Nanoparticles at fluid-fluid interfaces: self-assembly, stability...

24
Nanoparticles at fluid-fluid interfaces: self-assembly, stability and disassembly Valeria Garbin Department of Chemical Engineering Imperial College London garbinlab.ce.ic.ac.uk 17/05/2013 Università di Roma-Tor Vergata 1

Transcript of Nanoparticles at fluid-fluid interfaces: self-assembly, stability...

Page 1: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Nanoparticles at fluid-fluid interfaces: self-assembly, stability and disassembly

Valeria Garbin Department of Chemical Engineering Imperial College London garbinlab.ce.ic.ac.uk

17/05/2013 Università di Roma-Tor Vergata 1

Page 2: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Nanoparticles at fluid-fluid interfaces

17/05/2013 Università di Roma-Tor Vergata 2

1.  Two-dimensional nanomaterials with tunable properties

2.  Promoting self-assembly onto fluid-fluid interfaces

3.  Tuning the interfacial microstructure (stability)

4.  Disassembly

Kathleen Stebe @ University of Pennsylvania John Crocker Talid Sinno, Ian Jenkins

Page 3: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Self-assembly of colloidal particles at fluid-fluid interfaces

Università di Roma-Tor Vergata

Reduction in Helmoltz free energy F

Strong trapping:

a = 2 nm

γ0 = 30 mN/m

∆F ∼ 100 kBT

∆F = −πa2γ0 (1− | cos θ|)2

Particle monolayers at fluid-fluid interfaces

17/05/2013 3

Page 4: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Self-assembly of colloidal particles at fluid-fluid interfaces

Università di Roma-Tor Vergata

Colloidosomes Dinsmore et al., Science (2002) Particle-stabilized foams

Martinez et al., Soft Matter (2008)

Phase-selective catalysis with interfacial nanoparticles

(Crossley et al., Science 2010)

17/05/2013

Anisotropic particles Lewandowski et al., Langmuir (2010)

encapsulation catalysis interface mobility

4

Page 5: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Nanoparticle monolayers at fluid interfaces

Università di Roma-Tor Vergata

Liquid-like mirrors Luo et al., Soft Matter (2012)

Nanoparticles Functional, tunable monolayers Interparticle distance-dependent collective properties

Tunable plasmonic films Tao et al., Nat. Nanotech. (2007)

17/05/2013 5

Page 6: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Outline

•  Promote nanoparticle self-assembly

from suspension

•  Tune interfacial microstructure

(equilibrium, reversible)

•  Control dynamic behavior

Università di Roma-Tor Vergata 17/05/2013 6

Page 7: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Nanoparticles are passivated by capping ligands

Università di Roma-Tor Vergata

surfactants polymers ions

•  shape of nanoparticle (synthesis)

•  colloidal stability in bulk suspension

Ye et al., ACS Nano (2012)

100 nm

Ye et al., PNAS (2010)

Personick et al., JACS (2011)

200 nm

17/05/2013 7

Page 8: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Promote nanoparticle self-assembly from suspension

Università di Roma-Tor Vergata

a = 2 nm

γ0 = 30 mN/m

∆F ∼ 100 kBT

1 2 γ0

P 1 γP1

P 2 γP2

cos θ =γP2 − γP1

γ0

|γP2 − γP1| < γ0

use ligands to tune surface energy to promote adsorption

adsorption to fluid-fluid interface if θ ≠ 0

17/05/2013 8

Page 9: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Controlling stability and dynamics

Università di Roma-Tor Vergata

Mechanics of particle-laden interface? Link with interparticle interactions?

Datta, Schum, Weitz, Langmuir (2010)

Mulligan & Rothstein, Langmuir (2011)

17/05/2013 9

Page 10: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

•  2D osmotic pressure Π •  Π due to entropy and interparticle interactions

Ligand-mediated interactions?

Mechanics of nanoparticle-laden fluid interface

Università di Roma-Tor Vergata 17/05/2013 10

Page 11: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Particle change the effective surface tension

Π

γeff = γ0 −Π

γ0

•  Measurements of Laplace pressure γeff •  Mechanical equilibrium between gravity and surface tension γeff

11 17/05/2013 Università di Roma-Tor Vergata

γ =

� x2

x1

[PN(x)− PT(x)] dx Rowlinson & Widom, Molecular Theory of Capillarity

Page 12: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Pendant drop method

12 17/05/2013 Università di Roma-Tor Vergata

Page 13: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Measuring surface pressure of nanoparticle monolayer

•  5 nm Au nanoparticles •  amphiphilic capping ligand MUTEG

•  Aqueous suspension NPs (φ ~ 10-5)

•  Form drop of oil at t = 0

•  Adsorption: t ~ 103 s

Università di Roma-Tor Vergata

CH2(CH2)9CH2 S   [ ]4 O OH Au

undec-11-yl tetra(ethylene glycol) mercapto

1 mm

Du, Glogowski, Emrick, Russel, Dinsmore, Langmuir (2010)

17/05/2013 13

Page 14: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Measuring surface pressure of nanoparticle monolayer

•  surface tension from drop shape

Università di Roma-Tor Vergata

γeff = γ0 −Π

reversible

Garbin, Crocker, Stebe, Langmuir (2012)

1 mm

17/05/2013

speed 20x

14

Page 15: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Mechanically forced desorption of nanoparticles

Università di Roma-Tor Vergata

Π = Π(Adrop)

need to measure area density Γ

Π = Π(Γ), Γ = N/Adrop•  Optical absorbance A •  Number of particles in plume •  Extract area density Γ

17/05/2013 15

Page 16: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Critical area density for nanoparticle desorption?

Università di Roma-Tor Vergata

a∗eff = 3.3 nm

= acore + 1 nm

2aeff

17/05/2013 16

Page 17: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Energetics of nanoparticle desorption

Università di Roma-Tor Vergata

Upper bound for desorption energy: work done upon compression ΠcdA ≥ ∆F

Πc ≈ 13 mN/m

dA ≈ πa∗eff∆F ≤ 111 kBT

Π

∆F = −πa2γ0 (1− | cos θ|)2

17/05/2013 17

Page 18: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Università di Roma-Tor Vergata

•  2D osmotic pressure Π •  Π due to entropy and interparticle interactions:

Π = −�∂F

∂A

�= −

�∂U

∂A

�+ T

�∂S

∂A

17/05/2013 18

Page 19: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Ligand-capped nanoparticles are not hard disks

Università di Roma-Tor Vergata

experiment a = 2.3 nm a*eff = 3.3 nm

fluid: Henderson, Mol. Phys. (1975) crystal: Sturgeon & Stillinger, J. Chem. Phys. (1991)

Π = −�∂U

∂A

N,T

+ T

�∂S

∂A

N,T

r 2a

U

17/05/2013 19

Page 20: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Ligand-mediated soft repulsion

Università di Roma-Tor Vergata

Steric repulsion dense grafted polymer in bulk

P (s) = kBTσ32

��2L

s

� 94

−� s

2L

� 34

�Pressure between flat plates:

Derjaguin approximation Force between spheres Potential

De Gennes, Adv. Colloid Interface Sci. (1987)

17/05/2013 20

•  particle at oil-water interface •  amphiphilic ligand

Ranatunga et al. J. Phys. Chem C (2010)

Ligand configuration depends on grafting density σ

Page 21: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Hard disks with soft repulsion

Università di Roma-Tor Vergata

L = 2 nm

σ = 2 nm−2

NVT ensemble 2D Brownian Dynamics simulations (LAMMPS)

experiment a*eff = 3.3 nm

BD simulations

r 2a

U

2(a+L)

Garbin, Jenkins, Sinno, Crocker, Stebe, in preparation

17/05/2013 21

Page 22: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Nanoparticle interactions determine fate of monolayer

•  Πc < γ0 •  AND equilibrium •  AND stability upon compression

Desorption

Garbin, Crocker, Stebe, Langmuir (2012)

Datta, Schum, Weitz, Langmuir (2010)

Buckling

•  Πc = γ0 •  OR non-equilibrium (aggregates, gel) •  cohesive upon compression

Università di Roma-Tor Vergata

Garbin, Crocker, Stebe, J. Coll. Interf. Sci. (2012)

Reynaert et al., Langmuir (2006)

Reynaert et al., Langmuir (2006)

17/05/2013 22

Page 23: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

Desorption: desirable for recycling/green chemistry

Other strategies for desorption Charge-mediated adsorption/desorption Reincke et al., Phys Chem Chem Phys (2006) Luo et al., Soft Matter (2012)

Interfacial displacement by surfactants Vashisth et al., J. Coll. Interf. Sci. (2010)

THIS WORK: Mechanically forced desorption Garbin, Crocker, Stebe, Langmuir (2012)

Università di Roma-Tor Vergata

Phase-selective catalysis with interfacial nanoparticles Crossley et al., Science (2010)

17/05/2013 23

Page 24: Nanoparticles at fluid-fluid interfaces: self-assembly, stability ...statistics.roma2.infn.it/~sbragaglia/Garbin1.pdfself-assembly, stability and disassembly Valeria Garbin Department

water water

oil

bulk interface ligand rearrangements

stable interfacial suspension

2D gel network

adsorption repulsive

interactions

attractive interactions

Garbin, Crocker, Stebe, J. Colloid Interf. Sci. (2012)

SUMMARY: Ligands control adsorption, stability and dynamics

Università di Roma-Tor Vergata

NEXT: non-equilibrium?

17/05/2013 24