion.

A simple test of ideal diffusion from a time lag

experiment may be made as follows. Determine the transmission

coefficient T and time lag 0 for the system. Then for

ideal diffusion, the amount of gas that has diffused through

the membrane at a time equal to the time lag 0 is given

by 0.33439T.

If the amount of gas at the time lag differs from this

value, the system does not exhibit ideal diffusion. For

the case discussed, we obtain 0.3343 x 81 x 0.1564 = 3 cc.

Since the experiment gives 1 cc, the system aoes not obey ideal diffusion.

Page 61: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

- 51 -

Page 62: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

A IS CL L LANE 0 ISG .

N,N' -Diphenyl thiourea (thiocarbanilide) 0 . 5 / P VC (c)

Cy an o gu an i d i n e ( Di cy an di ami de ) 1/POl

N-n-Alkyl-N' - c a rb o xy me thy 1- N ,N

’ -trinethy lenedigiy cineR = C 14- C

181 . 35 /NR

p~t~ Amy lphenol- formaldehyde Resins 2 . 1/PA

Nylon 60 / 6 IO /6 terpolymer 1 . 5 / P 0A

Po ly

(

1 , 4-cy clohexylenedi methylene-3 ,

3' -

thiodi propionate) partially terminated withstearyl alcohol, I4W 1800-2 200 0. 5 / P P / .005

- 52 -

Page 63: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

D. PHENOLS (continued)

Tetra-

:

Tetrakisf methylene(3, 5-di-£-butyl-4-hydroxy-bydrocinnamate) ] methaneIrganox 1010

. 5/PO. 05/E-MA, E-AA/

. 005. 5 /PS , E- AA, E- \Ac

,

S-B , IB1/POM. 5 / P OM

E . PHOSPHITES

Hydrogenated 4 ,

4

1 - z - p r o p y 1 i de n e diphenol-p ho s p h i t e e s t e r resins 2400-3000 0 . 5 5 / P VC ( c )

4,4'-'5-Propylidenediphenol alkyl (C.£~ C )

-

phosphites 1 / P VC ( c )

Tri (mixed mono- and dinonyl phenol) phosphite

2-t-Butyl- a- (3 - £-Butyl-4-hydroxyphenyl)- 1.35/NR,B-A,A-B-S,p-cumenyl b is (p-n ony lpheny 1 ) phosph i t e B-S/.004

Cyclic ne op en t ane t e

t

r ay 1 b i s (

o

c t ade cy 1 phosphite) 0 . 25/PO0 . 15/PO0 . 20/PS ,

PS

I. THIO CARBOXYLIC ACIDS AND ESTERS

Thiodipropionic Acid

Dimyristyl thiodipropionate

Dicetyl thiodipropionate

Distearyl thiodipropionateAntioxydans AsAdvastab PS 802

- 53 -

Page 64: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

References

); J. Crank, "Mathematics of Diffusion", 2nd Ed. Clarendon Press, Oxford (1975).

2) P. J. Flory, 0. Amer. Chern. Soc. , 87 , 1873 (1965).

3) B. E. Eichinger and P. J. Flory, Trans. Faraday Soc. , 64 , 2035 (1968).

4) P. J. Flory, Discuss. Faraday Soc. , 49 , 7 (1970).

5) I. C. Sanchez and R. H. Locombe, J. Phys. Chem , 80 , 2352, 2568 (1976).

6) P. J. Flory, "Principles of Polymer Chemistry", Cornell Univ. Press, Ithaca, NY (1953).

7) J. R. Conder and J. H. Purnell, Trans. Faraday Soc. , 65 , 839 (1969).

8) N. F. Brockmeier, R. W. McCoy and 0. A. Meyer, Macromol ecu I es . 5_, 130 (1972).

9) H. Purnell, "Advances in Analytical Chemistry and Instrumentation", Vol . 2, John Wiley

& Sons, New York (1973).

10) D. C. Bonner and N. F. Brookmeier, Ind. Eng. Chem. , Process Des. Dev. 16 , 180 (1977).

11) I. C. Sanchez and R. H. Lacombe, J. Poly. Sci. Polym. Letters Ed. , 15 , 71 (1977)

12) i. C. Sanchez, "Polymer Blends", edited by D. R. Paul and S. Neuman, Vol. 1, Academic

Press, New York (1978).

13) G. Delmar, D. Patterson, and T. Somcynsky, J. Polym. Sci , 57 , 79 (1962).

14) B. E. Eichinger and P. J. Flory, Trans. Faraday Soc., 64, 2061 (1968).

15) P. J. Flory, J. L. Ellenson and B. E. Eichinger, Macromolecules , 1_, 279 (1968).

16) B. E. Eichinger and P. J. Flory, Trans. Faraday Soc. , 64 , 2061 (1968).

17) B. E. Eichinger and P. J. Flory, Ibid . , 64 , 2053 (1968).

18) M. J. Hayes and G. S. Park, Ibid , 51 , 1134 (1955).

19) A. Aitken and R. M. Barrer, Ibid , 51 , 116 (1955).

20) S. Prager, E. Bagley and F. A. Long, J. Amer. Chern. Soc. , 75 , 1255 (1953).

21) H. Fujita, A. Kishimoto, and K. Matsumoto, Trans. Faraday Soc. 56 , 424 (1960).

22) H. Fujita, "Diffusion in Polymers", ed. by J. Crank and G. S. Park, Academic Press, NY

23) I. Auerback, et. al., J. Polym. Sci. , 28 129 (1958).

24) R. K. Ghai, H. Ertl , and F. A. L. Dullien, AICHE Journal , 19 , 881, 1215 (1973).

25) Chapter 4 in reference 22

26) M. H. Cohen and D. Turnbull, J. Chem. Phys. , 31 , 1164 (1959).-54-

Page 65: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

27) D. Turnbull and M. H. Cohen, ibid , 52 , 3038 (1970).

28) F. Bueche, Ibid , 21 , 1850 (1953).

29) H. Fujita, Fortschi. Hochpolym. - Forsch. , 3, 1 (1961).

30) A. K. Doolittle, J. Appl . Ph.ys. , 22, 1471 (1951 ), 23 236 (1952).

31) A. Kishimoto and Y. Endu, J. Polym. Sci. A . 1799 (1963).

32) A. Kishimoto, Ibid , 2: , 1421 (1964).

33) A. C. Newns, Trans. Faraday Soc. 59 , 2150 (1963).

34) C. A. Kumins and J. Poteman, J. Polym. Sci. , 55 , 699 (1961).

35) Unpublished calculations of I. C. Sanchez.

36) “Handbook of Mathematical Functions", M. Abramowitz and I. A. Stegur. editors,

Dover Publications, New York (1965) p. 298.

37) W. R. Vieth, J. M. Howell and J. H. Hsieh J. Membrane Sci., X, 177 (1976)

and references given therin.

38) W. R. Vieth and K. J. Slakek, J . Col 1 . Sci » 20 , 1014 (1965).

39) D. R. Kemp and D. R. Paul J. Polm. Sci ., Part A-2, J_2 S 485 (1974).

D. R. Paul and D. R. Kemp J. Polm. Sci , Part C, 41_, 79 (1973).

40) D. R. Kemp, "The Diffusion Time Lag in Heterogeneous Polymer Membranes"

Dissentation, the University of Texas, (1972).

University Microfilms Ann Arbor, Mich. No. 73-466.

- 55 -

Page 66: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

PRELIMINARY CLASSIFICATION OF ADDITIVE TYPESIntroduction

A J 1. h L of FDA approved additives (Section 178) for plasticslo be used in contact with food are classified as to theirchemical characteristics, along with their maximum allowableamounts (%)/ in particular types of plastics/and the maximumthickness of the plastics in inches.

i

Classification

A. ALCOHOLS AND ESTERS

1,3 - B ut anedio

1

P an t ae ry t h r i t o 1 0.4/PVC

P an t e a ry th r i t o 1 stearate 0.4/PVC

B. BENZOPHENONES

2- Hy d r o xy- 4-n- o c t o xy- b en z op he none 0.5/POAd vas tab 4 6

Cyasorb UV5 3

1

2-Hydro xy-4-i-octoxy-benzophenone 0.5/P0(c)Me th anone[2-Hydro xy- 4- (i- o c t oxy ) pheny 1 ] pheny

1

C. METALLIC SALTS

1. CALCIUM:

2. COPPER:

3. LITHIUM:

4. MAGNESIUM:

5. POTASSIUM:

benzoate

my ris t ate

stearate

cupric acetate

cupric carbonate

cuprous bromide

cup rous iodide

iodide

salicylate

bromide

1 / POM ( c )

.025/ NY 66/ .0012

.005/ NY 66/ .0015

.0175/ NY 66/. 0015

.0025/ NY 66/ .0015

.065/ NY 66/. 0012

0. 3/RPVC(c)

0.18/ NY 66/. 0015

- 56-

Page 67: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

6 . TIN : Di-n- o c ty 1- t in maleate polymer PVC

Di-n-octy 1-tin-bis (i-Octylmercap to-acetate) PVC

Poly[ (1, 3-di-butyl-di-Stann-thianediylidene)l,3-dithio] 0.2/PVC

7. ZINC: dibuty ldithiocarbamate 0.2/lB-IP(c)

salicylate 0.3/RPVC

palmitate

stearate

D. PHENOLS

Mono- :

2.6-

Di-t-butyl-p-cresolI on o 1

BHTAdvastab 401

2.

6-

Di-t-butyl-4-ethyl-phenol 0.1/E-P(c)/‘^^Antioxidant 724 ,uZ "

2,6-Bis(i-me thy lheptadecyl )-p- ere sol .3/PO/.004

4-Hydroxy nethvl-2, 6-di -t-buty 1 phenolAntioxidant 754

n-0ctadecyl-3 - (4' -hydroxy-3' 5' -di-t-butyl phenyl)

propionate. 25 /PO/ . 0025.05/P0/no limit

Octadecyl-3 , 5-di-£-butyl-4-hydroxy-hydrocinn am a t e

Irganox 10 76

. 25 /PS , PS

. 5 / A-B-S

2 (2 ' -Hydroxy -5 '-methyl pheny l)benzotriazoleTinuvin P

. 25/PVC(c) ,PS

2 (3' -b-Butyl-2 1 -hydroxy-5 ' -methylphenyl)-5-ch lo r ob en zo t r i a zo 1 e .5/POTinuvin 326

Butyrated styrenated cresols . 5/PS SP0

- 57 -

Page 68: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

D. PHENOLS (continued)

fe

Di- :

4,4 '-Methylene-bis (2, 6-di-b-butylphenoi) . 25/PHC resins,

Antioxidant 702 turpene resins. 5 / P E , P B

2 ,2

' -Methylene-bis (6- t-butyl-4-ethylphenol) . 6/ A-B-S. IP A

2,2 '-Methylene-bis (4- me thyl-6-t-butylphenol) . 1/PO

i / P OM ( c

)

. 5 /POM

4 ,

4' -Butylidene-bis (4-t-buty 1-m-cresol) . 5/PP

. 3/PE

4 , 4 * -Thio-bis (6-t-buty

1

-m- c r e s o 1

)

SantonoxAdvastab 415Antioxydans KS

. 25/PE

2, 2* -Methylene-bis [6-(l-methylcyclohexyl)-p-cresol] . 2/PE/ .0005

4,4'-Cyclohexylidene-bis(2-cyclohexylphenol) . 1/PO

2,2'- Me thylene-bis(4-methyl-6-nonylphenol) A-B-S

Tri- :

2 , 6-Bis (2-hydroxy- 3-nonyl-5-methy l-benzyl)-p-cresol A-B-S

T r i s ( 2 - m e t h y 1 - 4 - h y d r o xy - 5 - t

-

b u t y 1 p h e ny 1 ) b u t an e . 25 /A-B-S. 1/ A-B-S. 2/PS

1, 3,5-Trimethyl-2,4,6-tris-(3,5-di-t-butyl-4-hydroxybenzyl)benzenelonox 330 , Antioxidant 330

. 5

1/NY

1, 3, 5-Tris (3, 5-di-t-butyl- 4 -hydroxy-hydro-cinnamoyl) hexanydro-s-triazine

. 25/PP

. 1/PE

. 5 /E-P-EN/. 005/ .005

l,3,5-Tris(3,5-di-£-butyl-4-hydrobenzyl)-5-triazine-2 , 4 , 6 (1H, 3H, 5H) t rione

- 58 -

. 25/PP

.1/PE

. 5 /PE

. 5 /E-P-EN/. 005

M

i

M

a

a

a

a

a

a

a

a

a

a

a

a

a

i

Page 69: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

ABBREVIATIONS FOR POLYMERS

AA

A

B

(C)

E

Acrylic Acid

B utadiene

Copolyme r

Ethylene

en S-Ethylidine-2-norbornene

IB Isobutylene

IP Isop rene

1 A Methacrylic Acid

NR Natural rubber

NY Nylon

P Propylene

PA P o ly ami de

PBD P o 1 y b u t adi ene

PE Polyetiiy lene

PHC Petroleum hydrocarbon

PO Polyolefin

POM Polyoxymethylene

PP Polypropylene

p Poly(vinyl chloride)

S Styrene

VAc Vinyl acetate

Page 70: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

Molecular Models of Some of the Additiveso

(O.lnm or 1A is represented by 1.2 cm of the model)

-AO-

Page 71: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

-Di-^-butyl-p-cresol

Page 72: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS
Page 73: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

rH

owa)

u01

CuI

rH

>1-p

I

+i

I

•HQi

(N

t

CD

Pn3

£fd

cc•HUopTS

x:t>i

X0uTDk“i

,C1

TI

P£3

I

-w

I

•H

I

in

m

£0oCD

V<d

•PO0

1

c

-6 2-

-Thio-bis

(6-

t-butyl-m-cresol)

Page 74: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS
Page 75: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

- 63 -

Tetrakis

[methylene

(3,

5-di-t-buty

1-4-hydroxyhydrocinnamate)

]

methane

Page 76: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS
Page 77: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

- 64 -

Distearvl

thiopropionate

Page 78: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

a

a

a

a

a

a

a

a

a

a

a

Page 79: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

N6S-1 14A ihev /- / o

U.S. DEPT. OF COMM.§

]. HI J Js 1 K Al'ION OR REPORT NO. I 2. Gov’t AccessionBIBLIOGRAPHIC DATA MDC TD .... No.

SHEET1

NBS-IR - 78-1499

3. Recipient’s Accession No.

4. m i l: AND SUBTITLE

AN EVALUATION OF EXISTING MODELS DESCRIBING THE

MIGRATION OF ADDITIVES IN POLYMERS

5. Publication Date

6. Performing Organization Code

?'.AbT

M^anchez ; S. S. Chang; F. L. McCrackin; & L. E. Smith

S. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDSDEPARTMENT OF COMMERCEWASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

5630446

11. Contract/Grant No.

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

same as Item 9

13. Type of Report & PeriodCovered

r inal 9-1-77 to 3-30-78

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

16. ABSTRAC T (A 200-word or less factual summary of most significant information. If document includes a significant

bibliography or literature survey, mention it here.)

The objective of this work is the development of mathematical models

that describe the migration of a variety of small molecules in polymersthat have applications in food contact uses. In the most general cases,

these models will be able to predict the amount of additive migrationgiven any particular time and temperature history. These models can

serve as the technical basis for more efficient regulatory methods underexisting frameworks or in the design and implementation of new indirectadditive regulations or policy.

The first steps in the development and assessment of such modelsare given in this report. The first section presents a preliminary surveyof migration data applicable to food contact situations that are availablein the current literature. The second section surveys available modelsdescribing migration and evaluates their present and potential utility.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper

name; separated by semicolons

)

Additives; diffusion; food additives; indirect additives; migration; models;regulati on

18. AVAILABILITY [TCj Unlimited

[j' For Official Distribution. Do Not Release to NTIS

[ 1 Order From Sup. of Doc., U.S. Government Printing OfficeWashington, D.C.. 20402, SP Gat. No. G

)*

Lj Order From National Technical Information Service (NTIS)Springfield, Virginia 22151

USCOMM-DC 29042-P74

!19. SECURITY CLASS 21. NO. OF PAGES

(THIS REPORT)

UNCL ASSIFIED 70

20. SECURITY CLASS 22. Price

(THIS PAGE)

$5.25UNCLASSIFIED

1

Page 80: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS

I

Page 81: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS
Page 82: NAT L INST. OF STAND TECH R.I.C. A-i-l-irB MBS