NASA Alternative Fuel Research - Bulzan CAAFI NASA Presentation 11-30-11

25
NASA Alternative Fuel Research CAAFI 2011 General Meeting November 30 – December 1, 2011 Washington, DC Dan Bulzan NASA Glenn Research Center

description

http://web.archive.org/web/20130525222936/http://www.kallmanclassic.com/microsites/caafiexpo2011/presentations/Environment%20Team/Bulzan%20CAAFI%20NASA%20Presentation%2011-30-11.pdfYes, I backed it up.

Transcript of NASA Alternative Fuel Research - Bulzan CAAFI NASA Presentation 11-30-11

NASA Alternative Fuel Research  CAAFI 2011 General Meeting

November 30 – December 1, 2011Washington, DC

Dan BulzanNASA Glenn Research Center

C b ti CFD M d D l t d V lid ti E i t

Research to Support Alternative Fuel Development

• Combustion CFD Mode Development and Validation Experiments to allow development of fuel flexible low emissions combustors for future engines

• Alternative Fuels Research Lab fuel thermal stability measurements and experiments to optimize Fischer-Tropsch process for jet fuel production

• Low Emissions Fuel Flexible Combustor Concept Development to develop low emissions combustion concepts capable of operating on a variety of fuels

• Ground-based Engine Tests to evaluate alternative fuel effects on performance and emissions under real operating conditions

• Altitude Simulation Laboratory (PAL) Tests to examine fuel effects• Altitude Simulation Laboratory (PAL) Tests to examine fuel effects on contrail ice formation

• Airborne, Cruise Altitude Experiments to evaluate fuel effects on i i d t il f tiemissions and contrail formation

NASA Subsonic Transport System Level Metrics…. technology for dramatically improving noise, emissions, & performance

3

Low Emissions Combustors for N+2Environmentally Responsible Aviation Project

Development of fuel flexible low emissions combustor concepts to meet 75% LTO NOx below CAEP 6

• Contracts with General Electric and Pratt and Whitney to develop sector rig• Contracts with General Electric and Pratt and Whitney to develop sector rig concepts for testing in the NASA High-Pressure Combustor Facility

– P&W: Working on both Rich Burn (Talon-X based) and Lean Burn Concepts

GE W ki d d L B TAPS C t– GE: Working on advanced Lean Burn TAPS Concepts

• NASA also working collaboratively with several companies on alternative concepts for flametube testing and optional sector rig development and testing of a io s M ltipoint Lean Di ect Injection Conceptsof various Multipoint Lean Direct Injection Concepts

– Goodrich/Delevan

– Woodward FST

– Parker Hannifin Corporation

• Full Annular Rig testing of at least one concept

• Proposed core engine test in 2015

4

Low Emissions Combustors for N+3Subsonic Fixed Wing Project

• Combustion CFD Model Development and A li tiApplication

• Validation ExperimentsValidation Experiments

• Low Emissions Combustion Concepts

– N+3 Goals (Subsonics Fixed Wing and Supersonic Projects)

• Active Combustion Control

• Alternative Fuels5

CE-5 Flame Tube Medium Pressure Testing for Evaluating Fuel Performance and Emissions

15

20 20NOx Emissions9-Point LDI

EIN

Ox,

g/k

g

3

4

5

6

789

10

1030 F, 350 psia, JP81030 F, 350 psia, FT11030 F, 250 psia, JP81030 F, 250 psia, FT1850 F 250 psia JP8

EIN

Ox,

g/k

g

4

5

6

789

10

1030 F, 250 psia, JP81030 F, 250 psia, Biojet

FAR, sample0.02 0.025 0.03 0.035 0.04

2

3 850 F, 250 psia, JP8850 F, 250 psia, FT1650 F, 250 psia, JP8650 F, 250 psia, FT1

FAR0.02 0.025 0.03 0.035 0.04 0.045

2

3 1030 F, 150 psia, JP81030 F, 150 psia, Biojet850 F, 150 psia, JP8850 F, 150 psia, Biojet

F-T Fuel Biojet Fuel

(dEI

num

dlog

DP)

3x1014

4x1014

5x1014

1030 F, 250 psia, FAR~0.033

JP8BioJet

Flame Images

JP 8 F T/JP 8 Bl d F T Diameter (nm)

8 9 20 30 40 50 60 70 80 90 20010 100

Num

ber E

I (0

1014

2x1014

JP-8 F-T/JP-8 Blend F-T Diameter (nm)

Biojet Particle Emissions

Planned testing of Tallow, Camelina and Fermentable Sugar based fuels

Engine Fuel Test Summary

Pratt and Whitney Geared Turbofan Engine Demo—January 2008• JP-8, 50:50 F-T/JP-8 blend • Test stand mounted engine• Performance + emissions measurements

Pratt and Whitney 308 Alternative Fuel Test—March 2008• JP-8, 50:50 F-T/JP-8/blend and F-T• Test stand mounted engineg• Performance + emissions measurements

Alternative Aviation Fuel Experiment—January 2009• FT, blends, and JP-8• CFM-56 on NASA DC-8• Performance and complete emissions

Alternative Aviation Fuel Experiment II—January 2011•Biofuel, FT, blends, and JP-8• CFM-56 on NASA DC-8• Performance and complete emissions• Additional tests to support SAE E-31 Particle Measurement Standard Subcommittee

AAFEX-II: HRJ Fuel Emission Characterization

Location: NASA Dryden Aircraft Operations Facility  (DAOF)Palmdale, California

Dates: March 20 – April 2, 2011

Aircraft: NASA DFRC DC‐8, CFM‐56‐2C engines

Fuels: *Standard JP‐8*Tallow‐based HRJ & 50% Blend w/JP‐8Tallow based HRJ & 50% Blend w/JP 8*Coal‐based FT & Coal‐based FT w/1000ppm S added

Runtime: 11 separate Emissions Tests, 30.5 hrs total run time

Measurements: Certification gases, smoke, HAPS, PM number, size, mass, composition,  black‐carbon content, and morphology

S NASA S b i Fi d Wi P j t FAA Ai FSponsors:  NASA Subsonics Fixed Wing Project, FAA, Air Force

Participants: AEDC, AESO, AFRL, ARI, GRC, LaRC, MIT, MST, MSU, PSU

E‐31 Group: UTRC, EPA, Rolls, GE, TSI, NRC‐Canada, P&W

Fuel Characteristics

Test JP8 (1) Shell FT Sasol FT HRJ

Sulfur Content (ppm Mass) 100 0 0 0Sulfur Content (ppm Mass) 100 0 0 0

Aromatics (% vol) 21.8 ~0 0.4 ~0

E d P i t (°C) 300 268 206 225 254End Point (°C) 300  268 206 225 254

Flash Point (deg C) 46 41 43 52

(k / )Density (kg/L) 0.811 0.738 0.761 0.759

Freezing Point (deg C) ‐53 ‐54 ‐78.5 ‐49

Hydrogen Content (% mass) 13.5 15.5 15.0 15.3

Heat of Combustion 43.3 44.4 44.1 44.1

Available Alternative Fuel CompositionAlternative Fuels contain < 0 5% Aromatics and < 20 ppm Sulfur

12.0% 0.4%

FT Sasol FT Shell~48%  C9 & C10~60% C10 & C11

~35% C10 & C11

Alternative Fuels contain < 0.5% Aromatics and < 20 ppm Sulfur

87.6%

12.0%

i‐paraffins

cycloparaffins

aromatics

53.3%46.7%

n‐paraffins

i‐paraffins

% 10 11

aromatics

19.0%18.7%

JP‐8

n‐paraffins

15%

5%HRJ

31.3%31.0%

n‐paraffins

i‐paraffins

cycloparaffins

aromatics 80%

n-paraffins

i-paraffins

cycloparaffins

Fuels Vary Considerably in Hydrocarbon Composition 

AAFEX‐II Project Objectives

1) Evaluate alt fuel effects on engine performance and fuel‐handling equipment 

2)Determine the effects of alt fuels on engine and APU PM and gas phase emissions

3) Investigate the role of sulfur in regulating volatile aerosol formation in engine exhaust plumes

4) Examine the effects of sample line chemistry and particle losses on emission measurements

5) Conduct tests to support SAE E‐31 development of standard exhaust sampling methodsp g

AAFEX-II replicated AAFEX-I Test Plan

Left 1‐m Rake Right 1‐m Rake

143‐m Instrument Trailers

Right 30‐m Inlet

143 m Instrument Trailers

Instrument Enclosure

ARI Mobile Lab

4, 7, 30, 65, 85, and 100% Thrust Runs; Tests conducted in coldest and warmest parts of day to examine temperature dependencies; had dedicated E‐31 probes

100

%)

HRJ Blend

1E15

mg/

kg)

HRJ Fuels Reduce PM Number Emissions

60

80

ber E

I Red

uctio

n (

1E14

rticl

e N

umbe

r EI (

m

N b20

40

Non

vola

tile

Num

b

1E12

1E13 Blend HRJ JP-8

Non

vola

tile

Pa Number

0 20 40 60 80 1000

Engine Power (%)

0 20 40 60 80 1001E12

Engine Power (%)

100

n (%

)

HRJ Blend100

60

80

Mas

s E

I Red

uctio

n

10

Car

bon

EI (

mg/

kg)

Mass20

40

Bla

ck C

arbo

n M

1

Blend HRJ JP-8

Bla

ck C Mass

0 20 40 60 80 1000

Engine Power (%)

0 20 40 60 80 100

Engine Power (%)

HRJ and FT Fuel PM Emission Reductions Comparable

HRJ also Reduces Volatiles in Downstream Plume

100

%)

HRJBlendN b t

1E16

JP-8 HRJ Blend

Num

ber E

I (#/

kg)

40

60

80

er E

I Red

uctio

n (%

BlendNumber at 30 m

1E15

Tota

l Aer

osol

N

0

20

40

otal

Aer

osol

Num

b

0 20 40 60 80 1001E14

Engine Power (%)

0 20 40 60 80 100-20

To

Engine Power (%)

100

%) HRJ

Blend

60

80

ss E

I Red

uctio

n (% Blend

100 JP-8 HRJ Blend

ass

EI (

mg/

kg)

Mass at 30 m

20

40

Tota

l Aer

osol

Mas

10

Tota

l Aer

osol

Ma

0 20 40 60 80 1000

Engine Power (%)0 20 40 60 80 100

1

Engine Power (%)

Fuel Effects on PM Emissions very Clear and Profound

AAFEX-2 PM Number Emissions at 1 m, 7% thrust

80ns

60

er E

mis

soin

JP-8

40

cle

Num

be

20

lativ

e Pa

rti

Total ParticlesNonvolatile

Switched Fuels

0

Re Nonvolatile

HRJ

15:36:38 15:38:18 15:39:58 15:41:38 15:43:18 15:44:58

Local TimeDifferences in PM ratios due to volatile particles associated with JP-8 Fuel

20 25

AAFEX II Gaseous Emissionsg/

kg-f

uel)

10

15

HRJJP-8

/kg-

fuel

)

15

20HRJJP-8

EIN

Ox

(g

5

10

EIH

C (

g/

5

10

Engine Power, %0 20 40 60 80 100

0

Engine Power, %0 20 40 60 80 100

0

80

100

HRJJP-8

ICO

(g/

kg-f

uel)

40

60

0 20 40 60 80 100

E

0

20

Engine Power, %

Sulfur Plays Significant Role in Volatile PM Formation

Relatively high ambient temperature suppressed volatile formation but

1E16

EI (

#/kg

)

volatile formation, but difference still profound

1E15

eros

ol N

umbe

r

1 1

20 ppm S 1000 ppm STo

tal A

e

100

I (m

g/kg

)

0 20 40 60 80 1001E14

Engine Power (%) 10

Aer

osol

Mas

s E

1

20 ppm S 1000 ppm S

Tota

l A40 mg/kg ~ 1% S(IV) conversion to S(VI)

0 20 40 60 80 1001

Engine Power (%)

AMS measurements indicate volatile mass mostly sulfate

AAFEX‐II Participation

More than 60 individuals participated, representing 22 public and private institutions 

AAFEX II Workshop

• Friday, January 13, 2011• Immediately following the AIAA AerospaceImmediately following the AIAA Aerospace

Sciences Meeting• Gaylord Opryland Resort and Conference

C tCenter• Nashville, Tennessee• 8:00 am 2:30 pm• 8:00 am – 2:30 pm• Presentations from participating groups of

data collected during the experiment da a co ec ed du g e e pe e• No registration fee• If interested in attending, please send an g p

email to: [email protected]

Fuel Effects on Contrails being Studied in Altitude Chamber

Tests examine the links between soot emissions/properties and ice formation

VacuumExhaust

Tests examine the links between soot emissions/properties and ice formation

Liquid Nitrogen

ChamberOPC

Vaporizer/

Flow control valvesOPC

Humidifier

Vaporizer/Heat

ExchangerXenon Source Spectrometer

OPC

Humidifier

P ~ 1 atm,  T~673 K Simulated Exhaust Emissions

• Flow‐through chamber can simulate conditions up to 50,000 ft• Particles monitored using Optical Particle Counters and Light Scattering• Can control soot size, number density, and sulfate and organic coatings

High PM Concentrations Required for Ice Formation

“Contrail” visible for CN > 1e6/cm3 

ExhaustJet

LightSource

SootSoot4% RH

• Tests are being conducted with ACCRI co‐sponsorship and in collaboration with AerodyneTests are being conducted with ACCRI co sponsorship and in collaboration with Aerodyne, which is using the data to validate contrail model• Oct tests will explore particle size and solubility effects on ice formation• Will conduct future tests using high‐pressure burner and alternative fuels

Alternative‐Fuel Effects on Contrails and Cruise EmiSSionsACCESS

ACCESS Objectives

1. Characterize cruise altitude soot and gas phase emissions from aircraft as they burn a variety of fuels, including JP-8, HRJs and possibly FT fuels.fuels, including JP 8, HRJs and possibly FT fuels. May be limited to blends because of certification issues.

2. Investigate the role of soot and fuel sulfur in regulating contrail formation and the microphysical properties of the ice particlesmicrophysical properties of the ice particles.

3. Measure the soot and gas-phase emissions and contrail characteristics in exhaust from commercial aircraft at cruise in air-traffic corridors

ACCESS Status

Location: NASA Dryden Aircraft Operational Facility,Palmdale, California

D S i i 2013Dates: Starting  in 2013Sponsors: NASA, other collaborations are welcomeChase Aircraft: Dryden, Glenn, and Langley aircraft are being consideredSource AC: NASA DC‐8, others are being consideredMeasurements:  Aerosol number, size, composition, volatility

Cloud particle size, number, images, water contentCO2, CO, NOx, O3, water vapor

Fuels: JP‐8, Biojet and FT blends, Biojet and FT neat if possible

Questions?Q