Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam...

53
1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam [email protected] Nanoscale: 10 -9 meter Photonics: science of controlling propagation, absorption & emission of light (beyond mirrors & lenses)

Transcript of Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam...

Page 1: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

1

Nanophotonics

Femius KoenderinkCenter for Nanophotonics

AMOLF, Amsterdam

[email protected]

Nanoscale: 10-9 meter

Photonics: science of controlling

propagation, absorption &

emission of light

(beyond mirrors & lenses)

Page 2: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

About length scales

2

1 m you and your labtable

100 µm thickness of a hair

10 µm smallest you can see

1 µm size of a cell

300 nm smallest you can see with microscope

0.3 nm Si lattice spacing

small molecules

0.05 nm Hydrogen atom 1s orbital

Geometrical

optics

Domain of

e-, not ħw

Nano: Range around and just below the wavelength of light

well above the length scales of atoms & solid state physics

Page 3: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Dreams 1: signal transport

Lossless, high-bandwidth transport of information

- Ohmic loss limits copper wires

- Glass-fiber: < 1 decibel per kilometer

- Up to 80 colors = up to 80 “wires” in one fiber

- From fiber to chip….?

Page 4: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Dreams 2: computing

1939

1 Classroom full

1 addition/sec

2015

109 flops/sec

Shrunk (108 ) .. Moore’s law ends where?

Single molecule

Transistor?

Page 5: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,
Page 6: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Dream 3: quantum computing

TU Delft – Bell test on 2 spins, entangled by single photons

1. Spins are a controllable quantum degree of freedom

2. Photons are transportable and coherent

How do you interface with unit efficiency light, and a single spin?

Light interfaces with spin, charge, atoms, quantum motion,…

Page 7: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Dream 4: seeing small stuff

PALM, STORM: beat Abbe limit by seeing a single molecule at a time

Using a stochastic on/off switch to keep most molecules dark

Resolution: how discernible are two objects ?If you have a single object, you can fit the center of a Gaussian with arbitrary precision (depends on noise)

Page 8: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Dream 4: seeing small stuff

Detecting single molecules

[Detuning of a resonance

by a single molecule]

Page 9: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Dream 5: better lighting

Blue LED - Nobel Physics – 2014

Nanoscale materials that emit light

How to extract the most light from a single nano-object

Page 10: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Dream 6: making light work

30 minutes of sunlight contains

enough energy for 1 year

How do you make a solar cell

absorb the most light?

Page 11: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Controlling photons with nano-

antennas

Femius Koenderink

Center for NanophotonicsFOM Institute AMOLF, Amsterdamwww.amolf.nl

Resonant Nanophotonics AMOLF

My own fascination with nanophotonics

Page 12: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Single molecules [Moerner & Orrit, ’89]

100 micron

1018 molecules

Keep on diluting

1 molecule can emit about 107 photons per second (1 pW)Observable with a standard [6k€] CCD camera + NA=1.4 objective

Page 13: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Spontaneous emission

Matter• Selection rules – which colors & transitions

Time• How long does it take for ħω to appear ?

Space• Whereto does the photon go ?• With what polarization ?

Quantummechanics

Maxwell equations

Page 14: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

High Q Ultrasmall V

micrometers

na

no

meters

Ultimate control over light

Interference-based Material-basedfree-electrons

Page 15: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

This course

15

1. Tuesdays 13-17: Lecture course (2h), 2h exercises

2. Thursdays 13-17: Lecture 2h, exercises (2h)

3. Labtour AMOLF: April 26

Presentations & homework exercises count for final mark

Me: [email protected]

Exercise help: TA indicated per week (rotates)

Course slides & information available at:

https://amolf.nl/research-groups/resonant-nanophotonics/uva-mastercourse

http://tinyurl.com/maaq5gm

Page 16: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Course calendar

1. What is nano, Maxwell, a first optical scattering problem Apr 3

2. Extreme confinement and dispersion with metals Apr 10

3. Pulses and dispersion, causality, and invisibility cloaks Apr 12

4. Photonic crystals 1 – perfect mirrors from transparent stuff Apr 17

5. Photonic crystals 2 – semiconductors for light Apr 19

6. Antennas on the nanoscale Apr 24

Labtour [ April 26 ]

7. Quantum lightsources at the nanoscale May 1

8. Microscopy & nanoscopy May 3

9. Microcavity resonators May 8

10.Hybrid light-matter systems May 15

Extra exercise class [May 17 ] , final exam session [May 24]

Page 17: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Provisional exercise calendar

Topic Assistant Handout Handin date Contact time

Exercise 1 Maxwell, Fresnel Hugo, Sylvianne 3-Apr 12-Apr 1.5 session

Exercise 2 Plasmons, causality Annemarie, Ruslan 10-Apr 17-Apr 1.5 session

Exercise 3 Photonic crystals Sachin, Christiaan 17-Apr 24-Apr 2 sessions

Exercise 4 Nanoscale antennas David, Said 24-Apr 3-May 1.5 session

Exercise 5 LDOS & microscopes Isabelle, Ilse 1-May 8-May 2 sessions

Exercise 6 Microcavities Amy, Robin 8-May 20-May 2 sessions

Exercise 7Hybrid light-matter systems Zhou, Radoslaw 15-May 20-May 2 sessions

Exercises count heavily for your final grade [70%] and involve time & effort

Plan carefully – but realize you have always at least a week & 2 Q &A opportunities

Page 18: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,
Page 19: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Geometrical optics:

- Light travels as rays in straight lines

- To first order: mirrors, lenses, prisms

- Matter enters as refractive index

- Phase is irrelevant for tracing rays

Nano-optics

- Light is a wave

- Diffraction & interference – wavelength-sized distances

- Full Maxwell equations are needed

- Matter & quantum mechanics - molecules & atoms as sources

Page 20: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

20

Maxwell equations I – divergence

Electric field lines emanate from

charge

Gauss’s law

If you stick bound charges in a new

field D, D-field lines emanate from

free charge

Also

Page 21: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Maxwell equations II – curl

Ampere’s law

Current generates magnetic field

Separate free current, and bound current in D

Faraday’s law (and Lenz’s law)

A time-changing magnetic flux induces E-field

across enclosing curve (electromotively induced voltage).

Page 22: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Maxwell together

Optics is charge-neutral

Current: only used to

describe light sources

Page 23: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Optical materials

Maxwell’s equations Material properties

+

Matter enters only via the constitutive relation

Nanophotonics controls light via matter

Page 24: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Wave equation

Source free Maxwell - curl one of the curl equations

Page 25: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Simple matter

Plane waves solve Maxwell in free infinite space

Obviously divergence free if

Means that

Transverse wave, with perpendicular,

righthanded set

Page 26: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Simple matter

Plane waves solve Maxwell in free infinite space

Means that

Dispersion relation:

Refractive index:

Page 27: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Plane wave

righthanded, perpendicular set

Transverse wave

Propagation speed , with the refractive index

Page 28: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Energy density and Poynting

vectorSubtracting Maxwell curl equations after dotting with

complement

Integrate over volume, use Gauss theorem

Page 29: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Poynting’s theorem

Charge x velocity x force/charge

Work done, or work delivered

by a source or sink

Poynting vector – flux integral Energy density in the field

Page 30: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Plane wave

k

B

E

Poynting vector S = E x H along k

Page 31: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Working definition of nano-optics

“Optics” means

w = 1013- 1015 rad/s

“Nano” optics often means:

controlling light to be very different from a plane wave

by arranging n(r) on length scales << 2pc/w (vacuum wavelength)

Page 32: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Geometry matters

Periodically perforated Si confines light to within l/4 or so

How strong is the ‘potential’ set by ? (Si: =3.5)

How slow or fast does the wave travel ?

Page 33: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Measurement of guiding &

bending

33

Sample: AIST JapanMeas: AMOLF

Page 34: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

34

Squeezing light into a metal

Mode width 150 nm

SPP-l < 1 µm

At l = 1.550 µm

Page 35: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Controlling light by controlling material (e,m) in space

is like

controlling wave functions by engineering potential landscapes

Question 1: what does light do at boundaries of material?

Question 2: what values of n, e,m are available?

Page 36: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Boundary conditions

Take a very thin loop

Page 37: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Boundary conditions

for a thin pillbox

(so jumps by )

Take a very thin pilbox

Page 38: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

38

Optical materials

Optics deal with plane waves of speed

with

Insulators: transparentMetals: reflective

Page 39: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

What e does nature give us

0.4 0.7 1.0 1.3 1.6 1.9

-1

01

2

3

4

Metamaterial

(Nature (2008))

GaAs

Si

TiO2 (pigment)

glass SiO2

Silicon nitride Si3N

4

Re

fra

ctive

in

de

x

Wavelength (micron)

B

Water

Density raises

Semiconductors help

All ’s between 1 and 4

Vacuum = 1

Spoof (later class)

Page 40: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Solving our first problem

This class:

Refraction at a single interface

Next class:

Guiding light by interfaces

Page 41: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Refraction

Archetypical problem: Fresnel reflection & refraction

1. Monochromatic solution means one chosen w 2. Note that the wavelength is different in medium 1 and 23. Incident angle translates into parallel momentum k||

Page 42: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Snell’s law

Generic solution steps:Step 1: Whenever translation invariance: Use conservation

to find allowed refracted wave vectors

Page 43: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Sketch of k|| conservation

k|| conservation:

The only way for the

Phase fronts to match

everywhere, any time

on the interface

Page 44: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Sketch of k|| conservation

k|| conservation:

The only way for the

Phase fronts to match

everywhere, any time

on the interface

Page 45: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Amplitudes

Symmetry does not specify amplitudesStep 2: Once you have identified the solutions per domain

Tie them together via boundary conditions

Page 46: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Amplitudes

1. Causality excludes non-physical solution parts2. Solid algebra solves amplitudes

Page 47: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Amplitude s-polarization

Remember

Now eliminate t to obtain reflection coefficient r (equal m)

Page 48: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Amplitude s-polarization

Shorthand

Page 49: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Amplitude p-polarization

Suppose now that is coming out

of the screen.

The rules are the same:

is conserved,

and are continuous

exercise

Page 50: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Fresnel reflection

From air to glass From glass to air

Page 51: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Fresnel implications

Miles Morgan photography

Reflective

Transmissive

Fiber –

guides light

Evanescent-tail microscopy

Page 52: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

What you see from this problem

Scattering: incident field (plane wave) is split by object e(r)

Translation invariance provides parallel momentum conservation

Boundary conditions determine everything to do with amplitude

Total internal reflection: if wave vector is too long to

be conserved across the interface

Exercise: total internal reflection still means evanescent field

Page 53: Nanophotonics - AMOLF1 Nanophotonics Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl Nanoscale: 10-9 meterPhotonics: science of controlling propagation,

Take home messages

Nano-optics is about controlling light [w~1015 s-1] and matter

at the scale of nanometers [10-9 m]

The spatial distribution of matter e, m controls light fields

Maxwell’s wave equation – not ray optics

Fresnel problem, k|| conservation, causality & E||, H|| match

Next week - what causes e & how to trap light